xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision d2dfe0b5)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "pmu.h"
26 #include "exec/exec-all.h"
27 #include "instmap.h"
28 #include "tcg/tcg-op.h"
29 #include "trace.h"
30 #include "semihosting/common-semi.h"
31 #include "sysemu/cpu-timers.h"
32 #include "cpu_bits.h"
33 #include "debug.h"
34 #include "tcg/oversized-guest.h"
35 
36 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
37 {
38 #ifdef CONFIG_USER_ONLY
39     return 0;
40 #else
41     bool virt = env->virt_enabled;
42     int mode = env->priv;
43 
44     /* All priv -> mmu_idx mapping are here */
45     if (!ifetch) {
46         uint64_t status = env->mstatus;
47 
48         if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) {
49             mode = get_field(env->mstatus, MSTATUS_MPP);
50             virt = get_field(env->mstatus, MSTATUS_MPV);
51             if (virt) {
52                 status = env->vsstatus;
53             }
54         }
55         if (mode == PRV_S && get_field(status, MSTATUS_SUM)) {
56             mode = MMUIdx_S_SUM;
57         }
58     }
59 
60     return mode | (virt ? MMU_2STAGE_BIT : 0);
61 #endif
62 }
63 
64 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
65                           target_ulong *cs_base, uint32_t *pflags)
66 {
67     CPUState *cs = env_cpu(env);
68     RISCVCPU *cpu = RISCV_CPU(cs);
69     RISCVExtStatus fs, vs;
70     uint32_t flags = 0;
71 
72     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
73     *cs_base = 0;
74 
75     if (cpu->cfg.ext_zve32f) {
76         /*
77          * If env->vl equals to VLMAX, we can use generic vector operation
78          * expanders (GVEC) to accerlate the vector operations.
79          * However, as LMUL could be a fractional number. The maximum
80          * vector size can be operated might be less than 8 bytes,
81          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
82          * only when maxsz >= 8 bytes.
83          */
84         uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
85         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
86         uint32_t maxsz = vlmax << sew;
87         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
88                            (maxsz >= 8);
89         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
90         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
91         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
92                            FIELD_EX64(env->vtype, VTYPE, VLMUL));
93         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
94         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
95                            FIELD_EX64(env->vtype, VTYPE, VTA));
96         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
97                            FIELD_EX64(env->vtype, VTYPE, VMA));
98         flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
99     } else {
100         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
101     }
102 
103 #ifdef CONFIG_USER_ONLY
104     fs = EXT_STATUS_DIRTY;
105     vs = EXT_STATUS_DIRTY;
106 #else
107     flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
108 
109     flags |= cpu_mmu_index(env, 0);
110     fs = get_field(env->mstatus, MSTATUS_FS);
111     vs = get_field(env->mstatus, MSTATUS_VS);
112 
113     if (env->virt_enabled) {
114         flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
115         /*
116          * Merge DISABLED and !DIRTY states using MIN.
117          * We will set both fields when dirtying.
118          */
119         fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
120         vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
121     }
122 
123     if (cpu->cfg.debug && !icount_enabled()) {
124         flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
125     }
126 #endif
127 
128     flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
129     flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
130     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
131     if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
132         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
133     }
134     if (env->cur_pmbase != 0) {
135         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
136     }
137 
138     *pflags = flags;
139 }
140 
141 void riscv_cpu_update_mask(CPURISCVState *env)
142 {
143     target_ulong mask = -1, base = 0;
144     /*
145      * TODO: Current RVJ spec does not specify
146      * how the extension interacts with XLEN.
147      */
148 #ifndef CONFIG_USER_ONLY
149     if (riscv_has_ext(env, RVJ)) {
150         switch (env->priv) {
151         case PRV_M:
152             if (env->mmte & M_PM_ENABLE) {
153                 mask = env->mpmmask;
154                 base = env->mpmbase;
155             }
156             break;
157         case PRV_S:
158             if (env->mmte & S_PM_ENABLE) {
159                 mask = env->spmmask;
160                 base = env->spmbase;
161             }
162             break;
163         case PRV_U:
164             if (env->mmte & U_PM_ENABLE) {
165                 mask = env->upmmask;
166                 base = env->upmbase;
167             }
168             break;
169         default:
170             g_assert_not_reached();
171         }
172     }
173 #endif
174     if (env->xl == MXL_RV32) {
175         env->cur_pmmask = mask & UINT32_MAX;
176         env->cur_pmbase = base & UINT32_MAX;
177     } else {
178         env->cur_pmmask = mask;
179         env->cur_pmbase = base;
180     }
181 }
182 
183 #ifndef CONFIG_USER_ONLY
184 
185 /*
186  * The HS-mode is allowed to configure priority only for the
187  * following VS-mode local interrupts:
188  *
189  * 0  (Reserved interrupt, reads as zero)
190  * 1  Supervisor software interrupt
191  * 4  (Reserved interrupt, reads as zero)
192  * 5  Supervisor timer interrupt
193  * 8  (Reserved interrupt, reads as zero)
194  * 13 (Reserved interrupt)
195  * 14 "
196  * 15 "
197  * 16 "
198  * 17 "
199  * 18 "
200  * 19 "
201  * 20 "
202  * 21 "
203  * 22 "
204  * 23 "
205  */
206 
207 static const int hviprio_index2irq[] = {
208     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
209 static const int hviprio_index2rdzero[] = {
210     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
211 
212 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
213 {
214     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
215         return -EINVAL;
216     }
217 
218     if (out_irq) {
219         *out_irq = hviprio_index2irq[index];
220     }
221 
222     if (out_rdzero) {
223         *out_rdzero = hviprio_index2rdzero[index];
224     }
225 
226     return 0;
227 }
228 
229 /*
230  * Default priorities of local interrupts are defined in the
231  * RISC-V Advanced Interrupt Architecture specification.
232  *
233  * ----------------------------------------------------------------
234  *  Default  |
235  *  Priority | Major Interrupt Numbers
236  * ----------------------------------------------------------------
237  *  Highest  | 47, 23, 46, 45, 22, 44,
238  *           | 43, 21, 42, 41, 20, 40
239  *           |
240  *           | 11 (0b),  3 (03),  7 (07)
241  *           |  9 (09),  1 (01),  5 (05)
242  *           | 12 (0c)
243  *           | 10 (0a),  2 (02),  6 (06)
244  *           |
245  *           | 39, 19, 38, 37, 18, 36,
246  *  Lowest   | 35, 17, 34, 33, 16, 32
247  * ----------------------------------------------------------------
248  */
249 static const uint8_t default_iprio[64] = {
250     /* Custom interrupts 48 to 63 */
251     [63] = IPRIO_MMAXIPRIO,
252     [62] = IPRIO_MMAXIPRIO,
253     [61] = IPRIO_MMAXIPRIO,
254     [60] = IPRIO_MMAXIPRIO,
255     [59] = IPRIO_MMAXIPRIO,
256     [58] = IPRIO_MMAXIPRIO,
257     [57] = IPRIO_MMAXIPRIO,
258     [56] = IPRIO_MMAXIPRIO,
259     [55] = IPRIO_MMAXIPRIO,
260     [54] = IPRIO_MMAXIPRIO,
261     [53] = IPRIO_MMAXIPRIO,
262     [52] = IPRIO_MMAXIPRIO,
263     [51] = IPRIO_MMAXIPRIO,
264     [50] = IPRIO_MMAXIPRIO,
265     [49] = IPRIO_MMAXIPRIO,
266     [48] = IPRIO_MMAXIPRIO,
267 
268     /* Custom interrupts 24 to 31 */
269     [31] = IPRIO_MMAXIPRIO,
270     [30] = IPRIO_MMAXIPRIO,
271     [29] = IPRIO_MMAXIPRIO,
272     [28] = IPRIO_MMAXIPRIO,
273     [27] = IPRIO_MMAXIPRIO,
274     [26] = IPRIO_MMAXIPRIO,
275     [25] = IPRIO_MMAXIPRIO,
276     [24] = IPRIO_MMAXIPRIO,
277 
278     [47] = IPRIO_DEFAULT_UPPER,
279     [23] = IPRIO_DEFAULT_UPPER + 1,
280     [46] = IPRIO_DEFAULT_UPPER + 2,
281     [45] = IPRIO_DEFAULT_UPPER + 3,
282     [22] = IPRIO_DEFAULT_UPPER + 4,
283     [44] = IPRIO_DEFAULT_UPPER + 5,
284 
285     [43] = IPRIO_DEFAULT_UPPER + 6,
286     [21] = IPRIO_DEFAULT_UPPER + 7,
287     [42] = IPRIO_DEFAULT_UPPER + 8,
288     [41] = IPRIO_DEFAULT_UPPER + 9,
289     [20] = IPRIO_DEFAULT_UPPER + 10,
290     [40] = IPRIO_DEFAULT_UPPER + 11,
291 
292     [11] = IPRIO_DEFAULT_M,
293     [3]  = IPRIO_DEFAULT_M + 1,
294     [7]  = IPRIO_DEFAULT_M + 2,
295 
296     [9]  = IPRIO_DEFAULT_S,
297     [1]  = IPRIO_DEFAULT_S + 1,
298     [5]  = IPRIO_DEFAULT_S + 2,
299 
300     [12] = IPRIO_DEFAULT_SGEXT,
301 
302     [10] = IPRIO_DEFAULT_VS,
303     [2]  = IPRIO_DEFAULT_VS + 1,
304     [6]  = IPRIO_DEFAULT_VS + 2,
305 
306     [39] = IPRIO_DEFAULT_LOWER,
307     [19] = IPRIO_DEFAULT_LOWER + 1,
308     [38] = IPRIO_DEFAULT_LOWER + 2,
309     [37] = IPRIO_DEFAULT_LOWER + 3,
310     [18] = IPRIO_DEFAULT_LOWER + 4,
311     [36] = IPRIO_DEFAULT_LOWER + 5,
312 
313     [35] = IPRIO_DEFAULT_LOWER + 6,
314     [17] = IPRIO_DEFAULT_LOWER + 7,
315     [34] = IPRIO_DEFAULT_LOWER + 8,
316     [33] = IPRIO_DEFAULT_LOWER + 9,
317     [16] = IPRIO_DEFAULT_LOWER + 10,
318     [32] = IPRIO_DEFAULT_LOWER + 11,
319 };
320 
321 uint8_t riscv_cpu_default_priority(int irq)
322 {
323     if (irq < 0 || irq > 63) {
324         return IPRIO_MMAXIPRIO;
325     }
326 
327     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
328 };
329 
330 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
331                                     int extirq, unsigned int extirq_def_prio,
332                                     uint64_t pending, uint8_t *iprio)
333 {
334     int irq, best_irq = RISCV_EXCP_NONE;
335     unsigned int prio, best_prio = UINT_MAX;
336 
337     if (!pending) {
338         return RISCV_EXCP_NONE;
339     }
340 
341     irq = ctz64(pending);
342     if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
343                                   riscv_cpu_cfg(env)->ext_ssaia)) {
344         return irq;
345     }
346 
347     pending = pending >> irq;
348     while (pending) {
349         prio = iprio[irq];
350         if (!prio) {
351             if (irq == extirq) {
352                 prio = extirq_def_prio;
353             } else {
354                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
355                        1 : IPRIO_MMAXIPRIO;
356             }
357         }
358         if ((pending & 0x1) && (prio <= best_prio)) {
359             best_irq = irq;
360             best_prio = prio;
361         }
362         irq++;
363         pending = pending >> 1;
364     }
365 
366     return best_irq;
367 }
368 
369 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
370 {
371     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
372     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
373     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
374 
375     return (env->mip | vsgein | vstip) & env->mie;
376 }
377 
378 int riscv_cpu_mirq_pending(CPURISCVState *env)
379 {
380     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
381                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
382 
383     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
384                                     irqs, env->miprio);
385 }
386 
387 int riscv_cpu_sirq_pending(CPURISCVState *env)
388 {
389     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
390                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
391 
392     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
393                                     irqs, env->siprio);
394 }
395 
396 int riscv_cpu_vsirq_pending(CPURISCVState *env)
397 {
398     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
399                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
400 
401     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
402                                     irqs >> 1, env->hviprio);
403 }
404 
405 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
406 {
407     int virq;
408     uint64_t irqs, pending, mie, hsie, vsie;
409 
410     /* Determine interrupt enable state of all privilege modes */
411     if (env->virt_enabled) {
412         mie = 1;
413         hsie = 1;
414         vsie = (env->priv < PRV_S) ||
415                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
416     } else {
417         mie = (env->priv < PRV_M) ||
418               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
419         hsie = (env->priv < PRV_S) ||
420                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
421         vsie = 0;
422     }
423 
424     /* Determine all pending interrupts */
425     pending = riscv_cpu_all_pending(env);
426 
427     /* Check M-mode interrupts */
428     irqs = pending & ~env->mideleg & -mie;
429     if (irqs) {
430         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
431                                         irqs, env->miprio);
432     }
433 
434     /* Check HS-mode interrupts */
435     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
436     if (irqs) {
437         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
438                                         irqs, env->siprio);
439     }
440 
441     /* Check VS-mode interrupts */
442     irqs = pending & env->mideleg & env->hideleg & -vsie;
443     if (irqs) {
444         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
445                                         irqs >> 1, env->hviprio);
446         return (virq <= 0) ? virq : virq + 1;
447     }
448 
449     /* Indicate no pending interrupt */
450     return RISCV_EXCP_NONE;
451 }
452 
453 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
454 {
455     if (interrupt_request & CPU_INTERRUPT_HARD) {
456         RISCVCPU *cpu = RISCV_CPU(cs);
457         CPURISCVState *env = &cpu->env;
458         int interruptno = riscv_cpu_local_irq_pending(env);
459         if (interruptno >= 0) {
460             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
461             riscv_cpu_do_interrupt(cs);
462             return true;
463         }
464     }
465     return false;
466 }
467 
468 /* Return true is floating point support is currently enabled */
469 bool riscv_cpu_fp_enabled(CPURISCVState *env)
470 {
471     if (env->mstatus & MSTATUS_FS) {
472         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
473             return false;
474         }
475         return true;
476     }
477 
478     return false;
479 }
480 
481 /* Return true is vector support is currently enabled */
482 bool riscv_cpu_vector_enabled(CPURISCVState *env)
483 {
484     if (env->mstatus & MSTATUS_VS) {
485         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
486             return false;
487         }
488         return true;
489     }
490 
491     return false;
492 }
493 
494 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
495 {
496     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
497                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
498                             MSTATUS64_UXL | MSTATUS_VS;
499 
500     if (riscv_has_ext(env, RVF)) {
501         mstatus_mask |= MSTATUS_FS;
502     }
503     bool current_virt = env->virt_enabled;
504 
505     g_assert(riscv_has_ext(env, RVH));
506 
507     if (current_virt) {
508         /* Current V=1 and we are about to change to V=0 */
509         env->vsstatus = env->mstatus & mstatus_mask;
510         env->mstatus &= ~mstatus_mask;
511         env->mstatus |= env->mstatus_hs;
512 
513         env->vstvec = env->stvec;
514         env->stvec = env->stvec_hs;
515 
516         env->vsscratch = env->sscratch;
517         env->sscratch = env->sscratch_hs;
518 
519         env->vsepc = env->sepc;
520         env->sepc = env->sepc_hs;
521 
522         env->vscause = env->scause;
523         env->scause = env->scause_hs;
524 
525         env->vstval = env->stval;
526         env->stval = env->stval_hs;
527 
528         env->vsatp = env->satp;
529         env->satp = env->satp_hs;
530     } else {
531         /* Current V=0 and we are about to change to V=1 */
532         env->mstatus_hs = env->mstatus & mstatus_mask;
533         env->mstatus &= ~mstatus_mask;
534         env->mstatus |= env->vsstatus;
535 
536         env->stvec_hs = env->stvec;
537         env->stvec = env->vstvec;
538 
539         env->sscratch_hs = env->sscratch;
540         env->sscratch = env->vsscratch;
541 
542         env->sepc_hs = env->sepc;
543         env->sepc = env->vsepc;
544 
545         env->scause_hs = env->scause;
546         env->scause = env->vscause;
547 
548         env->stval_hs = env->stval;
549         env->stval = env->vstval;
550 
551         env->satp_hs = env->satp;
552         env->satp = env->vsatp;
553     }
554 }
555 
556 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
557 {
558     if (!riscv_has_ext(env, RVH)) {
559         return 0;
560     }
561 
562     return env->geilen;
563 }
564 
565 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
566 {
567     if (!riscv_has_ext(env, RVH)) {
568         return;
569     }
570 
571     if (geilen > (TARGET_LONG_BITS - 1)) {
572         return;
573     }
574 
575     env->geilen = geilen;
576 }
577 
578 /* This function can only be called to set virt when RVH is enabled */
579 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
580 {
581     /* Flush the TLB on all virt mode changes. */
582     if (env->virt_enabled != enable) {
583         tlb_flush(env_cpu(env));
584     }
585 
586     env->virt_enabled = enable;
587 
588     if (enable) {
589         /*
590          * The guest external interrupts from an interrupt controller are
591          * delivered only when the Guest/VM is running (i.e. V=1). This means
592          * any guest external interrupt which is triggered while the Guest/VM
593          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
594          * with sluggish response to serial console input and other I/O events.
595          *
596          * To solve this, we check and inject interrupt after setting V=1.
597          */
598         riscv_cpu_update_mip(env, 0, 0);
599     }
600 }
601 
602 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
603 {
604     CPURISCVState *env = &cpu->env;
605     if (env->miclaim & interrupts) {
606         return -1;
607     } else {
608         env->miclaim |= interrupts;
609         return 0;
610     }
611 }
612 
613 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
614                               uint64_t value)
615 {
616     CPUState *cs = env_cpu(env);
617     uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
618 
619     if (env->virt_enabled) {
620         gein = get_field(env->hstatus, HSTATUS_VGEIN);
621         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
622     }
623 
624     vstip = env->vstime_irq ? MIP_VSTIP : 0;
625 
626     QEMU_IOTHREAD_LOCK_GUARD();
627 
628     env->mip = (env->mip & ~mask) | (value & mask);
629 
630     if (env->mip | vsgein | vstip) {
631         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
632     } else {
633         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
634     }
635 
636     return old;
637 }
638 
639 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
640                              void *arg)
641 {
642     env->rdtime_fn = fn;
643     env->rdtime_fn_arg = arg;
644 }
645 
646 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
647                                    int (*rmw_fn)(void *arg,
648                                                  target_ulong reg,
649                                                  target_ulong *val,
650                                                  target_ulong new_val,
651                                                  target_ulong write_mask),
652                                    void *rmw_fn_arg)
653 {
654     if (priv <= PRV_M) {
655         env->aia_ireg_rmw_fn[priv] = rmw_fn;
656         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
657     }
658 }
659 
660 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
661 {
662     g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
663 
664     if (icount_enabled() && newpriv != env->priv) {
665         riscv_itrigger_update_priv(env);
666     }
667     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
668     env->priv = newpriv;
669     env->xl = cpu_recompute_xl(env);
670     riscv_cpu_update_mask(env);
671 
672     /*
673      * Clear the load reservation - otherwise a reservation placed in one
674      * context/process can be used by another, resulting in an SC succeeding
675      * incorrectly. Version 2.2 of the ISA specification explicitly requires
676      * this behaviour, while later revisions say that the kernel "should" use
677      * an SC instruction to force the yielding of a load reservation on a
678      * preemptive context switch. As a result, do both.
679      */
680     env->load_res = -1;
681 }
682 
683 /*
684  * get_physical_address_pmp - check PMP permission for this physical address
685  *
686  * Match the PMP region and check permission for this physical address and it's
687  * TLB page. Returns 0 if the permission checking was successful
688  *
689  * @env: CPURISCVState
690  * @prot: The returned protection attributes
691  * @tlb_size: TLB page size containing addr. It could be modified after PMP
692  *            permission checking. NULL if not set TLB page for addr.
693  * @addr: The physical address to be checked permission
694  * @access_type: The type of MMU access
695  * @mode: Indicates current privilege level.
696  */
697 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
698                                     target_ulong *tlb_size, hwaddr addr,
699                                     int size, MMUAccessType access_type,
700                                     int mode)
701 {
702     pmp_priv_t pmp_priv;
703     int pmp_index = -1;
704 
705     if (!riscv_cpu_cfg(env)->pmp) {
706         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
707         return TRANSLATE_SUCCESS;
708     }
709 
710     pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
711                                    &pmp_priv, mode);
712     if (pmp_index < 0) {
713         *prot = 0;
714         return TRANSLATE_PMP_FAIL;
715     }
716 
717     *prot = pmp_priv_to_page_prot(pmp_priv);
718     if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
719         target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
720         target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
721 
722         *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
723     }
724 
725     return TRANSLATE_SUCCESS;
726 }
727 
728 /*
729  * get_physical_address - get the physical address for this virtual address
730  *
731  * Do a page table walk to obtain the physical address corresponding to a
732  * virtual address. Returns 0 if the translation was successful
733  *
734  * Adapted from Spike's mmu_t::translate and mmu_t::walk
735  *
736  * @env: CPURISCVState
737  * @physical: This will be set to the calculated physical address
738  * @prot: The returned protection attributes
739  * @addr: The virtual address or guest physical address to be translated
740  * @fault_pte_addr: If not NULL, this will be set to fault pte address
741  *                  when a error occurs on pte address translation.
742  *                  This will already be shifted to match htval.
743  * @access_type: The type of MMU access
744  * @mmu_idx: Indicates current privilege level
745  * @first_stage: Are we in first stage translation?
746  *               Second stage is used for hypervisor guest translation
747  * @two_stage: Are we going to perform two stage translation
748  * @is_debug: Is this access from a debugger or the monitor?
749  */
750 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
751                                 int *ret_prot, vaddr addr,
752                                 target_ulong *fault_pte_addr,
753                                 int access_type, int mmu_idx,
754                                 bool first_stage, bool two_stage,
755                                 bool is_debug)
756 {
757     /*
758      * NOTE: the env->pc value visible here will not be
759      * correct, but the value visible to the exception handler
760      * (riscv_cpu_do_interrupt) is correct
761      */
762     MemTxResult res;
763     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
764     int mode = mmuidx_priv(mmu_idx);
765     bool use_background = false;
766     hwaddr ppn;
767     int napot_bits = 0;
768     target_ulong napot_mask;
769 
770     /*
771      * Check if we should use the background registers for the two
772      * stage translation. We don't need to check if we actually need
773      * two stage translation as that happened before this function
774      * was called. Background registers will be used if the guest has
775      * forced a two stage translation to be on (in HS or M mode).
776      */
777     if (!env->virt_enabled && two_stage) {
778         use_background = true;
779     }
780 
781     if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
782         *physical = addr;
783         *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
784         return TRANSLATE_SUCCESS;
785     }
786 
787     *ret_prot = 0;
788 
789     hwaddr base;
790     int levels, ptidxbits, ptesize, vm, widened;
791 
792     if (first_stage == true) {
793         if (use_background) {
794             if (riscv_cpu_mxl(env) == MXL_RV32) {
795                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
796                 vm = get_field(env->vsatp, SATP32_MODE);
797             } else {
798                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
799                 vm = get_field(env->vsatp, SATP64_MODE);
800             }
801         } else {
802             if (riscv_cpu_mxl(env) == MXL_RV32) {
803                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
804                 vm = get_field(env->satp, SATP32_MODE);
805             } else {
806                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
807                 vm = get_field(env->satp, SATP64_MODE);
808             }
809         }
810         widened = 0;
811     } else {
812         if (riscv_cpu_mxl(env) == MXL_RV32) {
813             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
814             vm = get_field(env->hgatp, SATP32_MODE);
815         } else {
816             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
817             vm = get_field(env->hgatp, SATP64_MODE);
818         }
819         widened = 2;
820     }
821 
822     switch (vm) {
823     case VM_1_10_SV32:
824       levels = 2; ptidxbits = 10; ptesize = 4; break;
825     case VM_1_10_SV39:
826       levels = 3; ptidxbits = 9; ptesize = 8; break;
827     case VM_1_10_SV48:
828       levels = 4; ptidxbits = 9; ptesize = 8; break;
829     case VM_1_10_SV57:
830       levels = 5; ptidxbits = 9; ptesize = 8; break;
831     case VM_1_10_MBARE:
832         *physical = addr;
833         *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
834         return TRANSLATE_SUCCESS;
835     default:
836       g_assert_not_reached();
837     }
838 
839     CPUState *cs = env_cpu(env);
840     int va_bits = PGSHIFT + levels * ptidxbits + widened;
841 
842     if (first_stage == true) {
843         target_ulong mask, masked_msbs;
844 
845         if (TARGET_LONG_BITS > (va_bits - 1)) {
846             mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
847         } else {
848             mask = 0;
849         }
850         masked_msbs = (addr >> (va_bits - 1)) & mask;
851 
852         if (masked_msbs != 0 && masked_msbs != mask) {
853             return TRANSLATE_FAIL;
854         }
855     } else {
856         if (vm != VM_1_10_SV32 && addr >> va_bits != 0) {
857             return TRANSLATE_FAIL;
858         }
859     }
860 
861     bool pbmte = env->menvcfg & MENVCFG_PBMTE;
862     bool hade = env->menvcfg & MENVCFG_HADE;
863 
864     if (first_stage && two_stage && env->virt_enabled) {
865         pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
866         hade = hade && (env->henvcfg & HENVCFG_HADE);
867     }
868 
869     int ptshift = (levels - 1) * ptidxbits;
870     target_ulong pte;
871     hwaddr pte_addr;
872     int i;
873 
874 #if !TCG_OVERSIZED_GUEST
875 restart:
876 #endif
877     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
878         target_ulong idx;
879         if (i == 0) {
880             idx = (addr >> (PGSHIFT + ptshift)) &
881                            ((1 << (ptidxbits + widened)) - 1);
882         } else {
883             idx = (addr >> (PGSHIFT + ptshift)) &
884                            ((1 << ptidxbits) - 1);
885         }
886 
887         /* check that physical address of PTE is legal */
888 
889         if (two_stage && first_stage) {
890             int vbase_prot;
891             hwaddr vbase;
892 
893             /* Do the second stage translation on the base PTE address. */
894             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
895                                                  base, NULL, MMU_DATA_LOAD,
896                                                  MMUIdx_U, false, true,
897                                                  is_debug);
898 
899             if (vbase_ret != TRANSLATE_SUCCESS) {
900                 if (fault_pte_addr) {
901                     *fault_pte_addr = (base + idx * ptesize) >> 2;
902                 }
903                 return TRANSLATE_G_STAGE_FAIL;
904             }
905 
906             pte_addr = vbase + idx * ptesize;
907         } else {
908             pte_addr = base + idx * ptesize;
909         }
910 
911         int pmp_prot;
912         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
913                                                sizeof(target_ulong),
914                                                MMU_DATA_LOAD, PRV_S);
915         if (pmp_ret != TRANSLATE_SUCCESS) {
916             return TRANSLATE_PMP_FAIL;
917         }
918 
919         if (riscv_cpu_mxl(env) == MXL_RV32) {
920             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
921         } else {
922             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
923         }
924 
925         if (res != MEMTX_OK) {
926             return TRANSLATE_FAIL;
927         }
928 
929         if (riscv_cpu_sxl(env) == MXL_RV32) {
930             ppn = pte >> PTE_PPN_SHIFT;
931         } else {
932             if (pte & PTE_RESERVED) {
933                 return TRANSLATE_FAIL;
934             }
935 
936             if (!pbmte && (pte & PTE_PBMT)) {
937                 return TRANSLATE_FAIL;
938             }
939 
940             if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
941                 return TRANSLATE_FAIL;
942             }
943 
944             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
945         }
946 
947         if (!(pte & PTE_V)) {
948             /* Invalid PTE */
949             return TRANSLATE_FAIL;
950         }
951         if (pte & (PTE_R | PTE_W | PTE_X)) {
952             goto leaf;
953         }
954 
955         /* Inner PTE, continue walking */
956         if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
957             return TRANSLATE_FAIL;
958         }
959         base = ppn << PGSHIFT;
960     }
961 
962     /* No leaf pte at any translation level. */
963     return TRANSLATE_FAIL;
964 
965  leaf:
966     if (ppn & ((1ULL << ptshift) - 1)) {
967         /* Misaligned PPN */
968         return TRANSLATE_FAIL;
969     }
970     if (!pbmte && (pte & PTE_PBMT)) {
971         /* Reserved without Svpbmt. */
972         return TRANSLATE_FAIL;
973     }
974 
975     /* Check for reserved combinations of RWX flags. */
976     switch (pte & (PTE_R | PTE_W | PTE_X)) {
977     case PTE_W:
978     case PTE_W | PTE_X:
979         return TRANSLATE_FAIL;
980     }
981 
982     int prot = 0;
983     if (pte & PTE_R) {
984         prot |= PAGE_READ;
985     }
986     if (pte & PTE_W) {
987         prot |= PAGE_WRITE;
988     }
989     if (pte & PTE_X) {
990         bool mxr;
991 
992         if (first_stage == true) {
993             mxr = get_field(env->mstatus, MSTATUS_MXR);
994         } else {
995             mxr = get_field(env->vsstatus, MSTATUS_MXR);
996         }
997         if (mxr) {
998             prot |= PAGE_READ;
999         }
1000         prot |= PAGE_EXEC;
1001     }
1002 
1003     if (pte & PTE_U) {
1004         if (mode != PRV_U) {
1005             if (!mmuidx_sum(mmu_idx)) {
1006                 return TRANSLATE_FAIL;
1007             }
1008             /* SUM allows only read+write, not execute. */
1009             prot &= PAGE_READ | PAGE_WRITE;
1010         }
1011     } else if (mode != PRV_S) {
1012         /* Supervisor PTE flags when not S mode */
1013         return TRANSLATE_FAIL;
1014     }
1015 
1016     if (!((prot >> access_type) & 1)) {
1017         /* Access check failed */
1018         return TRANSLATE_FAIL;
1019     }
1020 
1021     /* If necessary, set accessed and dirty bits. */
1022     target_ulong updated_pte = pte | PTE_A |
1023                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
1024 
1025     /* Page table updates need to be atomic with MTTCG enabled */
1026     if (updated_pte != pte && !is_debug) {
1027         if (!hade) {
1028             return TRANSLATE_FAIL;
1029         }
1030 
1031         /*
1032          * - if accessed or dirty bits need updating, and the PTE is
1033          *   in RAM, then we do so atomically with a compare and swap.
1034          * - if the PTE is in IO space or ROM, then it can't be updated
1035          *   and we return TRANSLATE_FAIL.
1036          * - if the PTE changed by the time we went to update it, then
1037          *   it is no longer valid and we must re-walk the page table.
1038          */
1039         MemoryRegion *mr;
1040         hwaddr l = sizeof(target_ulong), addr1;
1041         mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1042                                      false, MEMTXATTRS_UNSPECIFIED);
1043         if (memory_region_is_ram(mr)) {
1044             target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1);
1045 #if TCG_OVERSIZED_GUEST
1046             /*
1047              * MTTCG is not enabled on oversized TCG guests so
1048              * page table updates do not need to be atomic
1049              */
1050             *pte_pa = pte = updated_pte;
1051 #else
1052             target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte);
1053             if (old_pte != pte) {
1054                 goto restart;
1055             }
1056             pte = updated_pte;
1057 #endif
1058         } else {
1059             /*
1060              * Misconfigured PTE in ROM (AD bits are not preset) or
1061              * PTE is in IO space and can't be updated atomically.
1062              */
1063             return TRANSLATE_FAIL;
1064         }
1065     }
1066 
1067     /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */
1068     target_ulong vpn = addr >> PGSHIFT;
1069 
1070     if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1071         napot_bits = ctzl(ppn) + 1;
1072         if ((i != (levels - 1)) || (napot_bits != 4)) {
1073             return TRANSLATE_FAIL;
1074         }
1075     }
1076 
1077     napot_mask = (1 << napot_bits) - 1;
1078     *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1079                   (vpn & (((target_ulong)1 << ptshift) - 1))
1080                  ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1081 
1082     /*
1083      * Remove write permission unless this is a store, or the page is
1084      * already dirty, so that we TLB miss on later writes to update
1085      * the dirty bit.
1086      */
1087     if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) {
1088         prot &= ~PAGE_WRITE;
1089     }
1090     *ret_prot = prot;
1091 
1092     return TRANSLATE_SUCCESS;
1093 }
1094 
1095 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1096                                 MMUAccessType access_type, bool pmp_violation,
1097                                 bool first_stage, bool two_stage,
1098                                 bool two_stage_indirect)
1099 {
1100     CPUState *cs = env_cpu(env);
1101     int page_fault_exceptions, vm;
1102     uint64_t stap_mode;
1103 
1104     if (riscv_cpu_mxl(env) == MXL_RV32) {
1105         stap_mode = SATP32_MODE;
1106     } else {
1107         stap_mode = SATP64_MODE;
1108     }
1109 
1110     if (first_stage) {
1111         vm = get_field(env->satp, stap_mode);
1112     } else {
1113         vm = get_field(env->hgatp, stap_mode);
1114     }
1115 
1116     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1117 
1118     switch (access_type) {
1119     case MMU_INST_FETCH:
1120         if (env->virt_enabled && !first_stage) {
1121             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1122         } else {
1123             cs->exception_index = page_fault_exceptions ?
1124                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1125         }
1126         break;
1127     case MMU_DATA_LOAD:
1128         if (two_stage && !first_stage) {
1129             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1130         } else {
1131             cs->exception_index = page_fault_exceptions ?
1132                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1133         }
1134         break;
1135     case MMU_DATA_STORE:
1136         if (two_stage && !first_stage) {
1137             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1138         } else {
1139             cs->exception_index = page_fault_exceptions ?
1140                 RISCV_EXCP_STORE_PAGE_FAULT :
1141                 RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1142         }
1143         break;
1144     default:
1145         g_assert_not_reached();
1146     }
1147     env->badaddr = address;
1148     env->two_stage_lookup = two_stage;
1149     env->two_stage_indirect_lookup = two_stage_indirect;
1150 }
1151 
1152 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1153 {
1154     RISCVCPU *cpu = RISCV_CPU(cs);
1155     CPURISCVState *env = &cpu->env;
1156     hwaddr phys_addr;
1157     int prot;
1158     int mmu_idx = cpu_mmu_index(&cpu->env, false);
1159 
1160     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1161                              true, env->virt_enabled, true)) {
1162         return -1;
1163     }
1164 
1165     if (env->virt_enabled) {
1166         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1167                                  0, mmu_idx, false, true, true)) {
1168             return -1;
1169         }
1170     }
1171 
1172     return phys_addr & TARGET_PAGE_MASK;
1173 }
1174 
1175 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1176                                      vaddr addr, unsigned size,
1177                                      MMUAccessType access_type,
1178                                      int mmu_idx, MemTxAttrs attrs,
1179                                      MemTxResult response, uintptr_t retaddr)
1180 {
1181     RISCVCPU *cpu = RISCV_CPU(cs);
1182     CPURISCVState *env = &cpu->env;
1183 
1184     if (access_type == MMU_DATA_STORE) {
1185         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1186     } else if (access_type == MMU_DATA_LOAD) {
1187         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1188     } else {
1189         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1190     }
1191 
1192     env->badaddr = addr;
1193     env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1194     env->two_stage_indirect_lookup = false;
1195     cpu_loop_exit_restore(cs, retaddr);
1196 }
1197 
1198 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1199                                    MMUAccessType access_type, int mmu_idx,
1200                                    uintptr_t retaddr)
1201 {
1202     RISCVCPU *cpu = RISCV_CPU(cs);
1203     CPURISCVState *env = &cpu->env;
1204     switch (access_type) {
1205     case MMU_INST_FETCH:
1206         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1207         break;
1208     case MMU_DATA_LOAD:
1209         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1210         break;
1211     case MMU_DATA_STORE:
1212         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1213         break;
1214     default:
1215         g_assert_not_reached();
1216     }
1217     env->badaddr = addr;
1218     env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1219     env->two_stage_indirect_lookup = false;
1220     cpu_loop_exit_restore(cs, retaddr);
1221 }
1222 
1223 
1224 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1225 {
1226     enum riscv_pmu_event_idx pmu_event_type;
1227 
1228     switch (access_type) {
1229     case MMU_INST_FETCH:
1230         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1231         break;
1232     case MMU_DATA_LOAD:
1233         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1234         break;
1235     case MMU_DATA_STORE:
1236         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1237         break;
1238     default:
1239         return;
1240     }
1241 
1242     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1243 }
1244 
1245 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1246                         MMUAccessType access_type, int mmu_idx,
1247                         bool probe, uintptr_t retaddr)
1248 {
1249     RISCVCPU *cpu = RISCV_CPU(cs);
1250     CPURISCVState *env = &cpu->env;
1251     vaddr im_address;
1252     hwaddr pa = 0;
1253     int prot, prot2, prot_pmp;
1254     bool pmp_violation = false;
1255     bool first_stage_error = true;
1256     bool two_stage_lookup = mmuidx_2stage(mmu_idx);
1257     bool two_stage_indirect_error = false;
1258     int ret = TRANSLATE_FAIL;
1259     int mode = mmu_idx;
1260     /* default TLB page size */
1261     target_ulong tlb_size = TARGET_PAGE_SIZE;
1262 
1263     env->guest_phys_fault_addr = 0;
1264 
1265     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1266                   __func__, address, access_type, mmu_idx);
1267 
1268     pmu_tlb_fill_incr_ctr(cpu, access_type);
1269     if (two_stage_lookup) {
1270         /* Two stage lookup */
1271         ret = get_physical_address(env, &pa, &prot, address,
1272                                    &env->guest_phys_fault_addr, access_type,
1273                                    mmu_idx, true, true, false);
1274 
1275         /*
1276          * A G-stage exception may be triggered during two state lookup.
1277          * And the env->guest_phys_fault_addr has already been set in
1278          * get_physical_address().
1279          */
1280         if (ret == TRANSLATE_G_STAGE_FAIL) {
1281             first_stage_error = false;
1282             two_stage_indirect_error = true;
1283             access_type = MMU_DATA_LOAD;
1284         }
1285 
1286         qemu_log_mask(CPU_LOG_MMU,
1287                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1288                       HWADDR_FMT_plx " prot %d\n",
1289                       __func__, address, ret, pa, prot);
1290 
1291         if (ret == TRANSLATE_SUCCESS) {
1292             /* Second stage lookup */
1293             im_address = pa;
1294 
1295             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1296                                        access_type, MMUIdx_U, false, true,
1297                                        false);
1298 
1299             qemu_log_mask(CPU_LOG_MMU,
1300                           "%s 2nd-stage address=%" VADDR_PRIx
1301                           " ret %d physical "
1302                           HWADDR_FMT_plx " prot %d\n",
1303                           __func__, im_address, ret, pa, prot2);
1304 
1305             prot &= prot2;
1306 
1307             if (ret == TRANSLATE_SUCCESS) {
1308                 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1309                                                size, access_type, mode);
1310 
1311                 qemu_log_mask(CPU_LOG_MMU,
1312                               "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1313                               " %d tlb_size " TARGET_FMT_lu "\n",
1314                               __func__, pa, ret, prot_pmp, tlb_size);
1315 
1316                 prot &= prot_pmp;
1317             }
1318 
1319             if (ret != TRANSLATE_SUCCESS) {
1320                 /*
1321                  * Guest physical address translation failed, this is a HS
1322                  * level exception
1323                  */
1324                 first_stage_error = false;
1325                 env->guest_phys_fault_addr = (im_address |
1326                                               (address &
1327                                                (TARGET_PAGE_SIZE - 1))) >> 2;
1328             }
1329         }
1330     } else {
1331         /* Single stage lookup */
1332         ret = get_physical_address(env, &pa, &prot, address, NULL,
1333                                    access_type, mmu_idx, true, false, false);
1334 
1335         qemu_log_mask(CPU_LOG_MMU,
1336                       "%s address=%" VADDR_PRIx " ret %d physical "
1337                       HWADDR_FMT_plx " prot %d\n",
1338                       __func__, address, ret, pa, prot);
1339 
1340         if (ret == TRANSLATE_SUCCESS) {
1341             ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1342                                            size, access_type, mode);
1343 
1344             qemu_log_mask(CPU_LOG_MMU,
1345                           "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1346                           " %d tlb_size " TARGET_FMT_lu "\n",
1347                           __func__, pa, ret, prot_pmp, tlb_size);
1348 
1349             prot &= prot_pmp;
1350         }
1351     }
1352 
1353     if (ret == TRANSLATE_PMP_FAIL) {
1354         pmp_violation = true;
1355     }
1356 
1357     if (ret == TRANSLATE_SUCCESS) {
1358         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1359                      prot, mmu_idx, tlb_size);
1360         return true;
1361     } else if (probe) {
1362         return false;
1363     } else {
1364         raise_mmu_exception(env, address, access_type, pmp_violation,
1365                             first_stage_error, two_stage_lookup,
1366                             two_stage_indirect_error);
1367         cpu_loop_exit_restore(cs, retaddr);
1368     }
1369 
1370     return true;
1371 }
1372 
1373 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1374                                            target_ulong insn,
1375                                            target_ulong taddr)
1376 {
1377     target_ulong xinsn = 0;
1378     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1379 
1380     /*
1381      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1382      * be uncompressed. The Quadrant 1 of RVC instruction space need
1383      * not be transformed because these instructions won't generate
1384      * any load/store trap.
1385      */
1386 
1387     if ((insn & 0x3) != 0x3) {
1388         /* Transform 16bit instruction into 32bit instruction */
1389         switch (GET_C_OP(insn)) {
1390         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1391             switch (GET_C_FUNC(insn)) {
1392             case OPC_RISC_C_FUNC_FLD_LQ:
1393                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1394                     xinsn = OPC_RISC_FLD;
1395                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1396                     access_rs1 = GET_C_RS1S(insn);
1397                     access_imm = GET_C_LD_IMM(insn);
1398                     access_size = 8;
1399                 }
1400                 break;
1401             case OPC_RISC_C_FUNC_LW: /* C.LW */
1402                 xinsn = OPC_RISC_LW;
1403                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1404                 access_rs1 = GET_C_RS1S(insn);
1405                 access_imm = GET_C_LW_IMM(insn);
1406                 access_size = 4;
1407                 break;
1408             case OPC_RISC_C_FUNC_FLW_LD:
1409                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1410                     xinsn = OPC_RISC_FLW;
1411                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1412                     access_rs1 = GET_C_RS1S(insn);
1413                     access_imm = GET_C_LW_IMM(insn);
1414                     access_size = 4;
1415                 } else { /* C.LD (RV64/RV128) */
1416                     xinsn = OPC_RISC_LD;
1417                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1418                     access_rs1 = GET_C_RS1S(insn);
1419                     access_imm = GET_C_LD_IMM(insn);
1420                     access_size = 8;
1421                 }
1422                 break;
1423             case OPC_RISC_C_FUNC_FSD_SQ:
1424                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1425                     xinsn = OPC_RISC_FSD;
1426                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1427                     access_rs1 = GET_C_RS1S(insn);
1428                     access_imm = GET_C_SD_IMM(insn);
1429                     access_size = 8;
1430                 }
1431                 break;
1432             case OPC_RISC_C_FUNC_SW: /* C.SW */
1433                 xinsn = OPC_RISC_SW;
1434                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1435                 access_rs1 = GET_C_RS1S(insn);
1436                 access_imm = GET_C_SW_IMM(insn);
1437                 access_size = 4;
1438                 break;
1439             case OPC_RISC_C_FUNC_FSW_SD:
1440                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1441                     xinsn = OPC_RISC_FSW;
1442                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1443                     access_rs1 = GET_C_RS1S(insn);
1444                     access_imm = GET_C_SW_IMM(insn);
1445                     access_size = 4;
1446                 } else { /* C.SD (RV64/RV128) */
1447                     xinsn = OPC_RISC_SD;
1448                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1449                     access_rs1 = GET_C_RS1S(insn);
1450                     access_imm = GET_C_SD_IMM(insn);
1451                     access_size = 8;
1452                 }
1453                 break;
1454             default:
1455                 break;
1456             }
1457             break;
1458         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1459             switch (GET_C_FUNC(insn)) {
1460             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1461                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1462                     xinsn = OPC_RISC_FLD;
1463                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1464                     access_rs1 = 2;
1465                     access_imm = GET_C_LDSP_IMM(insn);
1466                     access_size = 8;
1467                 }
1468                 break;
1469             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1470                 xinsn = OPC_RISC_LW;
1471                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1472                 access_rs1 = 2;
1473                 access_imm = GET_C_LWSP_IMM(insn);
1474                 access_size = 4;
1475                 break;
1476             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1477                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1478                     xinsn = OPC_RISC_FLW;
1479                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1480                     access_rs1 = 2;
1481                     access_imm = GET_C_LWSP_IMM(insn);
1482                     access_size = 4;
1483                 } else { /* C.LDSP (RV64/RV128) */
1484                     xinsn = OPC_RISC_LD;
1485                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1486                     access_rs1 = 2;
1487                     access_imm = GET_C_LDSP_IMM(insn);
1488                     access_size = 8;
1489                 }
1490                 break;
1491             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1492                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1493                     xinsn = OPC_RISC_FSD;
1494                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1495                     access_rs1 = 2;
1496                     access_imm = GET_C_SDSP_IMM(insn);
1497                     access_size = 8;
1498                 }
1499                 break;
1500             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1501                 xinsn = OPC_RISC_SW;
1502                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1503                 access_rs1 = 2;
1504                 access_imm = GET_C_SWSP_IMM(insn);
1505                 access_size = 4;
1506                 break;
1507             case 7:
1508                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1509                     xinsn = OPC_RISC_FSW;
1510                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1511                     access_rs1 = 2;
1512                     access_imm = GET_C_SWSP_IMM(insn);
1513                     access_size = 4;
1514                 } else { /* C.SDSP (RV64/RV128) */
1515                     xinsn = OPC_RISC_SD;
1516                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1517                     access_rs1 = 2;
1518                     access_imm = GET_C_SDSP_IMM(insn);
1519                     access_size = 8;
1520                 }
1521                 break;
1522             default:
1523                 break;
1524             }
1525             break;
1526         default:
1527             break;
1528         }
1529 
1530         /*
1531          * Clear Bit1 of transformed instruction to indicate that
1532          * original insruction was a 16bit instruction
1533          */
1534         xinsn &= ~((target_ulong)0x2);
1535     } else {
1536         /* Transform 32bit (or wider) instructions */
1537         switch (MASK_OP_MAJOR(insn)) {
1538         case OPC_RISC_ATOMIC:
1539             xinsn = insn;
1540             access_rs1 = GET_RS1(insn);
1541             access_size = 1 << GET_FUNCT3(insn);
1542             break;
1543         case OPC_RISC_LOAD:
1544         case OPC_RISC_FP_LOAD:
1545             xinsn = SET_I_IMM(insn, 0);
1546             access_rs1 = GET_RS1(insn);
1547             access_imm = GET_IMM(insn);
1548             access_size = 1 << GET_FUNCT3(insn);
1549             break;
1550         case OPC_RISC_STORE:
1551         case OPC_RISC_FP_STORE:
1552             xinsn = SET_S_IMM(insn, 0);
1553             access_rs1 = GET_RS1(insn);
1554             access_imm = GET_STORE_IMM(insn);
1555             access_size = 1 << GET_FUNCT3(insn);
1556             break;
1557         case OPC_RISC_SYSTEM:
1558             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1559                 xinsn = insn;
1560                 access_rs1 = GET_RS1(insn);
1561                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1562                 access_size = 1 << access_size;
1563             }
1564             break;
1565         default:
1566             break;
1567         }
1568     }
1569 
1570     if (access_size) {
1571         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1572                                (access_size - 1));
1573     }
1574 
1575     return xinsn;
1576 }
1577 #endif /* !CONFIG_USER_ONLY */
1578 
1579 /*
1580  * Handle Traps
1581  *
1582  * Adapted from Spike's processor_t::take_trap.
1583  *
1584  */
1585 void riscv_cpu_do_interrupt(CPUState *cs)
1586 {
1587 #if !defined(CONFIG_USER_ONLY)
1588 
1589     RISCVCPU *cpu = RISCV_CPU(cs);
1590     CPURISCVState *env = &cpu->env;
1591     bool write_gva = false;
1592     uint64_t s;
1593 
1594     /*
1595      * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1596      * so we mask off the MSB and separate into trap type and cause.
1597      */
1598     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1599     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1600     uint64_t deleg = async ? env->mideleg : env->medeleg;
1601     target_ulong tval = 0;
1602     target_ulong tinst = 0;
1603     target_ulong htval = 0;
1604     target_ulong mtval2 = 0;
1605 
1606     if  (cause == RISCV_EXCP_SEMIHOST) {
1607         do_common_semihosting(cs);
1608         env->pc += 4;
1609         return;
1610     }
1611 
1612     if (!async) {
1613         /* set tval to badaddr for traps with address information */
1614         switch (cause) {
1615         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1616         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1617         case RISCV_EXCP_LOAD_ADDR_MIS:
1618         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1619         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1620         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1621         case RISCV_EXCP_LOAD_PAGE_FAULT:
1622         case RISCV_EXCP_STORE_PAGE_FAULT:
1623             write_gva = env->two_stage_lookup;
1624             tval = env->badaddr;
1625             if (env->two_stage_indirect_lookup) {
1626                 /*
1627                  * special pseudoinstruction for G-stage fault taken while
1628                  * doing VS-stage page table walk.
1629                  */
1630                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1631             } else {
1632                 /*
1633                  * The "Addr. Offset" field in transformed instruction is
1634                  * non-zero only for misaligned access.
1635                  */
1636                 tinst = riscv_transformed_insn(env, env->bins, tval);
1637             }
1638             break;
1639         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1640         case RISCV_EXCP_INST_ADDR_MIS:
1641         case RISCV_EXCP_INST_ACCESS_FAULT:
1642         case RISCV_EXCP_INST_PAGE_FAULT:
1643             write_gva = env->two_stage_lookup;
1644             tval = env->badaddr;
1645             if (env->two_stage_indirect_lookup) {
1646                 /*
1647                  * special pseudoinstruction for G-stage fault taken while
1648                  * doing VS-stage page table walk.
1649                  */
1650                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1651             }
1652             break;
1653         case RISCV_EXCP_ILLEGAL_INST:
1654         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1655             tval = env->bins;
1656             break;
1657         case RISCV_EXCP_BREAKPOINT:
1658             if (cs->watchpoint_hit) {
1659                 tval = cs->watchpoint_hit->hitaddr;
1660                 cs->watchpoint_hit = NULL;
1661             }
1662             break;
1663         default:
1664             break;
1665         }
1666         /* ecall is dispatched as one cause so translate based on mode */
1667         if (cause == RISCV_EXCP_U_ECALL) {
1668             assert(env->priv <= 3);
1669 
1670             if (env->priv == PRV_M) {
1671                 cause = RISCV_EXCP_M_ECALL;
1672             } else if (env->priv == PRV_S && env->virt_enabled) {
1673                 cause = RISCV_EXCP_VS_ECALL;
1674             } else if (env->priv == PRV_S && !env->virt_enabled) {
1675                 cause = RISCV_EXCP_S_ECALL;
1676             } else if (env->priv == PRV_U) {
1677                 cause = RISCV_EXCP_U_ECALL;
1678             }
1679         }
1680     }
1681 
1682     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1683                      riscv_cpu_get_trap_name(cause, async));
1684 
1685     qemu_log_mask(CPU_LOG_INT,
1686                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1687                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1688                   __func__, env->mhartid, async, cause, env->pc, tval,
1689                   riscv_cpu_get_trap_name(cause, async));
1690 
1691     if (env->priv <= PRV_S &&
1692             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1693         /* handle the trap in S-mode */
1694         if (riscv_has_ext(env, RVH)) {
1695             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1696 
1697             if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
1698                 /* Trap to VS mode */
1699                 /*
1700                  * See if we need to adjust cause. Yes if its VS mode interrupt
1701                  * no if hypervisor has delegated one of hs mode's interrupt
1702                  */
1703                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1704                     cause == IRQ_VS_EXT) {
1705                     cause = cause - 1;
1706                 }
1707                 write_gva = false;
1708             } else if (env->virt_enabled) {
1709                 /* Trap into HS mode, from virt */
1710                 riscv_cpu_swap_hypervisor_regs(env);
1711                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1712                                          env->priv);
1713                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1714 
1715                 htval = env->guest_phys_fault_addr;
1716 
1717                 riscv_cpu_set_virt_enabled(env, 0);
1718             } else {
1719                 /* Trap into HS mode */
1720                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1721                 htval = env->guest_phys_fault_addr;
1722             }
1723             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1724         }
1725 
1726         s = env->mstatus;
1727         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1728         s = set_field(s, MSTATUS_SPP, env->priv);
1729         s = set_field(s, MSTATUS_SIE, 0);
1730         env->mstatus = s;
1731         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1732         env->sepc = env->pc;
1733         env->stval = tval;
1734         env->htval = htval;
1735         env->htinst = tinst;
1736         env->pc = (env->stvec >> 2 << 2) +
1737                   ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1738         riscv_cpu_set_mode(env, PRV_S);
1739     } else {
1740         /* handle the trap in M-mode */
1741         if (riscv_has_ext(env, RVH)) {
1742             if (env->virt_enabled) {
1743                 riscv_cpu_swap_hypervisor_regs(env);
1744             }
1745             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1746                                      env->virt_enabled);
1747             if (env->virt_enabled && tval) {
1748                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1749             }
1750 
1751             mtval2 = env->guest_phys_fault_addr;
1752 
1753             /* Trapping to M mode, virt is disabled */
1754             riscv_cpu_set_virt_enabled(env, 0);
1755         }
1756 
1757         s = env->mstatus;
1758         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1759         s = set_field(s, MSTATUS_MPP, env->priv);
1760         s = set_field(s, MSTATUS_MIE, 0);
1761         env->mstatus = s;
1762         env->mcause = cause | ~(((target_ulong)-1) >> async);
1763         env->mepc = env->pc;
1764         env->mtval = tval;
1765         env->mtval2 = mtval2;
1766         env->mtinst = tinst;
1767         env->pc = (env->mtvec >> 2 << 2) +
1768                   ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1769         riscv_cpu_set_mode(env, PRV_M);
1770     }
1771 
1772     /*
1773      * NOTE: it is not necessary to yield load reservations here. It is only
1774      * necessary for an SC from "another hart" to cause a load reservation
1775      * to be yielded. Refer to the memory consistency model section of the
1776      * RISC-V ISA Specification.
1777      */
1778 
1779     env->two_stage_lookup = false;
1780     env->two_stage_indirect_lookup = false;
1781 #endif
1782     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1783 }
1784