1 /* 2 * RISC-V CPU helpers for qemu. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/main-loop.h" 23 #include "cpu.h" 24 #include "exec/exec-all.h" 25 #include "tcg/tcg-op.h" 26 #include "trace.h" 27 #include "semihosting/common-semi.h" 28 29 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch) 30 { 31 #ifdef CONFIG_USER_ONLY 32 return 0; 33 #else 34 return env->priv; 35 #endif 36 } 37 38 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc, 39 target_ulong *cs_base, uint32_t *pflags) 40 { 41 CPUState *cs = env_cpu(env); 42 RISCVCPU *cpu = RISCV_CPU(cs); 43 44 uint32_t flags = 0; 45 46 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc; 47 *cs_base = 0; 48 49 if (riscv_has_ext(env, RVV) || cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 50 /* 51 * If env->vl equals to VLMAX, we can use generic vector operation 52 * expanders (GVEC) to accerlate the vector operations. 53 * However, as LMUL could be a fractional number. The maximum 54 * vector size can be operated might be less than 8 bytes, 55 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true 56 * only when maxsz >= 8 bytes. 57 */ 58 uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype); 59 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW); 60 uint32_t maxsz = vlmax << sew; 61 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) && 62 (maxsz >= 8); 63 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill); 64 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew); 65 flags = FIELD_DP32(flags, TB_FLAGS, LMUL, 66 FIELD_EX64(env->vtype, VTYPE, VLMUL)); 67 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax); 68 } else { 69 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1); 70 } 71 72 #ifdef CONFIG_USER_ONLY 73 flags |= TB_FLAGS_MSTATUS_FS; 74 flags |= TB_FLAGS_MSTATUS_VS; 75 #else 76 flags |= cpu_mmu_index(env, 0); 77 if (riscv_cpu_fp_enabled(env)) { 78 flags |= env->mstatus & MSTATUS_FS; 79 } 80 81 if (riscv_cpu_vector_enabled(env)) { 82 flags |= env->mstatus & MSTATUS_VS; 83 } 84 85 if (riscv_has_ext(env, RVH)) { 86 if (env->priv == PRV_M || 87 (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) || 88 (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) && 89 get_field(env->hstatus, HSTATUS_HU))) { 90 flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1); 91 } 92 93 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS, 94 get_field(env->mstatus_hs, MSTATUS_FS)); 95 96 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS, 97 get_field(env->mstatus_hs, MSTATUS_VS)); 98 } 99 #endif 100 101 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl); 102 if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) { 103 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1); 104 } 105 if (env->cur_pmbase != 0) { 106 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1); 107 } 108 109 *pflags = flags; 110 } 111 112 void riscv_cpu_update_mask(CPURISCVState *env) 113 { 114 target_ulong mask = -1, base = 0; 115 /* 116 * TODO: Current RVJ spec does not specify 117 * how the extension interacts with XLEN. 118 */ 119 #ifndef CONFIG_USER_ONLY 120 if (riscv_has_ext(env, RVJ)) { 121 switch (env->priv) { 122 case PRV_M: 123 if (env->mmte & M_PM_ENABLE) { 124 mask = env->mpmmask; 125 base = env->mpmbase; 126 } 127 break; 128 case PRV_S: 129 if (env->mmte & S_PM_ENABLE) { 130 mask = env->spmmask; 131 base = env->spmbase; 132 } 133 break; 134 case PRV_U: 135 if (env->mmte & U_PM_ENABLE) { 136 mask = env->upmmask; 137 base = env->upmbase; 138 } 139 break; 140 default: 141 g_assert_not_reached(); 142 } 143 } 144 #endif 145 if (env->xl == MXL_RV32) { 146 env->cur_pmmask = mask & UINT32_MAX; 147 env->cur_pmbase = base & UINT32_MAX; 148 } else { 149 env->cur_pmmask = mask; 150 env->cur_pmbase = base; 151 } 152 } 153 154 #ifndef CONFIG_USER_ONLY 155 156 /* 157 * The HS-mode is allowed to configure priority only for the 158 * following VS-mode local interrupts: 159 * 160 * 0 (Reserved interrupt, reads as zero) 161 * 1 Supervisor software interrupt 162 * 4 (Reserved interrupt, reads as zero) 163 * 5 Supervisor timer interrupt 164 * 8 (Reserved interrupt, reads as zero) 165 * 13 (Reserved interrupt) 166 * 14 " 167 * 15 " 168 * 16 " 169 * 18 Debug/trace interrupt 170 * 20 (Reserved interrupt) 171 * 22 " 172 * 24 " 173 * 26 " 174 * 28 " 175 * 30 (Reserved for standard reporting of bus or system errors) 176 */ 177 178 static const int hviprio_index2irq[] = { 179 0, 1, 4, 5, 8, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30 }; 180 static const int hviprio_index2rdzero[] = { 181 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 182 183 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero) 184 { 185 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) { 186 return -EINVAL; 187 } 188 189 if (out_irq) { 190 *out_irq = hviprio_index2irq[index]; 191 } 192 193 if (out_rdzero) { 194 *out_rdzero = hviprio_index2rdzero[index]; 195 } 196 197 return 0; 198 } 199 200 /* 201 * Default priorities of local interrupts are defined in the 202 * RISC-V Advanced Interrupt Architecture specification. 203 * 204 * ---------------------------------------------------------------- 205 * Default | 206 * Priority | Major Interrupt Numbers 207 * ---------------------------------------------------------------- 208 * Highest | 63 (3f), 62 (3e), 31 (1f), 30 (1e), 61 (3d), 60 (3c), 209 * | 59 (3b), 58 (3a), 29 (1d), 28 (1c), 57 (39), 56 (38), 210 * | 55 (37), 54 (36), 27 (1b), 26 (1a), 53 (35), 52 (34), 211 * | 51 (33), 50 (32), 25 (19), 24 (18), 49 (31), 48 (30) 212 * | 213 * | 11 (0b), 3 (03), 7 (07) 214 * | 9 (09), 1 (01), 5 (05) 215 * | 12 (0c) 216 * | 10 (0a), 2 (02), 6 (06) 217 * | 218 * | 47 (2f), 46 (2e), 23 (17), 22 (16), 45 (2d), 44 (2c), 219 * | 43 (2b), 42 (2a), 21 (15), 20 (14), 41 (29), 40 (28), 220 * | 39 (27), 38 (26), 19 (13), 18 (12), 37 (25), 36 (24), 221 * Lowest | 35 (23), 34 (22), 17 (11), 16 (10), 33 (21), 32 (20) 222 * ---------------------------------------------------------------- 223 */ 224 static const uint8_t default_iprio[64] = { 225 [63] = IPRIO_DEFAULT_UPPER, 226 [62] = IPRIO_DEFAULT_UPPER + 1, 227 [31] = IPRIO_DEFAULT_UPPER + 2, 228 [30] = IPRIO_DEFAULT_UPPER + 3, 229 [61] = IPRIO_DEFAULT_UPPER + 4, 230 [60] = IPRIO_DEFAULT_UPPER + 5, 231 232 [59] = IPRIO_DEFAULT_UPPER + 6, 233 [58] = IPRIO_DEFAULT_UPPER + 7, 234 [29] = IPRIO_DEFAULT_UPPER + 8, 235 [28] = IPRIO_DEFAULT_UPPER + 9, 236 [57] = IPRIO_DEFAULT_UPPER + 10, 237 [56] = IPRIO_DEFAULT_UPPER + 11, 238 239 [55] = IPRIO_DEFAULT_UPPER + 12, 240 [54] = IPRIO_DEFAULT_UPPER + 13, 241 [27] = IPRIO_DEFAULT_UPPER + 14, 242 [26] = IPRIO_DEFAULT_UPPER + 15, 243 [53] = IPRIO_DEFAULT_UPPER + 16, 244 [52] = IPRIO_DEFAULT_UPPER + 17, 245 246 [51] = IPRIO_DEFAULT_UPPER + 18, 247 [50] = IPRIO_DEFAULT_UPPER + 19, 248 [25] = IPRIO_DEFAULT_UPPER + 20, 249 [24] = IPRIO_DEFAULT_UPPER + 21, 250 [49] = IPRIO_DEFAULT_UPPER + 22, 251 [48] = IPRIO_DEFAULT_UPPER + 23, 252 253 [11] = IPRIO_DEFAULT_M, 254 [3] = IPRIO_DEFAULT_M + 1, 255 [7] = IPRIO_DEFAULT_M + 2, 256 257 [9] = IPRIO_DEFAULT_S, 258 [1] = IPRIO_DEFAULT_S + 1, 259 [5] = IPRIO_DEFAULT_S + 2, 260 261 [12] = IPRIO_DEFAULT_SGEXT, 262 263 [10] = IPRIO_DEFAULT_VS, 264 [2] = IPRIO_DEFAULT_VS + 1, 265 [6] = IPRIO_DEFAULT_VS + 2, 266 267 [47] = IPRIO_DEFAULT_LOWER, 268 [46] = IPRIO_DEFAULT_LOWER + 1, 269 [23] = IPRIO_DEFAULT_LOWER + 2, 270 [22] = IPRIO_DEFAULT_LOWER + 3, 271 [45] = IPRIO_DEFAULT_LOWER + 4, 272 [44] = IPRIO_DEFAULT_LOWER + 5, 273 274 [43] = IPRIO_DEFAULT_LOWER + 6, 275 [42] = IPRIO_DEFAULT_LOWER + 7, 276 [21] = IPRIO_DEFAULT_LOWER + 8, 277 [20] = IPRIO_DEFAULT_LOWER + 9, 278 [41] = IPRIO_DEFAULT_LOWER + 10, 279 [40] = IPRIO_DEFAULT_LOWER + 11, 280 281 [39] = IPRIO_DEFAULT_LOWER + 12, 282 [38] = IPRIO_DEFAULT_LOWER + 13, 283 [19] = IPRIO_DEFAULT_LOWER + 14, 284 [18] = IPRIO_DEFAULT_LOWER + 15, 285 [37] = IPRIO_DEFAULT_LOWER + 16, 286 [36] = IPRIO_DEFAULT_LOWER + 17, 287 288 [35] = IPRIO_DEFAULT_LOWER + 18, 289 [34] = IPRIO_DEFAULT_LOWER + 19, 290 [17] = IPRIO_DEFAULT_LOWER + 20, 291 [16] = IPRIO_DEFAULT_LOWER + 21, 292 [33] = IPRIO_DEFAULT_LOWER + 22, 293 [32] = IPRIO_DEFAULT_LOWER + 23, 294 }; 295 296 uint8_t riscv_cpu_default_priority(int irq) 297 { 298 if (irq < 0 || irq > 63) { 299 return IPRIO_MMAXIPRIO; 300 } 301 302 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO; 303 }; 304 305 static int riscv_cpu_pending_to_irq(CPURISCVState *env, 306 int extirq, unsigned int extirq_def_prio, 307 uint64_t pending, uint8_t *iprio) 308 { 309 int irq, best_irq = RISCV_EXCP_NONE; 310 unsigned int prio, best_prio = UINT_MAX; 311 312 if (!pending) { 313 return RISCV_EXCP_NONE; 314 } 315 316 irq = ctz64(pending); 317 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 318 return irq; 319 } 320 321 pending = pending >> irq; 322 while (pending) { 323 prio = iprio[irq]; 324 if (!prio) { 325 if (irq == extirq) { 326 prio = extirq_def_prio; 327 } else { 328 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ? 329 1 : IPRIO_MMAXIPRIO; 330 } 331 } 332 if ((pending & 0x1) && (prio <= best_prio)) { 333 best_irq = irq; 334 best_prio = prio; 335 } 336 irq++; 337 pending = pending >> 1; 338 } 339 340 return best_irq; 341 } 342 343 static uint64_t riscv_cpu_all_pending(CPURISCVState *env) 344 { 345 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN); 346 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 347 348 return (env->mip | vsgein) & env->mie; 349 } 350 351 int riscv_cpu_mirq_pending(CPURISCVState *env) 352 { 353 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg & 354 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 355 356 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 357 irqs, env->miprio); 358 } 359 360 int riscv_cpu_sirq_pending(CPURISCVState *env) 361 { 362 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & 363 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 364 365 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 366 irqs, env->siprio); 367 } 368 369 int riscv_cpu_vsirq_pending(CPURISCVState *env) 370 { 371 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & 372 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 373 374 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 375 irqs >> 1, env->hviprio); 376 } 377 378 static int riscv_cpu_local_irq_pending(CPURISCVState *env) 379 { 380 int virq; 381 uint64_t irqs, pending, mie, hsie, vsie; 382 383 /* Determine interrupt enable state of all privilege modes */ 384 if (riscv_cpu_virt_enabled(env)) { 385 mie = 1; 386 hsie = 1; 387 vsie = (env->priv < PRV_S) || 388 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 389 } else { 390 mie = (env->priv < PRV_M) || 391 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE)); 392 hsie = (env->priv < PRV_S) || 393 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 394 vsie = 0; 395 } 396 397 /* Determine all pending interrupts */ 398 pending = riscv_cpu_all_pending(env); 399 400 /* Check M-mode interrupts */ 401 irqs = pending & ~env->mideleg & -mie; 402 if (irqs) { 403 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 404 irqs, env->miprio); 405 } 406 407 /* Check HS-mode interrupts */ 408 irqs = pending & env->mideleg & ~env->hideleg & -hsie; 409 if (irqs) { 410 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 411 irqs, env->siprio); 412 } 413 414 /* Check VS-mode interrupts */ 415 irqs = pending & env->mideleg & env->hideleg & -vsie; 416 if (irqs) { 417 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 418 irqs >> 1, env->hviprio); 419 return (virq <= 0) ? virq : virq + 1; 420 } 421 422 /* Indicate no pending interrupt */ 423 return RISCV_EXCP_NONE; 424 } 425 426 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 427 { 428 if (interrupt_request & CPU_INTERRUPT_HARD) { 429 RISCVCPU *cpu = RISCV_CPU(cs); 430 CPURISCVState *env = &cpu->env; 431 int interruptno = riscv_cpu_local_irq_pending(env); 432 if (interruptno >= 0) { 433 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; 434 riscv_cpu_do_interrupt(cs); 435 return true; 436 } 437 } 438 return false; 439 } 440 441 /* Return true is floating point support is currently enabled */ 442 bool riscv_cpu_fp_enabled(CPURISCVState *env) 443 { 444 if (env->mstatus & MSTATUS_FS) { 445 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) { 446 return false; 447 } 448 return true; 449 } 450 451 return false; 452 } 453 454 /* Return true is vector support is currently enabled */ 455 bool riscv_cpu_vector_enabled(CPURISCVState *env) 456 { 457 if (env->mstatus & MSTATUS_VS) { 458 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) { 459 return false; 460 } 461 return true; 462 } 463 464 return false; 465 } 466 467 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) 468 { 469 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS | 470 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE | 471 MSTATUS64_UXL | MSTATUS_VS; 472 bool current_virt = riscv_cpu_virt_enabled(env); 473 474 g_assert(riscv_has_ext(env, RVH)); 475 476 if (current_virt) { 477 /* Current V=1 and we are about to change to V=0 */ 478 env->vsstatus = env->mstatus & mstatus_mask; 479 env->mstatus &= ~mstatus_mask; 480 env->mstatus |= env->mstatus_hs; 481 482 env->vstvec = env->stvec; 483 env->stvec = env->stvec_hs; 484 485 env->vsscratch = env->sscratch; 486 env->sscratch = env->sscratch_hs; 487 488 env->vsepc = env->sepc; 489 env->sepc = env->sepc_hs; 490 491 env->vscause = env->scause; 492 env->scause = env->scause_hs; 493 494 env->vstval = env->stval; 495 env->stval = env->stval_hs; 496 497 env->vsatp = env->satp; 498 env->satp = env->satp_hs; 499 } else { 500 /* Current V=0 and we are about to change to V=1 */ 501 env->mstatus_hs = env->mstatus & mstatus_mask; 502 env->mstatus &= ~mstatus_mask; 503 env->mstatus |= env->vsstatus; 504 505 env->stvec_hs = env->stvec; 506 env->stvec = env->vstvec; 507 508 env->sscratch_hs = env->sscratch; 509 env->sscratch = env->vsscratch; 510 511 env->sepc_hs = env->sepc; 512 env->sepc = env->vsepc; 513 514 env->scause_hs = env->scause; 515 env->scause = env->vscause; 516 517 env->stval_hs = env->stval; 518 env->stval = env->vstval; 519 520 env->satp_hs = env->satp; 521 env->satp = env->vsatp; 522 } 523 } 524 525 target_ulong riscv_cpu_get_geilen(CPURISCVState *env) 526 { 527 if (!riscv_has_ext(env, RVH)) { 528 return 0; 529 } 530 531 return env->geilen; 532 } 533 534 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen) 535 { 536 if (!riscv_has_ext(env, RVH)) { 537 return; 538 } 539 540 if (geilen > (TARGET_LONG_BITS - 1)) { 541 return; 542 } 543 544 env->geilen = geilen; 545 } 546 547 bool riscv_cpu_virt_enabled(CPURISCVState *env) 548 { 549 if (!riscv_has_ext(env, RVH)) { 550 return false; 551 } 552 553 return get_field(env->virt, VIRT_ONOFF); 554 } 555 556 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable) 557 { 558 if (!riscv_has_ext(env, RVH)) { 559 return; 560 } 561 562 /* Flush the TLB on all virt mode changes. */ 563 if (get_field(env->virt, VIRT_ONOFF) != enable) { 564 tlb_flush(env_cpu(env)); 565 } 566 567 env->virt = set_field(env->virt, VIRT_ONOFF, enable); 568 569 if (enable) { 570 /* 571 * The guest external interrupts from an interrupt controller are 572 * delivered only when the Guest/VM is running (i.e. V=1). This means 573 * any guest external interrupt which is triggered while the Guest/VM 574 * is not running (i.e. V=0) will be missed on QEMU resulting in guest 575 * with sluggish response to serial console input and other I/O events. 576 * 577 * To solve this, we check and inject interrupt after setting V=1. 578 */ 579 riscv_cpu_update_mip(env_archcpu(env), 0, 0); 580 } 581 } 582 583 bool riscv_cpu_two_stage_lookup(int mmu_idx) 584 { 585 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK; 586 } 587 588 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts) 589 { 590 CPURISCVState *env = &cpu->env; 591 if (env->miclaim & interrupts) { 592 return -1; 593 } else { 594 env->miclaim |= interrupts; 595 return 0; 596 } 597 } 598 599 uint64_t riscv_cpu_update_mip(RISCVCPU *cpu, uint64_t mask, uint64_t value) 600 { 601 CPURISCVState *env = &cpu->env; 602 CPUState *cs = CPU(cpu); 603 uint64_t gein, vsgein = 0, old = env->mip; 604 bool locked = false; 605 606 if (riscv_cpu_virt_enabled(env)) { 607 gein = get_field(env->hstatus, HSTATUS_VGEIN); 608 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 609 } 610 611 if (!qemu_mutex_iothread_locked()) { 612 locked = true; 613 qemu_mutex_lock_iothread(); 614 } 615 616 env->mip = (env->mip & ~mask) | (value & mask); 617 618 if (env->mip | vsgein) { 619 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 620 } else { 621 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 622 } 623 624 if (locked) { 625 qemu_mutex_unlock_iothread(); 626 } 627 628 return old; 629 } 630 631 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t), 632 uint32_t arg) 633 { 634 env->rdtime_fn = fn; 635 env->rdtime_fn_arg = arg; 636 } 637 638 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv, 639 int (*rmw_fn)(void *arg, 640 target_ulong reg, 641 target_ulong *val, 642 target_ulong new_val, 643 target_ulong write_mask), 644 void *rmw_fn_arg) 645 { 646 if (priv <= PRV_M) { 647 env->aia_ireg_rmw_fn[priv] = rmw_fn; 648 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg; 649 } 650 } 651 652 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) 653 { 654 if (newpriv > PRV_M) { 655 g_assert_not_reached(); 656 } 657 if (newpriv == PRV_H) { 658 newpriv = PRV_U; 659 } 660 /* tlb_flush is unnecessary as mode is contained in mmu_idx */ 661 env->priv = newpriv; 662 env->xl = cpu_recompute_xl(env); 663 riscv_cpu_update_mask(env); 664 665 /* 666 * Clear the load reservation - otherwise a reservation placed in one 667 * context/process can be used by another, resulting in an SC succeeding 668 * incorrectly. Version 2.2 of the ISA specification explicitly requires 669 * this behaviour, while later revisions say that the kernel "should" use 670 * an SC instruction to force the yielding of a load reservation on a 671 * preemptive context switch. As a result, do both. 672 */ 673 env->load_res = -1; 674 } 675 676 /* 677 * get_physical_address_pmp - check PMP permission for this physical address 678 * 679 * Match the PMP region and check permission for this physical address and it's 680 * TLB page. Returns 0 if the permission checking was successful 681 * 682 * @env: CPURISCVState 683 * @prot: The returned protection attributes 684 * @tlb_size: TLB page size containing addr. It could be modified after PMP 685 * permission checking. NULL if not set TLB page for addr. 686 * @addr: The physical address to be checked permission 687 * @access_type: The type of MMU access 688 * @mode: Indicates current privilege level. 689 */ 690 static int get_physical_address_pmp(CPURISCVState *env, int *prot, 691 target_ulong *tlb_size, hwaddr addr, 692 int size, MMUAccessType access_type, 693 int mode) 694 { 695 pmp_priv_t pmp_priv; 696 target_ulong tlb_size_pmp = 0; 697 698 if (!riscv_feature(env, RISCV_FEATURE_PMP)) { 699 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 700 return TRANSLATE_SUCCESS; 701 } 702 703 if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv, 704 mode)) { 705 *prot = 0; 706 return TRANSLATE_PMP_FAIL; 707 } 708 709 *prot = pmp_priv_to_page_prot(pmp_priv); 710 if (tlb_size != NULL) { 711 if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) { 712 *tlb_size = tlb_size_pmp; 713 } 714 } 715 716 return TRANSLATE_SUCCESS; 717 } 718 719 /* get_physical_address - get the physical address for this virtual address 720 * 721 * Do a page table walk to obtain the physical address corresponding to a 722 * virtual address. Returns 0 if the translation was successful 723 * 724 * Adapted from Spike's mmu_t::translate and mmu_t::walk 725 * 726 * @env: CPURISCVState 727 * @physical: This will be set to the calculated physical address 728 * @prot: The returned protection attributes 729 * @addr: The virtual address to be translated 730 * @fault_pte_addr: If not NULL, this will be set to fault pte address 731 * when a error occurs on pte address translation. 732 * This will already be shifted to match htval. 733 * @access_type: The type of MMU access 734 * @mmu_idx: Indicates current privilege level 735 * @first_stage: Are we in first stage translation? 736 * Second stage is used for hypervisor guest translation 737 * @two_stage: Are we going to perform two stage translation 738 * @is_debug: Is this access from a debugger or the monitor? 739 */ 740 static int get_physical_address(CPURISCVState *env, hwaddr *physical, 741 int *prot, target_ulong addr, 742 target_ulong *fault_pte_addr, 743 int access_type, int mmu_idx, 744 bool first_stage, bool two_stage, 745 bool is_debug) 746 { 747 /* NOTE: the env->pc value visible here will not be 748 * correct, but the value visible to the exception handler 749 * (riscv_cpu_do_interrupt) is correct */ 750 MemTxResult res; 751 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 752 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK; 753 bool use_background = false; 754 755 /* 756 * Check if we should use the background registers for the two 757 * stage translation. We don't need to check if we actually need 758 * two stage translation as that happened before this function 759 * was called. Background registers will be used if the guest has 760 * forced a two stage translation to be on (in HS or M mode). 761 */ 762 if (!riscv_cpu_virt_enabled(env) && two_stage) { 763 use_background = true; 764 } 765 766 /* MPRV does not affect the virtual-machine load/store 767 instructions, HLV, HLVX, and HSV. */ 768 if (riscv_cpu_two_stage_lookup(mmu_idx)) { 769 mode = get_field(env->hstatus, HSTATUS_SPVP); 770 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) { 771 if (get_field(env->mstatus, MSTATUS_MPRV)) { 772 mode = get_field(env->mstatus, MSTATUS_MPP); 773 } 774 } 775 776 if (first_stage == false) { 777 /* We are in stage 2 translation, this is similar to stage 1. */ 778 /* Stage 2 is always taken as U-mode */ 779 mode = PRV_U; 780 } 781 782 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) { 783 *physical = addr; 784 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 785 return TRANSLATE_SUCCESS; 786 } 787 788 *prot = 0; 789 790 hwaddr base; 791 int levels, ptidxbits, ptesize, vm, sum, mxr, widened; 792 793 if (first_stage == true) { 794 mxr = get_field(env->mstatus, MSTATUS_MXR); 795 } else { 796 mxr = get_field(env->vsstatus, MSTATUS_MXR); 797 } 798 799 if (first_stage == true) { 800 if (use_background) { 801 if (riscv_cpu_mxl(env) == MXL_RV32) { 802 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT; 803 vm = get_field(env->vsatp, SATP32_MODE); 804 } else { 805 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT; 806 vm = get_field(env->vsatp, SATP64_MODE); 807 } 808 } else { 809 if (riscv_cpu_mxl(env) == MXL_RV32) { 810 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT; 811 vm = get_field(env->satp, SATP32_MODE); 812 } else { 813 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT; 814 vm = get_field(env->satp, SATP64_MODE); 815 } 816 } 817 widened = 0; 818 } else { 819 if (riscv_cpu_mxl(env) == MXL_RV32) { 820 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT; 821 vm = get_field(env->hgatp, SATP32_MODE); 822 } else { 823 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT; 824 vm = get_field(env->hgatp, SATP64_MODE); 825 } 826 widened = 2; 827 } 828 /* status.SUM will be ignored if execute on background */ 829 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug; 830 switch (vm) { 831 case VM_1_10_SV32: 832 levels = 2; ptidxbits = 10; ptesize = 4; break; 833 case VM_1_10_SV39: 834 levels = 3; ptidxbits = 9; ptesize = 8; break; 835 case VM_1_10_SV48: 836 levels = 4; ptidxbits = 9; ptesize = 8; break; 837 case VM_1_10_SV57: 838 levels = 5; ptidxbits = 9; ptesize = 8; break; 839 case VM_1_10_MBARE: 840 *physical = addr; 841 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 842 return TRANSLATE_SUCCESS; 843 default: 844 g_assert_not_reached(); 845 } 846 847 CPUState *cs = env_cpu(env); 848 int va_bits = PGSHIFT + levels * ptidxbits + widened; 849 target_ulong mask, masked_msbs; 850 851 if (TARGET_LONG_BITS > (va_bits - 1)) { 852 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; 853 } else { 854 mask = 0; 855 } 856 masked_msbs = (addr >> (va_bits - 1)) & mask; 857 858 if (masked_msbs != 0 && masked_msbs != mask) { 859 return TRANSLATE_FAIL; 860 } 861 862 int ptshift = (levels - 1) * ptidxbits; 863 int i; 864 865 #if !TCG_OVERSIZED_GUEST 866 restart: 867 #endif 868 for (i = 0; i < levels; i++, ptshift -= ptidxbits) { 869 target_ulong idx; 870 if (i == 0) { 871 idx = (addr >> (PGSHIFT + ptshift)) & 872 ((1 << (ptidxbits + widened)) - 1); 873 } else { 874 idx = (addr >> (PGSHIFT + ptshift)) & 875 ((1 << ptidxbits) - 1); 876 } 877 878 /* check that physical address of PTE is legal */ 879 hwaddr pte_addr; 880 881 if (two_stage && first_stage) { 882 int vbase_prot; 883 hwaddr vbase; 884 885 /* Do the second stage translation on the base PTE address. */ 886 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, 887 base, NULL, MMU_DATA_LOAD, 888 mmu_idx, false, true, 889 is_debug); 890 891 if (vbase_ret != TRANSLATE_SUCCESS) { 892 if (fault_pte_addr) { 893 *fault_pte_addr = (base + idx * ptesize) >> 2; 894 } 895 return TRANSLATE_G_STAGE_FAIL; 896 } 897 898 pte_addr = vbase + idx * ptesize; 899 } else { 900 pte_addr = base + idx * ptesize; 901 } 902 903 int pmp_prot; 904 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr, 905 sizeof(target_ulong), 906 MMU_DATA_LOAD, PRV_S); 907 if (pmp_ret != TRANSLATE_SUCCESS) { 908 return TRANSLATE_PMP_FAIL; 909 } 910 911 target_ulong pte; 912 if (riscv_cpu_mxl(env) == MXL_RV32) { 913 pte = address_space_ldl(cs->as, pte_addr, attrs, &res); 914 } else { 915 pte = address_space_ldq(cs->as, pte_addr, attrs, &res); 916 } 917 918 if (res != MEMTX_OK) { 919 return TRANSLATE_FAIL; 920 } 921 922 hwaddr ppn = pte >> PTE_PPN_SHIFT; 923 924 if (!(pte & PTE_V)) { 925 /* Invalid PTE */ 926 return TRANSLATE_FAIL; 927 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) { 928 /* Inner PTE, continue walking */ 929 base = ppn << PGSHIFT; 930 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) { 931 /* Reserved leaf PTE flags: PTE_W */ 932 return TRANSLATE_FAIL; 933 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) { 934 /* Reserved leaf PTE flags: PTE_W + PTE_X */ 935 return TRANSLATE_FAIL; 936 } else if ((pte & PTE_U) && ((mode != PRV_U) && 937 (!sum || access_type == MMU_INST_FETCH))) { 938 /* User PTE flags when not U mode and mstatus.SUM is not set, 939 or the access type is an instruction fetch */ 940 return TRANSLATE_FAIL; 941 } else if (!(pte & PTE_U) && (mode != PRV_S)) { 942 /* Supervisor PTE flags when not S mode */ 943 return TRANSLATE_FAIL; 944 } else if (ppn & ((1ULL << ptshift) - 1)) { 945 /* Misaligned PPN */ 946 return TRANSLATE_FAIL; 947 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) || 948 ((pte & PTE_X) && mxr))) { 949 /* Read access check failed */ 950 return TRANSLATE_FAIL; 951 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) { 952 /* Write access check failed */ 953 return TRANSLATE_FAIL; 954 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) { 955 /* Fetch access check failed */ 956 return TRANSLATE_FAIL; 957 } else { 958 /* if necessary, set accessed and dirty bits. */ 959 target_ulong updated_pte = pte | PTE_A | 960 (access_type == MMU_DATA_STORE ? PTE_D : 0); 961 962 /* Page table updates need to be atomic with MTTCG enabled */ 963 if (updated_pte != pte) { 964 /* 965 * - if accessed or dirty bits need updating, and the PTE is 966 * in RAM, then we do so atomically with a compare and swap. 967 * - if the PTE is in IO space or ROM, then it can't be updated 968 * and we return TRANSLATE_FAIL. 969 * - if the PTE changed by the time we went to update it, then 970 * it is no longer valid and we must re-walk the page table. 971 */ 972 MemoryRegion *mr; 973 hwaddr l = sizeof(target_ulong), addr1; 974 mr = address_space_translate(cs->as, pte_addr, 975 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED); 976 if (memory_region_is_ram(mr)) { 977 target_ulong *pte_pa = 978 qemu_map_ram_ptr(mr->ram_block, addr1); 979 #if TCG_OVERSIZED_GUEST 980 /* MTTCG is not enabled on oversized TCG guests so 981 * page table updates do not need to be atomic */ 982 *pte_pa = pte = updated_pte; 983 #else 984 target_ulong old_pte = 985 qatomic_cmpxchg(pte_pa, pte, updated_pte); 986 if (old_pte != pte) { 987 goto restart; 988 } else { 989 pte = updated_pte; 990 } 991 #endif 992 } else { 993 /* misconfigured PTE in ROM (AD bits are not preset) or 994 * PTE is in IO space and can't be updated atomically */ 995 return TRANSLATE_FAIL; 996 } 997 } 998 999 /* for superpage mappings, make a fake leaf PTE for the TLB's 1000 benefit. */ 1001 target_ulong vpn = addr >> PGSHIFT; 1002 *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) | 1003 (addr & ~TARGET_PAGE_MASK); 1004 1005 /* set permissions on the TLB entry */ 1006 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) { 1007 *prot |= PAGE_READ; 1008 } 1009 if ((pte & PTE_X)) { 1010 *prot |= PAGE_EXEC; 1011 } 1012 /* add write permission on stores or if the page is already dirty, 1013 so that we TLB miss on later writes to update the dirty bit */ 1014 if ((pte & PTE_W) && 1015 (access_type == MMU_DATA_STORE || (pte & PTE_D))) { 1016 *prot |= PAGE_WRITE; 1017 } 1018 return TRANSLATE_SUCCESS; 1019 } 1020 } 1021 return TRANSLATE_FAIL; 1022 } 1023 1024 static void raise_mmu_exception(CPURISCVState *env, target_ulong address, 1025 MMUAccessType access_type, bool pmp_violation, 1026 bool first_stage, bool two_stage) 1027 { 1028 CPUState *cs = env_cpu(env); 1029 int page_fault_exceptions, vm; 1030 uint64_t stap_mode; 1031 1032 if (riscv_cpu_mxl(env) == MXL_RV32) { 1033 stap_mode = SATP32_MODE; 1034 } else { 1035 stap_mode = SATP64_MODE; 1036 } 1037 1038 if (first_stage) { 1039 vm = get_field(env->satp, stap_mode); 1040 } else { 1041 vm = get_field(env->hgatp, stap_mode); 1042 } 1043 1044 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation; 1045 1046 switch (access_type) { 1047 case MMU_INST_FETCH: 1048 if (riscv_cpu_virt_enabled(env) && !first_stage) { 1049 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; 1050 } else { 1051 cs->exception_index = page_fault_exceptions ? 1052 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT; 1053 } 1054 break; 1055 case MMU_DATA_LOAD: 1056 if (two_stage && !first_stage) { 1057 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; 1058 } else { 1059 cs->exception_index = page_fault_exceptions ? 1060 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT; 1061 } 1062 break; 1063 case MMU_DATA_STORE: 1064 if (two_stage && !first_stage) { 1065 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; 1066 } else { 1067 cs->exception_index = page_fault_exceptions ? 1068 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1069 } 1070 break; 1071 default: 1072 g_assert_not_reached(); 1073 } 1074 env->badaddr = address; 1075 env->two_stage_lookup = two_stage; 1076 } 1077 1078 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 1079 { 1080 RISCVCPU *cpu = RISCV_CPU(cs); 1081 CPURISCVState *env = &cpu->env; 1082 hwaddr phys_addr; 1083 int prot; 1084 int mmu_idx = cpu_mmu_index(&cpu->env, false); 1085 1086 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx, 1087 true, riscv_cpu_virt_enabled(env), true)) { 1088 return -1; 1089 } 1090 1091 if (riscv_cpu_virt_enabled(env)) { 1092 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL, 1093 0, mmu_idx, false, true, true)) { 1094 return -1; 1095 } 1096 } 1097 1098 return phys_addr & TARGET_PAGE_MASK; 1099 } 1100 1101 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 1102 vaddr addr, unsigned size, 1103 MMUAccessType access_type, 1104 int mmu_idx, MemTxAttrs attrs, 1105 MemTxResult response, uintptr_t retaddr) 1106 { 1107 RISCVCPU *cpu = RISCV_CPU(cs); 1108 CPURISCVState *env = &cpu->env; 1109 1110 if (access_type == MMU_DATA_STORE) { 1111 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1112 } else if (access_type == MMU_DATA_LOAD) { 1113 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 1114 } else { 1115 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT; 1116 } 1117 1118 env->badaddr = addr; 1119 env->two_stage_lookup = riscv_cpu_virt_enabled(env) || 1120 riscv_cpu_two_stage_lookup(mmu_idx); 1121 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr); 1122 } 1123 1124 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 1125 MMUAccessType access_type, int mmu_idx, 1126 uintptr_t retaddr) 1127 { 1128 RISCVCPU *cpu = RISCV_CPU(cs); 1129 CPURISCVState *env = &cpu->env; 1130 switch (access_type) { 1131 case MMU_INST_FETCH: 1132 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; 1133 break; 1134 case MMU_DATA_LOAD: 1135 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; 1136 break; 1137 case MMU_DATA_STORE: 1138 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; 1139 break; 1140 default: 1141 g_assert_not_reached(); 1142 } 1143 env->badaddr = addr; 1144 env->two_stage_lookup = riscv_cpu_virt_enabled(env) || 1145 riscv_cpu_two_stage_lookup(mmu_idx); 1146 riscv_raise_exception(env, cs->exception_index, retaddr); 1147 } 1148 1149 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 1150 MMUAccessType access_type, int mmu_idx, 1151 bool probe, uintptr_t retaddr) 1152 { 1153 RISCVCPU *cpu = RISCV_CPU(cs); 1154 CPURISCVState *env = &cpu->env; 1155 vaddr im_address; 1156 hwaddr pa = 0; 1157 int prot, prot2, prot_pmp; 1158 bool pmp_violation = false; 1159 bool first_stage_error = true; 1160 bool two_stage_lookup = false; 1161 int ret = TRANSLATE_FAIL; 1162 int mode = mmu_idx; 1163 /* default TLB page size */ 1164 target_ulong tlb_size = TARGET_PAGE_SIZE; 1165 1166 env->guest_phys_fault_addr = 0; 1167 1168 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", 1169 __func__, address, access_type, mmu_idx); 1170 1171 /* MPRV does not affect the virtual-machine load/store 1172 instructions, HLV, HLVX, and HSV. */ 1173 if (riscv_cpu_two_stage_lookup(mmu_idx)) { 1174 mode = get_field(env->hstatus, HSTATUS_SPVP); 1175 } else if (mode == PRV_M && access_type != MMU_INST_FETCH && 1176 get_field(env->mstatus, MSTATUS_MPRV)) { 1177 mode = get_field(env->mstatus, MSTATUS_MPP); 1178 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) { 1179 two_stage_lookup = true; 1180 } 1181 } 1182 1183 if (riscv_cpu_virt_enabled(env) || 1184 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) && 1185 access_type != MMU_INST_FETCH)) { 1186 /* Two stage lookup */ 1187 ret = get_physical_address(env, &pa, &prot, address, 1188 &env->guest_phys_fault_addr, access_type, 1189 mmu_idx, true, true, false); 1190 1191 /* 1192 * A G-stage exception may be triggered during two state lookup. 1193 * And the env->guest_phys_fault_addr has already been set in 1194 * get_physical_address(). 1195 */ 1196 if (ret == TRANSLATE_G_STAGE_FAIL) { 1197 first_stage_error = false; 1198 access_type = MMU_DATA_LOAD; 1199 } 1200 1201 qemu_log_mask(CPU_LOG_MMU, 1202 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " 1203 TARGET_FMT_plx " prot %d\n", 1204 __func__, address, ret, pa, prot); 1205 1206 if (ret == TRANSLATE_SUCCESS) { 1207 /* Second stage lookup */ 1208 im_address = pa; 1209 1210 ret = get_physical_address(env, &pa, &prot2, im_address, NULL, 1211 access_type, mmu_idx, false, true, 1212 false); 1213 1214 qemu_log_mask(CPU_LOG_MMU, 1215 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical " 1216 TARGET_FMT_plx " prot %d\n", 1217 __func__, im_address, ret, pa, prot2); 1218 1219 prot &= prot2; 1220 1221 if (ret == TRANSLATE_SUCCESS) { 1222 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, 1223 size, access_type, mode); 1224 1225 qemu_log_mask(CPU_LOG_MMU, 1226 "%s PMP address=" TARGET_FMT_plx " ret %d prot" 1227 " %d tlb_size " TARGET_FMT_lu "\n", 1228 __func__, pa, ret, prot_pmp, tlb_size); 1229 1230 prot &= prot_pmp; 1231 } 1232 1233 if (ret != TRANSLATE_SUCCESS) { 1234 /* 1235 * Guest physical address translation failed, this is a HS 1236 * level exception 1237 */ 1238 first_stage_error = false; 1239 env->guest_phys_fault_addr = (im_address | 1240 (address & 1241 (TARGET_PAGE_SIZE - 1))) >> 2; 1242 } 1243 } 1244 } else { 1245 /* Single stage lookup */ 1246 ret = get_physical_address(env, &pa, &prot, address, NULL, 1247 access_type, mmu_idx, true, false, false); 1248 1249 qemu_log_mask(CPU_LOG_MMU, 1250 "%s address=%" VADDR_PRIx " ret %d physical " 1251 TARGET_FMT_plx " prot %d\n", 1252 __func__, address, ret, pa, prot); 1253 1254 if (ret == TRANSLATE_SUCCESS) { 1255 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, 1256 size, access_type, mode); 1257 1258 qemu_log_mask(CPU_LOG_MMU, 1259 "%s PMP address=" TARGET_FMT_plx " ret %d prot" 1260 " %d tlb_size " TARGET_FMT_lu "\n", 1261 __func__, pa, ret, prot_pmp, tlb_size); 1262 1263 prot &= prot_pmp; 1264 } 1265 } 1266 1267 if (ret == TRANSLATE_PMP_FAIL) { 1268 pmp_violation = true; 1269 } 1270 1271 if (ret == TRANSLATE_SUCCESS) { 1272 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), 1273 prot, mmu_idx, tlb_size); 1274 return true; 1275 } else if (probe) { 1276 return false; 1277 } else { 1278 raise_mmu_exception(env, address, access_type, pmp_violation, 1279 first_stage_error, 1280 riscv_cpu_virt_enabled(env) || 1281 riscv_cpu_two_stage_lookup(mmu_idx)); 1282 riscv_raise_exception(env, cs->exception_index, retaddr); 1283 } 1284 1285 return true; 1286 } 1287 #endif /* !CONFIG_USER_ONLY */ 1288 1289 /* 1290 * Handle Traps 1291 * 1292 * Adapted from Spike's processor_t::take_trap. 1293 * 1294 */ 1295 void riscv_cpu_do_interrupt(CPUState *cs) 1296 { 1297 #if !defined(CONFIG_USER_ONLY) 1298 1299 RISCVCPU *cpu = RISCV_CPU(cs); 1300 CPURISCVState *env = &cpu->env; 1301 bool write_gva = false; 1302 uint64_t s; 1303 1304 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide 1305 * so we mask off the MSB and separate into trap type and cause. 1306 */ 1307 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); 1308 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; 1309 uint64_t deleg = async ? env->mideleg : env->medeleg; 1310 target_ulong tval = 0; 1311 target_ulong htval = 0; 1312 target_ulong mtval2 = 0; 1313 1314 if (cause == RISCV_EXCP_SEMIHOST) { 1315 if (env->priv >= PRV_S) { 1316 env->gpr[xA0] = do_common_semihosting(cs); 1317 env->pc += 4; 1318 return; 1319 } 1320 cause = RISCV_EXCP_BREAKPOINT; 1321 } 1322 1323 if (!async) { 1324 /* set tval to badaddr for traps with address information */ 1325 switch (cause) { 1326 case RISCV_EXCP_INST_GUEST_PAGE_FAULT: 1327 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: 1328 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: 1329 case RISCV_EXCP_INST_ADDR_MIS: 1330 case RISCV_EXCP_INST_ACCESS_FAULT: 1331 case RISCV_EXCP_LOAD_ADDR_MIS: 1332 case RISCV_EXCP_STORE_AMO_ADDR_MIS: 1333 case RISCV_EXCP_LOAD_ACCESS_FAULT: 1334 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: 1335 case RISCV_EXCP_INST_PAGE_FAULT: 1336 case RISCV_EXCP_LOAD_PAGE_FAULT: 1337 case RISCV_EXCP_STORE_PAGE_FAULT: 1338 write_gva = true; 1339 tval = env->badaddr; 1340 break; 1341 case RISCV_EXCP_ILLEGAL_INST: 1342 tval = env->bins; 1343 break; 1344 default: 1345 break; 1346 } 1347 /* ecall is dispatched as one cause so translate based on mode */ 1348 if (cause == RISCV_EXCP_U_ECALL) { 1349 assert(env->priv <= 3); 1350 1351 if (env->priv == PRV_M) { 1352 cause = RISCV_EXCP_M_ECALL; 1353 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) { 1354 cause = RISCV_EXCP_VS_ECALL; 1355 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) { 1356 cause = RISCV_EXCP_S_ECALL; 1357 } else if (env->priv == PRV_U) { 1358 cause = RISCV_EXCP_U_ECALL; 1359 } 1360 } 1361 } 1362 1363 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, 1364 riscv_cpu_get_trap_name(cause, async)); 1365 1366 qemu_log_mask(CPU_LOG_INT, 1367 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", " 1368 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n", 1369 __func__, env->mhartid, async, cause, env->pc, tval, 1370 riscv_cpu_get_trap_name(cause, async)); 1371 1372 if (env->priv <= PRV_S && 1373 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) { 1374 /* handle the trap in S-mode */ 1375 if (riscv_has_ext(env, RVH)) { 1376 uint64_t hdeleg = async ? env->hideleg : env->hedeleg; 1377 1378 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) { 1379 /* Trap to VS mode */ 1380 /* 1381 * See if we need to adjust cause. Yes if its VS mode interrupt 1382 * no if hypervisor has delegated one of hs mode's interrupt 1383 */ 1384 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || 1385 cause == IRQ_VS_EXT) { 1386 cause = cause - 1; 1387 } 1388 write_gva = false; 1389 } else if (riscv_cpu_virt_enabled(env)) { 1390 /* Trap into HS mode, from virt */ 1391 riscv_cpu_swap_hypervisor_regs(env); 1392 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, 1393 env->priv); 1394 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, 1395 riscv_cpu_virt_enabled(env)); 1396 1397 1398 htval = env->guest_phys_fault_addr; 1399 1400 riscv_cpu_set_virt_enabled(env, 0); 1401 } else { 1402 /* Trap into HS mode */ 1403 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false); 1404 htval = env->guest_phys_fault_addr; 1405 write_gva = false; 1406 } 1407 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva); 1408 } 1409 1410 s = env->mstatus; 1411 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); 1412 s = set_field(s, MSTATUS_SPP, env->priv); 1413 s = set_field(s, MSTATUS_SIE, 0); 1414 env->mstatus = s; 1415 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); 1416 env->sepc = env->pc; 1417 env->stval = tval; 1418 env->htval = htval; 1419 env->pc = (env->stvec >> 2 << 2) + 1420 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); 1421 riscv_cpu_set_mode(env, PRV_S); 1422 } else { 1423 /* handle the trap in M-mode */ 1424 if (riscv_has_ext(env, RVH)) { 1425 if (riscv_cpu_virt_enabled(env)) { 1426 riscv_cpu_swap_hypervisor_regs(env); 1427 } 1428 env->mstatus = set_field(env->mstatus, MSTATUS_MPV, 1429 riscv_cpu_virt_enabled(env)); 1430 if (riscv_cpu_virt_enabled(env) && tval) { 1431 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); 1432 } 1433 1434 mtval2 = env->guest_phys_fault_addr; 1435 1436 /* Trapping to M mode, virt is disabled */ 1437 riscv_cpu_set_virt_enabled(env, 0); 1438 } 1439 1440 s = env->mstatus; 1441 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); 1442 s = set_field(s, MSTATUS_MPP, env->priv); 1443 s = set_field(s, MSTATUS_MIE, 0); 1444 env->mstatus = s; 1445 env->mcause = cause | ~(((target_ulong)-1) >> async); 1446 env->mepc = env->pc; 1447 env->mtval = tval; 1448 env->mtval2 = mtval2; 1449 env->pc = (env->mtvec >> 2 << 2) + 1450 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); 1451 riscv_cpu_set_mode(env, PRV_M); 1452 } 1453 1454 /* NOTE: it is not necessary to yield load reservations here. It is only 1455 * necessary for an SC from "another hart" to cause a load reservation 1456 * to be yielded. Refer to the memory consistency model section of the 1457 * RISC-V ISA Specification. 1458 */ 1459 1460 env->two_stage_lookup = false; 1461 #endif 1462 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */ 1463 } 1464