xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision c8f8a995)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "pmu.h"
26 #include "exec/exec-all.h"
27 #include "instmap.h"
28 #include "tcg/tcg-op.h"
29 #include "trace.h"
30 #include "semihosting/common-semi.h"
31 #include "sysemu/cpu-timers.h"
32 #include "cpu_bits.h"
33 #include "debug.h"
34 
35 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
36 {
37 #ifdef CONFIG_USER_ONLY
38     return 0;
39 #else
40     if (ifetch) {
41         return env->priv;
42     }
43 
44     /* All priv -> mmu_idx mapping are here */
45     int mode = env->priv;
46     if (mode == PRV_M && get_field(env->mstatus, MSTATUS_MPRV)) {
47         mode = get_field(env->mstatus, MSTATUS_MPP);
48     }
49     if (mode == PRV_S && get_field(env->mstatus, MSTATUS_SUM)) {
50         return MMUIdx_S_SUM;
51     }
52     return mode;
53 #endif
54 }
55 
56 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
57                           target_ulong *cs_base, uint32_t *pflags)
58 {
59     CPUState *cs = env_cpu(env);
60     RISCVCPU *cpu = RISCV_CPU(cs);
61     RISCVExtStatus fs, vs;
62     uint32_t flags = 0;
63 
64     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
65     *cs_base = 0;
66 
67     if (cpu->cfg.ext_zve32f) {
68         /*
69          * If env->vl equals to VLMAX, we can use generic vector operation
70          * expanders (GVEC) to accerlate the vector operations.
71          * However, as LMUL could be a fractional number. The maximum
72          * vector size can be operated might be less than 8 bytes,
73          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
74          * only when maxsz >= 8 bytes.
75          */
76         uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
77         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
78         uint32_t maxsz = vlmax << sew;
79         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
80                            (maxsz >= 8);
81         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
82         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
83         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
84                            FIELD_EX64(env->vtype, VTYPE, VLMUL));
85         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
86         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
87                            FIELD_EX64(env->vtype, VTYPE, VTA));
88         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
89                            FIELD_EX64(env->vtype, VTYPE, VMA));
90         flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
91     } else {
92         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
93     }
94 
95 #ifdef CONFIG_USER_ONLY
96     fs = EXT_STATUS_DIRTY;
97     vs = EXT_STATUS_DIRTY;
98 #else
99     flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
100 
101     flags |= cpu_mmu_index(env, 0);
102     fs = get_field(env->mstatus, MSTATUS_FS);
103     vs = get_field(env->mstatus, MSTATUS_VS);
104 
105     if (riscv_has_ext(env, RVH)) {
106         if (env->priv == PRV_M ||
107             (env->priv == PRV_S && !env->virt_enabled) ||
108             (env->priv == PRV_U && !env->virt_enabled &&
109              get_field(env->hstatus, HSTATUS_HU))) {
110             flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
111         }
112 
113         if (env->virt_enabled) {
114             flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
115             /*
116              * Merge DISABLED and !DIRTY states using MIN.
117              * We will set both fields when dirtying.
118              */
119             fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
120             vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
121         }
122     }
123     if (cpu->cfg.debug && !icount_enabled()) {
124         flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
125     }
126 #endif
127 
128     flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
129     flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
130     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
131     if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
132         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
133     }
134     if (env->cur_pmbase != 0) {
135         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
136     }
137 
138     *pflags = flags;
139 }
140 
141 void riscv_cpu_update_mask(CPURISCVState *env)
142 {
143     target_ulong mask = -1, base = 0;
144     /*
145      * TODO: Current RVJ spec does not specify
146      * how the extension interacts with XLEN.
147      */
148 #ifndef CONFIG_USER_ONLY
149     if (riscv_has_ext(env, RVJ)) {
150         switch (env->priv) {
151         case PRV_M:
152             if (env->mmte & M_PM_ENABLE) {
153                 mask = env->mpmmask;
154                 base = env->mpmbase;
155             }
156             break;
157         case PRV_S:
158             if (env->mmte & S_PM_ENABLE) {
159                 mask = env->spmmask;
160                 base = env->spmbase;
161             }
162             break;
163         case PRV_U:
164             if (env->mmte & U_PM_ENABLE) {
165                 mask = env->upmmask;
166                 base = env->upmbase;
167             }
168             break;
169         default:
170             g_assert_not_reached();
171         }
172     }
173 #endif
174     if (env->xl == MXL_RV32) {
175         env->cur_pmmask = mask & UINT32_MAX;
176         env->cur_pmbase = base & UINT32_MAX;
177     } else {
178         env->cur_pmmask = mask;
179         env->cur_pmbase = base;
180     }
181 }
182 
183 #ifndef CONFIG_USER_ONLY
184 
185 /*
186  * The HS-mode is allowed to configure priority only for the
187  * following VS-mode local interrupts:
188  *
189  * 0  (Reserved interrupt, reads as zero)
190  * 1  Supervisor software interrupt
191  * 4  (Reserved interrupt, reads as zero)
192  * 5  Supervisor timer interrupt
193  * 8  (Reserved interrupt, reads as zero)
194  * 13 (Reserved interrupt)
195  * 14 "
196  * 15 "
197  * 16 "
198  * 17 "
199  * 18 "
200  * 19 "
201  * 20 "
202  * 21 "
203  * 22 "
204  * 23 "
205  */
206 
207 static const int hviprio_index2irq[] = {
208     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
209 static const int hviprio_index2rdzero[] = {
210     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
211 
212 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
213 {
214     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
215         return -EINVAL;
216     }
217 
218     if (out_irq) {
219         *out_irq = hviprio_index2irq[index];
220     }
221 
222     if (out_rdzero) {
223         *out_rdzero = hviprio_index2rdzero[index];
224     }
225 
226     return 0;
227 }
228 
229 /*
230  * Default priorities of local interrupts are defined in the
231  * RISC-V Advanced Interrupt Architecture specification.
232  *
233  * ----------------------------------------------------------------
234  *  Default  |
235  *  Priority | Major Interrupt Numbers
236  * ----------------------------------------------------------------
237  *  Highest  | 47, 23, 46, 45, 22, 44,
238  *           | 43, 21, 42, 41, 20, 40
239  *           |
240  *           | 11 (0b),  3 (03),  7 (07)
241  *           |  9 (09),  1 (01),  5 (05)
242  *           | 12 (0c)
243  *           | 10 (0a),  2 (02),  6 (06)
244  *           |
245  *           | 39, 19, 38, 37, 18, 36,
246  *  Lowest   | 35, 17, 34, 33, 16, 32
247  * ----------------------------------------------------------------
248  */
249 static const uint8_t default_iprio[64] = {
250     /* Custom interrupts 48 to 63 */
251     [63] = IPRIO_MMAXIPRIO,
252     [62] = IPRIO_MMAXIPRIO,
253     [61] = IPRIO_MMAXIPRIO,
254     [60] = IPRIO_MMAXIPRIO,
255     [59] = IPRIO_MMAXIPRIO,
256     [58] = IPRIO_MMAXIPRIO,
257     [57] = IPRIO_MMAXIPRIO,
258     [56] = IPRIO_MMAXIPRIO,
259     [55] = IPRIO_MMAXIPRIO,
260     [54] = IPRIO_MMAXIPRIO,
261     [53] = IPRIO_MMAXIPRIO,
262     [52] = IPRIO_MMAXIPRIO,
263     [51] = IPRIO_MMAXIPRIO,
264     [50] = IPRIO_MMAXIPRIO,
265     [49] = IPRIO_MMAXIPRIO,
266     [48] = IPRIO_MMAXIPRIO,
267 
268     /* Custom interrupts 24 to 31 */
269     [31] = IPRIO_MMAXIPRIO,
270     [30] = IPRIO_MMAXIPRIO,
271     [29] = IPRIO_MMAXIPRIO,
272     [28] = IPRIO_MMAXIPRIO,
273     [27] = IPRIO_MMAXIPRIO,
274     [26] = IPRIO_MMAXIPRIO,
275     [25] = IPRIO_MMAXIPRIO,
276     [24] = IPRIO_MMAXIPRIO,
277 
278     [47] = IPRIO_DEFAULT_UPPER,
279     [23] = IPRIO_DEFAULT_UPPER + 1,
280     [46] = IPRIO_DEFAULT_UPPER + 2,
281     [45] = IPRIO_DEFAULT_UPPER + 3,
282     [22] = IPRIO_DEFAULT_UPPER + 4,
283     [44] = IPRIO_DEFAULT_UPPER + 5,
284 
285     [43] = IPRIO_DEFAULT_UPPER + 6,
286     [21] = IPRIO_DEFAULT_UPPER + 7,
287     [42] = IPRIO_DEFAULT_UPPER + 8,
288     [41] = IPRIO_DEFAULT_UPPER + 9,
289     [20] = IPRIO_DEFAULT_UPPER + 10,
290     [40] = IPRIO_DEFAULT_UPPER + 11,
291 
292     [11] = IPRIO_DEFAULT_M,
293     [3]  = IPRIO_DEFAULT_M + 1,
294     [7]  = IPRIO_DEFAULT_M + 2,
295 
296     [9]  = IPRIO_DEFAULT_S,
297     [1]  = IPRIO_DEFAULT_S + 1,
298     [5]  = IPRIO_DEFAULT_S + 2,
299 
300     [12] = IPRIO_DEFAULT_SGEXT,
301 
302     [10] = IPRIO_DEFAULT_VS,
303     [2]  = IPRIO_DEFAULT_VS + 1,
304     [6]  = IPRIO_DEFAULT_VS + 2,
305 
306     [39] = IPRIO_DEFAULT_LOWER,
307     [19] = IPRIO_DEFAULT_LOWER + 1,
308     [38] = IPRIO_DEFAULT_LOWER + 2,
309     [37] = IPRIO_DEFAULT_LOWER + 3,
310     [18] = IPRIO_DEFAULT_LOWER + 4,
311     [36] = IPRIO_DEFAULT_LOWER + 5,
312 
313     [35] = IPRIO_DEFAULT_LOWER + 6,
314     [17] = IPRIO_DEFAULT_LOWER + 7,
315     [34] = IPRIO_DEFAULT_LOWER + 8,
316     [33] = IPRIO_DEFAULT_LOWER + 9,
317     [16] = IPRIO_DEFAULT_LOWER + 10,
318     [32] = IPRIO_DEFAULT_LOWER + 11,
319 };
320 
321 uint8_t riscv_cpu_default_priority(int irq)
322 {
323     if (irq < 0 || irq > 63) {
324         return IPRIO_MMAXIPRIO;
325     }
326 
327     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
328 };
329 
330 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
331                                     int extirq, unsigned int extirq_def_prio,
332                                     uint64_t pending, uint8_t *iprio)
333 {
334     int irq, best_irq = RISCV_EXCP_NONE;
335     unsigned int prio, best_prio = UINT_MAX;
336 
337     if (!pending) {
338         return RISCV_EXCP_NONE;
339     }
340 
341     irq = ctz64(pending);
342     if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
343                                   riscv_cpu_cfg(env)->ext_ssaia)) {
344         return irq;
345     }
346 
347     pending = pending >> irq;
348     while (pending) {
349         prio = iprio[irq];
350         if (!prio) {
351             if (irq == extirq) {
352                 prio = extirq_def_prio;
353             } else {
354                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
355                        1 : IPRIO_MMAXIPRIO;
356             }
357         }
358         if ((pending & 0x1) && (prio <= best_prio)) {
359             best_irq = irq;
360             best_prio = prio;
361         }
362         irq++;
363         pending = pending >> 1;
364     }
365 
366     return best_irq;
367 }
368 
369 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
370 {
371     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
372     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
373     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
374 
375     return (env->mip | vsgein | vstip) & env->mie;
376 }
377 
378 int riscv_cpu_mirq_pending(CPURISCVState *env)
379 {
380     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
381                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
382 
383     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
384                                     irqs, env->miprio);
385 }
386 
387 int riscv_cpu_sirq_pending(CPURISCVState *env)
388 {
389     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
390                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
391 
392     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
393                                     irqs, env->siprio);
394 }
395 
396 int riscv_cpu_vsirq_pending(CPURISCVState *env)
397 {
398     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
399                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
400 
401     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
402                                     irqs >> 1, env->hviprio);
403 }
404 
405 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
406 {
407     int virq;
408     uint64_t irqs, pending, mie, hsie, vsie;
409 
410     /* Determine interrupt enable state of all privilege modes */
411     if (env->virt_enabled) {
412         mie = 1;
413         hsie = 1;
414         vsie = (env->priv < PRV_S) ||
415                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
416     } else {
417         mie = (env->priv < PRV_M) ||
418               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
419         hsie = (env->priv < PRV_S) ||
420                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
421         vsie = 0;
422     }
423 
424     /* Determine all pending interrupts */
425     pending = riscv_cpu_all_pending(env);
426 
427     /* Check M-mode interrupts */
428     irqs = pending & ~env->mideleg & -mie;
429     if (irqs) {
430         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
431                                         irqs, env->miprio);
432     }
433 
434     /* Check HS-mode interrupts */
435     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
436     if (irqs) {
437         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
438                                         irqs, env->siprio);
439     }
440 
441     /* Check VS-mode interrupts */
442     irqs = pending & env->mideleg & env->hideleg & -vsie;
443     if (irqs) {
444         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
445                                         irqs >> 1, env->hviprio);
446         return (virq <= 0) ? virq : virq + 1;
447     }
448 
449     /* Indicate no pending interrupt */
450     return RISCV_EXCP_NONE;
451 }
452 
453 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
454 {
455     if (interrupt_request & CPU_INTERRUPT_HARD) {
456         RISCVCPU *cpu = RISCV_CPU(cs);
457         CPURISCVState *env = &cpu->env;
458         int interruptno = riscv_cpu_local_irq_pending(env);
459         if (interruptno >= 0) {
460             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
461             riscv_cpu_do_interrupt(cs);
462             return true;
463         }
464     }
465     return false;
466 }
467 
468 /* Return true is floating point support is currently enabled */
469 bool riscv_cpu_fp_enabled(CPURISCVState *env)
470 {
471     if (env->mstatus & MSTATUS_FS) {
472         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
473             return false;
474         }
475         return true;
476     }
477 
478     return false;
479 }
480 
481 /* Return true is vector support is currently enabled */
482 bool riscv_cpu_vector_enabled(CPURISCVState *env)
483 {
484     if (env->mstatus & MSTATUS_VS) {
485         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
486             return false;
487         }
488         return true;
489     }
490 
491     return false;
492 }
493 
494 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
495 {
496     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
497                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
498                             MSTATUS64_UXL | MSTATUS_VS;
499 
500     if (riscv_has_ext(env, RVF)) {
501         mstatus_mask |= MSTATUS_FS;
502     }
503     bool current_virt = env->virt_enabled;
504 
505     g_assert(riscv_has_ext(env, RVH));
506 
507     if (current_virt) {
508         /* Current V=1 and we are about to change to V=0 */
509         env->vsstatus = env->mstatus & mstatus_mask;
510         env->mstatus &= ~mstatus_mask;
511         env->mstatus |= env->mstatus_hs;
512 
513         env->vstvec = env->stvec;
514         env->stvec = env->stvec_hs;
515 
516         env->vsscratch = env->sscratch;
517         env->sscratch = env->sscratch_hs;
518 
519         env->vsepc = env->sepc;
520         env->sepc = env->sepc_hs;
521 
522         env->vscause = env->scause;
523         env->scause = env->scause_hs;
524 
525         env->vstval = env->stval;
526         env->stval = env->stval_hs;
527 
528         env->vsatp = env->satp;
529         env->satp = env->satp_hs;
530     } else {
531         /* Current V=0 and we are about to change to V=1 */
532         env->mstatus_hs = env->mstatus & mstatus_mask;
533         env->mstatus &= ~mstatus_mask;
534         env->mstatus |= env->vsstatus;
535 
536         env->stvec_hs = env->stvec;
537         env->stvec = env->vstvec;
538 
539         env->sscratch_hs = env->sscratch;
540         env->sscratch = env->vsscratch;
541 
542         env->sepc_hs = env->sepc;
543         env->sepc = env->vsepc;
544 
545         env->scause_hs = env->scause;
546         env->scause = env->vscause;
547 
548         env->stval_hs = env->stval;
549         env->stval = env->vstval;
550 
551         env->satp_hs = env->satp;
552         env->satp = env->vsatp;
553     }
554 }
555 
556 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
557 {
558     if (!riscv_has_ext(env, RVH)) {
559         return 0;
560     }
561 
562     return env->geilen;
563 }
564 
565 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
566 {
567     if (!riscv_has_ext(env, RVH)) {
568         return;
569     }
570 
571     if (geilen > (TARGET_LONG_BITS - 1)) {
572         return;
573     }
574 
575     env->geilen = geilen;
576 }
577 
578 /* This function can only be called to set virt when RVH is enabled */
579 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
580 {
581     /* Flush the TLB on all virt mode changes. */
582     if (env->virt_enabled != enable) {
583         tlb_flush(env_cpu(env));
584     }
585 
586     env->virt_enabled = enable;
587 
588     if (enable) {
589         /*
590          * The guest external interrupts from an interrupt controller are
591          * delivered only when the Guest/VM is running (i.e. V=1). This means
592          * any guest external interrupt which is triggered while the Guest/VM
593          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
594          * with sluggish response to serial console input and other I/O events.
595          *
596          * To solve this, we check and inject interrupt after setting V=1.
597          */
598         riscv_cpu_update_mip(env, 0, 0);
599     }
600 }
601 
602 bool riscv_cpu_two_stage_lookup(int mmu_idx)
603 {
604     return mmu_idx & MMU_HYP_ACCESS_BIT;
605 }
606 
607 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
608 {
609     CPURISCVState *env = &cpu->env;
610     if (env->miclaim & interrupts) {
611         return -1;
612     } else {
613         env->miclaim |= interrupts;
614         return 0;
615     }
616 }
617 
618 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
619                               uint64_t value)
620 {
621     CPUState *cs = env_cpu(env);
622     uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
623 
624     if (env->virt_enabled) {
625         gein = get_field(env->hstatus, HSTATUS_VGEIN);
626         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
627     }
628 
629     vstip = env->vstime_irq ? MIP_VSTIP : 0;
630 
631     QEMU_IOTHREAD_LOCK_GUARD();
632 
633     env->mip = (env->mip & ~mask) | (value & mask);
634 
635     if (env->mip | vsgein | vstip) {
636         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
637     } else {
638         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
639     }
640 
641     return old;
642 }
643 
644 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
645                              void *arg)
646 {
647     env->rdtime_fn = fn;
648     env->rdtime_fn_arg = arg;
649 }
650 
651 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
652                                    int (*rmw_fn)(void *arg,
653                                                  target_ulong reg,
654                                                  target_ulong *val,
655                                                  target_ulong new_val,
656                                                  target_ulong write_mask),
657                                    void *rmw_fn_arg)
658 {
659     if (priv <= PRV_M) {
660         env->aia_ireg_rmw_fn[priv] = rmw_fn;
661         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
662     }
663 }
664 
665 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
666 {
667     g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
668 
669     if (icount_enabled() && newpriv != env->priv) {
670         riscv_itrigger_update_priv(env);
671     }
672     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
673     env->priv = newpriv;
674     env->xl = cpu_recompute_xl(env);
675     riscv_cpu_update_mask(env);
676 
677     /*
678      * Clear the load reservation - otherwise a reservation placed in one
679      * context/process can be used by another, resulting in an SC succeeding
680      * incorrectly. Version 2.2 of the ISA specification explicitly requires
681      * this behaviour, while later revisions say that the kernel "should" use
682      * an SC instruction to force the yielding of a load reservation on a
683      * preemptive context switch. As a result, do both.
684      */
685     env->load_res = -1;
686 }
687 
688 /*
689  * get_physical_address_pmp - check PMP permission for this physical address
690  *
691  * Match the PMP region and check permission for this physical address and it's
692  * TLB page. Returns 0 if the permission checking was successful
693  *
694  * @env: CPURISCVState
695  * @prot: The returned protection attributes
696  * @tlb_size: TLB page size containing addr. It could be modified after PMP
697  *            permission checking. NULL if not set TLB page for addr.
698  * @addr: The physical address to be checked permission
699  * @access_type: The type of MMU access
700  * @mode: Indicates current privilege level.
701  */
702 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
703                                     target_ulong *tlb_size, hwaddr addr,
704                                     int size, MMUAccessType access_type,
705                                     int mode)
706 {
707     pmp_priv_t pmp_priv;
708     int pmp_index = -1;
709 
710     if (!riscv_cpu_cfg(env)->pmp) {
711         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
712         return TRANSLATE_SUCCESS;
713     }
714 
715     pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
716                                    &pmp_priv, mode);
717     if (pmp_index < 0) {
718         *prot = 0;
719         return TRANSLATE_PMP_FAIL;
720     }
721 
722     *prot = pmp_priv_to_page_prot(pmp_priv);
723     if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
724         target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
725         target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
726 
727         *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
728     }
729 
730     return TRANSLATE_SUCCESS;
731 }
732 
733 /*
734  * get_physical_address - get the physical address for this virtual address
735  *
736  * Do a page table walk to obtain the physical address corresponding to a
737  * virtual address. Returns 0 if the translation was successful
738  *
739  * Adapted from Spike's mmu_t::translate and mmu_t::walk
740  *
741  * @env: CPURISCVState
742  * @physical: This will be set to the calculated physical address
743  * @prot: The returned protection attributes
744  * @addr: The virtual address or guest physical address to be translated
745  * @fault_pte_addr: If not NULL, this will be set to fault pte address
746  *                  when a error occurs on pte address translation.
747  *                  This will already be shifted to match htval.
748  * @access_type: The type of MMU access
749  * @mmu_idx: Indicates current privilege level
750  * @first_stage: Are we in first stage translation?
751  *               Second stage is used for hypervisor guest translation
752  * @two_stage: Are we going to perform two stage translation
753  * @is_debug: Is this access from a debugger or the monitor?
754  */
755 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
756                                 int *prot, vaddr addr,
757                                 target_ulong *fault_pte_addr,
758                                 int access_type, int mmu_idx,
759                                 bool first_stage, bool two_stage,
760                                 bool is_debug)
761 {
762     /*
763      * NOTE: the env->pc value visible here will not be
764      * correct, but the value visible to the exception handler
765      * (riscv_cpu_do_interrupt) is correct
766      */
767     MemTxResult res;
768     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
769     int mode = env->priv;
770     bool use_background = false;
771     hwaddr ppn;
772     int napot_bits = 0;
773     target_ulong napot_mask;
774 
775     /*
776      * Check if we should use the background registers for the two
777      * stage translation. We don't need to check if we actually need
778      * two stage translation as that happened before this function
779      * was called. Background registers will be used if the guest has
780      * forced a two stage translation to be on (in HS or M mode).
781      */
782     if (!env->virt_enabled && two_stage) {
783         use_background = true;
784     }
785 
786     /*
787      * MPRV does not affect the virtual-machine load/store
788      * instructions, HLV, HLVX, and HSV.
789      */
790     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
791         mode = get_field(env->hstatus, HSTATUS_SPVP);
792     } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
793         if (get_field(env->mstatus, MSTATUS_MPRV)) {
794             mode = get_field(env->mstatus, MSTATUS_MPP);
795         }
796     }
797 
798     if (first_stage == false) {
799         /*
800          * We are in stage 2 translation, this is similar to stage 1.
801          * Stage 2 is always taken as U-mode
802          */
803         mode = PRV_U;
804     }
805 
806     if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
807         *physical = addr;
808         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
809         return TRANSLATE_SUCCESS;
810     }
811 
812     *prot = 0;
813 
814     hwaddr base;
815     int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
816 
817     if (first_stage == true) {
818         mxr = get_field(env->mstatus, MSTATUS_MXR);
819     } else {
820         mxr = get_field(env->vsstatus, MSTATUS_MXR);
821     }
822 
823     if (first_stage == true) {
824         if (use_background) {
825             if (riscv_cpu_mxl(env) == MXL_RV32) {
826                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
827                 vm = get_field(env->vsatp, SATP32_MODE);
828             } else {
829                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
830                 vm = get_field(env->vsatp, SATP64_MODE);
831             }
832         } else {
833             if (riscv_cpu_mxl(env) == MXL_RV32) {
834                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
835                 vm = get_field(env->satp, SATP32_MODE);
836             } else {
837                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
838                 vm = get_field(env->satp, SATP64_MODE);
839             }
840         }
841         widened = 0;
842     } else {
843         if (riscv_cpu_mxl(env) == MXL_RV32) {
844             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
845             vm = get_field(env->hgatp, SATP32_MODE);
846         } else {
847             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
848             vm = get_field(env->hgatp, SATP64_MODE);
849         }
850         widened = 2;
851     }
852     /* status.SUM will be ignored if execute on background */
853     sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
854     switch (vm) {
855     case VM_1_10_SV32:
856       levels = 2; ptidxbits = 10; ptesize = 4; break;
857     case VM_1_10_SV39:
858       levels = 3; ptidxbits = 9; ptesize = 8; break;
859     case VM_1_10_SV48:
860       levels = 4; ptidxbits = 9; ptesize = 8; break;
861     case VM_1_10_SV57:
862       levels = 5; ptidxbits = 9; ptesize = 8; break;
863     case VM_1_10_MBARE:
864         *physical = addr;
865         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
866         return TRANSLATE_SUCCESS;
867     default:
868       g_assert_not_reached();
869     }
870 
871     CPUState *cs = env_cpu(env);
872     int va_bits = PGSHIFT + levels * ptidxbits + widened;
873     target_ulong mask, masked_msbs;
874 
875     if (TARGET_LONG_BITS > (va_bits - 1)) {
876         mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
877     } else {
878         mask = 0;
879     }
880     masked_msbs = (addr >> (va_bits - 1)) & mask;
881 
882     if (masked_msbs != 0 && masked_msbs != mask) {
883         return TRANSLATE_FAIL;
884     }
885 
886     int ptshift = (levels - 1) * ptidxbits;
887     int i;
888 
889 #if !TCG_OVERSIZED_GUEST
890 restart:
891 #endif
892     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
893         target_ulong idx;
894         if (i == 0) {
895             idx = (addr >> (PGSHIFT + ptshift)) &
896                            ((1 << (ptidxbits + widened)) - 1);
897         } else {
898             idx = (addr >> (PGSHIFT + ptshift)) &
899                            ((1 << ptidxbits) - 1);
900         }
901 
902         /* check that physical address of PTE is legal */
903         hwaddr pte_addr;
904 
905         if (two_stage && first_stage) {
906             int vbase_prot;
907             hwaddr vbase;
908 
909             /* Do the second stage translation on the base PTE address. */
910             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
911                                                  base, NULL, MMU_DATA_LOAD,
912                                                  mmu_idx, false, true,
913                                                  is_debug);
914 
915             if (vbase_ret != TRANSLATE_SUCCESS) {
916                 if (fault_pte_addr) {
917                     *fault_pte_addr = (base + idx * ptesize) >> 2;
918                 }
919                 return TRANSLATE_G_STAGE_FAIL;
920             }
921 
922             pte_addr = vbase + idx * ptesize;
923         } else {
924             pte_addr = base + idx * ptesize;
925         }
926 
927         int pmp_prot;
928         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
929                                                sizeof(target_ulong),
930                                                MMU_DATA_LOAD, PRV_S);
931         if (pmp_ret != TRANSLATE_SUCCESS) {
932             return TRANSLATE_PMP_FAIL;
933         }
934 
935         target_ulong pte;
936         if (riscv_cpu_mxl(env) == MXL_RV32) {
937             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
938         } else {
939             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
940         }
941 
942         if (res != MEMTX_OK) {
943             return TRANSLATE_FAIL;
944         }
945 
946         bool pbmte = env->menvcfg & MENVCFG_PBMTE;
947         bool hade = env->menvcfg & MENVCFG_HADE;
948 
949         if (first_stage && two_stage && env->virt_enabled) {
950             pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
951             hade = hade && (env->henvcfg & HENVCFG_HADE);
952         }
953 
954         if (riscv_cpu_sxl(env) == MXL_RV32) {
955             ppn = pte >> PTE_PPN_SHIFT;
956         } else if (pbmte || riscv_cpu_cfg(env)->ext_svnapot) {
957             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
958         } else {
959             ppn = pte >> PTE_PPN_SHIFT;
960             if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
961                 return TRANSLATE_FAIL;
962             }
963         }
964 
965         if (!(pte & PTE_V)) {
966             /* Invalid PTE */
967             return TRANSLATE_FAIL;
968         } else if (!pbmte && (pte & PTE_PBMT)) {
969             return TRANSLATE_FAIL;
970         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
971             /* Inner PTE, continue walking */
972             if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
973                 return TRANSLATE_FAIL;
974             }
975             base = ppn << PGSHIFT;
976         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
977             /* Reserved leaf PTE flags: PTE_W */
978             return TRANSLATE_FAIL;
979         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
980             /* Reserved leaf PTE flags: PTE_W + PTE_X */
981             return TRANSLATE_FAIL;
982         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
983                    (!sum || access_type == MMU_INST_FETCH))) {
984             /* User PTE flags when not U mode and mstatus.SUM is not set,
985                or the access type is an instruction fetch */
986             return TRANSLATE_FAIL;
987         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
988             /* Supervisor PTE flags when not S mode */
989             return TRANSLATE_FAIL;
990         } else if (ppn & ((1ULL << ptshift) - 1)) {
991             /* Misaligned PPN */
992             return TRANSLATE_FAIL;
993         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
994                    ((pte & PTE_X) && mxr))) {
995             /* Read access check failed */
996             return TRANSLATE_FAIL;
997         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
998             /* Write access check failed */
999             return TRANSLATE_FAIL;
1000         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
1001             /* Fetch access check failed */
1002             return TRANSLATE_FAIL;
1003         } else {
1004             /* if necessary, set accessed and dirty bits. */
1005             target_ulong updated_pte = pte | PTE_A |
1006                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
1007 
1008             /* Page table updates need to be atomic with MTTCG enabled */
1009             if (updated_pte != pte) {
1010                 if (!hade) {
1011                     return TRANSLATE_FAIL;
1012                 }
1013 
1014                 /*
1015                  * - if accessed or dirty bits need updating, and the PTE is
1016                  *   in RAM, then we do so atomically with a compare and swap.
1017                  * - if the PTE is in IO space or ROM, then it can't be updated
1018                  *   and we return TRANSLATE_FAIL.
1019                  * - if the PTE changed by the time we went to update it, then
1020                  *   it is no longer valid and we must re-walk the page table.
1021                  */
1022                 MemoryRegion *mr;
1023                 hwaddr l = sizeof(target_ulong), addr1;
1024                 mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1025                                              false, MEMTXATTRS_UNSPECIFIED);
1026                 if (memory_region_is_ram(mr)) {
1027                     target_ulong *pte_pa =
1028                         qemu_map_ram_ptr(mr->ram_block, addr1);
1029 #if TCG_OVERSIZED_GUEST
1030                     /*
1031                      * MTTCG is not enabled on oversized TCG guests so
1032                      * page table updates do not need to be atomic
1033                      */
1034                     *pte_pa = pte = updated_pte;
1035 #else
1036                     target_ulong old_pte =
1037                         qatomic_cmpxchg(pte_pa, pte, updated_pte);
1038                     if (old_pte != pte) {
1039                         goto restart;
1040                     } else {
1041                         pte = updated_pte;
1042                     }
1043 #endif
1044                 } else {
1045                     /*
1046                      * misconfigured PTE in ROM (AD bits are not preset) or
1047                      * PTE is in IO space and can't be updated atomically
1048                      */
1049                     return TRANSLATE_FAIL;
1050                 }
1051             }
1052 
1053             /*
1054              * for superpage mappings, make a fake leaf PTE for the TLB's
1055              * benefit.
1056              */
1057             target_ulong vpn = addr >> PGSHIFT;
1058 
1059             if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1060                 napot_bits = ctzl(ppn) + 1;
1061                 if ((i != (levels - 1)) || (napot_bits != 4)) {
1062                     return TRANSLATE_FAIL;
1063                 }
1064             }
1065 
1066             napot_mask = (1 << napot_bits) - 1;
1067             *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1068                           (vpn & (((target_ulong)1 << ptshift) - 1))
1069                          ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1070 
1071             /* set permissions on the TLB entry */
1072             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
1073                 *prot |= PAGE_READ;
1074             }
1075             if (pte & PTE_X) {
1076                 *prot |= PAGE_EXEC;
1077             }
1078             /*
1079              * add write permission on stores or if the page is already dirty,
1080              * so that we TLB miss on later writes to update the dirty bit
1081              */
1082             if ((pte & PTE_W) &&
1083                 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1084                 *prot |= PAGE_WRITE;
1085             }
1086             return TRANSLATE_SUCCESS;
1087         }
1088     }
1089     return TRANSLATE_FAIL;
1090 }
1091 
1092 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1093                                 MMUAccessType access_type, bool pmp_violation,
1094                                 bool first_stage, bool two_stage,
1095                                 bool two_stage_indirect)
1096 {
1097     CPUState *cs = env_cpu(env);
1098     int page_fault_exceptions, vm;
1099     uint64_t stap_mode;
1100 
1101     if (riscv_cpu_mxl(env) == MXL_RV32) {
1102         stap_mode = SATP32_MODE;
1103     } else {
1104         stap_mode = SATP64_MODE;
1105     }
1106 
1107     if (first_stage) {
1108         vm = get_field(env->satp, stap_mode);
1109     } else {
1110         vm = get_field(env->hgatp, stap_mode);
1111     }
1112 
1113     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1114 
1115     switch (access_type) {
1116     case MMU_INST_FETCH:
1117         if (env->virt_enabled && !first_stage) {
1118             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1119         } else {
1120             cs->exception_index = page_fault_exceptions ?
1121                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1122         }
1123         break;
1124     case MMU_DATA_LOAD:
1125         if (two_stage && !first_stage) {
1126             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1127         } else {
1128             cs->exception_index = page_fault_exceptions ?
1129                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1130         }
1131         break;
1132     case MMU_DATA_STORE:
1133         if (two_stage && !first_stage) {
1134             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1135         } else {
1136             cs->exception_index = page_fault_exceptions ?
1137                 RISCV_EXCP_STORE_PAGE_FAULT :
1138                 RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1139         }
1140         break;
1141     default:
1142         g_assert_not_reached();
1143     }
1144     env->badaddr = address;
1145     env->two_stage_lookup = two_stage;
1146     env->two_stage_indirect_lookup = two_stage_indirect;
1147 }
1148 
1149 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1150 {
1151     RISCVCPU *cpu = RISCV_CPU(cs);
1152     CPURISCVState *env = &cpu->env;
1153     hwaddr phys_addr;
1154     int prot;
1155     int mmu_idx = cpu_mmu_index(&cpu->env, false);
1156 
1157     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1158                              true, env->virt_enabled, true)) {
1159         return -1;
1160     }
1161 
1162     if (env->virt_enabled) {
1163         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1164                                  0, mmu_idx, false, true, true)) {
1165             return -1;
1166         }
1167     }
1168 
1169     return phys_addr & TARGET_PAGE_MASK;
1170 }
1171 
1172 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1173                                      vaddr addr, unsigned size,
1174                                      MMUAccessType access_type,
1175                                      int mmu_idx, MemTxAttrs attrs,
1176                                      MemTxResult response, uintptr_t retaddr)
1177 {
1178     RISCVCPU *cpu = RISCV_CPU(cs);
1179     CPURISCVState *env = &cpu->env;
1180 
1181     if (access_type == MMU_DATA_STORE) {
1182         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1183     } else if (access_type == MMU_DATA_LOAD) {
1184         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1185     } else {
1186         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1187     }
1188 
1189     env->badaddr = addr;
1190     env->two_stage_lookup = env->virt_enabled ||
1191                             riscv_cpu_two_stage_lookup(mmu_idx);
1192     env->two_stage_indirect_lookup = false;
1193     cpu_loop_exit_restore(cs, retaddr);
1194 }
1195 
1196 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1197                                    MMUAccessType access_type, int mmu_idx,
1198                                    uintptr_t retaddr)
1199 {
1200     RISCVCPU *cpu = RISCV_CPU(cs);
1201     CPURISCVState *env = &cpu->env;
1202     switch (access_type) {
1203     case MMU_INST_FETCH:
1204         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1205         break;
1206     case MMU_DATA_LOAD:
1207         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1208         break;
1209     case MMU_DATA_STORE:
1210         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1211         break;
1212     default:
1213         g_assert_not_reached();
1214     }
1215     env->badaddr = addr;
1216     env->two_stage_lookup = env->virt_enabled ||
1217                             riscv_cpu_two_stage_lookup(mmu_idx);
1218     env->two_stage_indirect_lookup = false;
1219     cpu_loop_exit_restore(cs, retaddr);
1220 }
1221 
1222 
1223 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1224 {
1225     enum riscv_pmu_event_idx pmu_event_type;
1226 
1227     switch (access_type) {
1228     case MMU_INST_FETCH:
1229         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1230         break;
1231     case MMU_DATA_LOAD:
1232         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1233         break;
1234     case MMU_DATA_STORE:
1235         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1236         break;
1237     default:
1238         return;
1239     }
1240 
1241     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1242 }
1243 
1244 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1245                         MMUAccessType access_type, int mmu_idx,
1246                         bool probe, uintptr_t retaddr)
1247 {
1248     RISCVCPU *cpu = RISCV_CPU(cs);
1249     CPURISCVState *env = &cpu->env;
1250     vaddr im_address;
1251     hwaddr pa = 0;
1252     int prot, prot2, prot_pmp;
1253     bool pmp_violation = false;
1254     bool first_stage_error = true;
1255     bool two_stage_lookup = false;
1256     bool two_stage_indirect_error = false;
1257     int ret = TRANSLATE_FAIL;
1258     int mode = mmu_idx;
1259     /* default TLB page size */
1260     target_ulong tlb_size = TARGET_PAGE_SIZE;
1261 
1262     env->guest_phys_fault_addr = 0;
1263 
1264     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1265                   __func__, address, access_type, mmu_idx);
1266 
1267     /*
1268      * MPRV does not affect the virtual-machine load/store
1269      * instructions, HLV, HLVX, and HSV.
1270      */
1271     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1272         mode = get_field(env->hstatus, HSTATUS_SPVP);
1273     } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1274                get_field(env->mstatus, MSTATUS_MPRV)) {
1275         mode = get_field(env->mstatus, MSTATUS_MPP);
1276         if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1277             two_stage_lookup = true;
1278         }
1279     }
1280 
1281     pmu_tlb_fill_incr_ctr(cpu, access_type);
1282     if (env->virt_enabled ||
1283         ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1284          access_type != MMU_INST_FETCH)) {
1285         /* Two stage lookup */
1286         ret = get_physical_address(env, &pa, &prot, address,
1287                                    &env->guest_phys_fault_addr, access_type,
1288                                    mmu_idx, true, true, false);
1289 
1290         /*
1291          * A G-stage exception may be triggered during two state lookup.
1292          * And the env->guest_phys_fault_addr has already been set in
1293          * get_physical_address().
1294          */
1295         if (ret == TRANSLATE_G_STAGE_FAIL) {
1296             first_stage_error = false;
1297             two_stage_indirect_error = true;
1298             access_type = MMU_DATA_LOAD;
1299         }
1300 
1301         qemu_log_mask(CPU_LOG_MMU,
1302                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1303                       HWADDR_FMT_plx " prot %d\n",
1304                       __func__, address, ret, pa, prot);
1305 
1306         if (ret == TRANSLATE_SUCCESS) {
1307             /* Second stage lookup */
1308             im_address = pa;
1309 
1310             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1311                                        access_type, mmu_idx, false, true,
1312                                        false);
1313 
1314             qemu_log_mask(CPU_LOG_MMU,
1315                           "%s 2nd-stage address=%" VADDR_PRIx
1316                           " ret %d physical "
1317                           HWADDR_FMT_plx " prot %d\n",
1318                           __func__, im_address, ret, pa, prot2);
1319 
1320             prot &= prot2;
1321 
1322             if (ret == TRANSLATE_SUCCESS) {
1323                 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1324                                                size, access_type, mode);
1325 
1326                 qemu_log_mask(CPU_LOG_MMU,
1327                               "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1328                               " %d tlb_size " TARGET_FMT_lu "\n",
1329                               __func__, pa, ret, prot_pmp, tlb_size);
1330 
1331                 prot &= prot_pmp;
1332             }
1333 
1334             if (ret != TRANSLATE_SUCCESS) {
1335                 /*
1336                  * Guest physical address translation failed, this is a HS
1337                  * level exception
1338                  */
1339                 first_stage_error = false;
1340                 env->guest_phys_fault_addr = (im_address |
1341                                               (address &
1342                                                (TARGET_PAGE_SIZE - 1))) >> 2;
1343             }
1344         }
1345     } else {
1346         /* Single stage lookup */
1347         ret = get_physical_address(env, &pa, &prot, address, NULL,
1348                                    access_type, mmu_idx, true, false, false);
1349 
1350         qemu_log_mask(CPU_LOG_MMU,
1351                       "%s address=%" VADDR_PRIx " ret %d physical "
1352                       HWADDR_FMT_plx " prot %d\n",
1353                       __func__, address, ret, pa, prot);
1354 
1355         if (ret == TRANSLATE_SUCCESS) {
1356             ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1357                                            size, access_type, mode);
1358 
1359             qemu_log_mask(CPU_LOG_MMU,
1360                           "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1361                           " %d tlb_size " TARGET_FMT_lu "\n",
1362                           __func__, pa, ret, prot_pmp, tlb_size);
1363 
1364             prot &= prot_pmp;
1365         }
1366     }
1367 
1368     if (ret == TRANSLATE_PMP_FAIL) {
1369         pmp_violation = true;
1370     }
1371 
1372     if (ret == TRANSLATE_SUCCESS) {
1373         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1374                      prot, mmu_idx, tlb_size);
1375         return true;
1376     } else if (probe) {
1377         return false;
1378     } else {
1379         raise_mmu_exception(env, address, access_type, pmp_violation,
1380                             first_stage_error,
1381                             env->virt_enabled ||
1382                                 riscv_cpu_two_stage_lookup(mmu_idx),
1383                             two_stage_indirect_error);
1384         cpu_loop_exit_restore(cs, retaddr);
1385     }
1386 
1387     return true;
1388 }
1389 
1390 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1391                                            target_ulong insn,
1392                                            target_ulong taddr)
1393 {
1394     target_ulong xinsn = 0;
1395     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1396 
1397     /*
1398      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1399      * be uncompressed. The Quadrant 1 of RVC instruction space need
1400      * not be transformed because these instructions won't generate
1401      * any load/store trap.
1402      */
1403 
1404     if ((insn & 0x3) != 0x3) {
1405         /* Transform 16bit instruction into 32bit instruction */
1406         switch (GET_C_OP(insn)) {
1407         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1408             switch (GET_C_FUNC(insn)) {
1409             case OPC_RISC_C_FUNC_FLD_LQ:
1410                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1411                     xinsn = OPC_RISC_FLD;
1412                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1413                     access_rs1 = GET_C_RS1S(insn);
1414                     access_imm = GET_C_LD_IMM(insn);
1415                     access_size = 8;
1416                 }
1417                 break;
1418             case OPC_RISC_C_FUNC_LW: /* C.LW */
1419                 xinsn = OPC_RISC_LW;
1420                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1421                 access_rs1 = GET_C_RS1S(insn);
1422                 access_imm = GET_C_LW_IMM(insn);
1423                 access_size = 4;
1424                 break;
1425             case OPC_RISC_C_FUNC_FLW_LD:
1426                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1427                     xinsn = OPC_RISC_FLW;
1428                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1429                     access_rs1 = GET_C_RS1S(insn);
1430                     access_imm = GET_C_LW_IMM(insn);
1431                     access_size = 4;
1432                 } else { /* C.LD (RV64/RV128) */
1433                     xinsn = OPC_RISC_LD;
1434                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1435                     access_rs1 = GET_C_RS1S(insn);
1436                     access_imm = GET_C_LD_IMM(insn);
1437                     access_size = 8;
1438                 }
1439                 break;
1440             case OPC_RISC_C_FUNC_FSD_SQ:
1441                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1442                     xinsn = OPC_RISC_FSD;
1443                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1444                     access_rs1 = GET_C_RS1S(insn);
1445                     access_imm = GET_C_SD_IMM(insn);
1446                     access_size = 8;
1447                 }
1448                 break;
1449             case OPC_RISC_C_FUNC_SW: /* C.SW */
1450                 xinsn = OPC_RISC_SW;
1451                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1452                 access_rs1 = GET_C_RS1S(insn);
1453                 access_imm = GET_C_SW_IMM(insn);
1454                 access_size = 4;
1455                 break;
1456             case OPC_RISC_C_FUNC_FSW_SD:
1457                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1458                     xinsn = OPC_RISC_FSW;
1459                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1460                     access_rs1 = GET_C_RS1S(insn);
1461                     access_imm = GET_C_SW_IMM(insn);
1462                     access_size = 4;
1463                 } else { /* C.SD (RV64/RV128) */
1464                     xinsn = OPC_RISC_SD;
1465                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1466                     access_rs1 = GET_C_RS1S(insn);
1467                     access_imm = GET_C_SD_IMM(insn);
1468                     access_size = 8;
1469                 }
1470                 break;
1471             default:
1472                 break;
1473             }
1474             break;
1475         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1476             switch (GET_C_FUNC(insn)) {
1477             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1478                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1479                     xinsn = OPC_RISC_FLD;
1480                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1481                     access_rs1 = 2;
1482                     access_imm = GET_C_LDSP_IMM(insn);
1483                     access_size = 8;
1484                 }
1485                 break;
1486             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1487                 xinsn = OPC_RISC_LW;
1488                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1489                 access_rs1 = 2;
1490                 access_imm = GET_C_LWSP_IMM(insn);
1491                 access_size = 4;
1492                 break;
1493             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1494                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1495                     xinsn = OPC_RISC_FLW;
1496                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1497                     access_rs1 = 2;
1498                     access_imm = GET_C_LWSP_IMM(insn);
1499                     access_size = 4;
1500                 } else { /* C.LDSP (RV64/RV128) */
1501                     xinsn = OPC_RISC_LD;
1502                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1503                     access_rs1 = 2;
1504                     access_imm = GET_C_LDSP_IMM(insn);
1505                     access_size = 8;
1506                 }
1507                 break;
1508             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1509                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1510                     xinsn = OPC_RISC_FSD;
1511                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1512                     access_rs1 = 2;
1513                     access_imm = GET_C_SDSP_IMM(insn);
1514                     access_size = 8;
1515                 }
1516                 break;
1517             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1518                 xinsn = OPC_RISC_SW;
1519                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1520                 access_rs1 = 2;
1521                 access_imm = GET_C_SWSP_IMM(insn);
1522                 access_size = 4;
1523                 break;
1524             case 7:
1525                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1526                     xinsn = OPC_RISC_FSW;
1527                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1528                     access_rs1 = 2;
1529                     access_imm = GET_C_SWSP_IMM(insn);
1530                     access_size = 4;
1531                 } else { /* C.SDSP (RV64/RV128) */
1532                     xinsn = OPC_RISC_SD;
1533                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1534                     access_rs1 = 2;
1535                     access_imm = GET_C_SDSP_IMM(insn);
1536                     access_size = 8;
1537                 }
1538                 break;
1539             default:
1540                 break;
1541             }
1542             break;
1543         default:
1544             break;
1545         }
1546 
1547         /*
1548          * Clear Bit1 of transformed instruction to indicate that
1549          * original insruction was a 16bit instruction
1550          */
1551         xinsn &= ~((target_ulong)0x2);
1552     } else {
1553         /* Transform 32bit (or wider) instructions */
1554         switch (MASK_OP_MAJOR(insn)) {
1555         case OPC_RISC_ATOMIC:
1556             xinsn = insn;
1557             access_rs1 = GET_RS1(insn);
1558             access_size = 1 << GET_FUNCT3(insn);
1559             break;
1560         case OPC_RISC_LOAD:
1561         case OPC_RISC_FP_LOAD:
1562             xinsn = SET_I_IMM(insn, 0);
1563             access_rs1 = GET_RS1(insn);
1564             access_imm = GET_IMM(insn);
1565             access_size = 1 << GET_FUNCT3(insn);
1566             break;
1567         case OPC_RISC_STORE:
1568         case OPC_RISC_FP_STORE:
1569             xinsn = SET_S_IMM(insn, 0);
1570             access_rs1 = GET_RS1(insn);
1571             access_imm = GET_STORE_IMM(insn);
1572             access_size = 1 << GET_FUNCT3(insn);
1573             break;
1574         case OPC_RISC_SYSTEM:
1575             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1576                 xinsn = insn;
1577                 access_rs1 = GET_RS1(insn);
1578                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1579                 access_size = 1 << access_size;
1580             }
1581             break;
1582         default:
1583             break;
1584         }
1585     }
1586 
1587     if (access_size) {
1588         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1589                                (access_size - 1));
1590     }
1591 
1592     return xinsn;
1593 }
1594 #endif /* !CONFIG_USER_ONLY */
1595 
1596 /*
1597  * Handle Traps
1598  *
1599  * Adapted from Spike's processor_t::take_trap.
1600  *
1601  */
1602 void riscv_cpu_do_interrupt(CPUState *cs)
1603 {
1604 #if !defined(CONFIG_USER_ONLY)
1605 
1606     RISCVCPU *cpu = RISCV_CPU(cs);
1607     CPURISCVState *env = &cpu->env;
1608     bool write_gva = false;
1609     uint64_t s;
1610 
1611     /*
1612      * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1613      * so we mask off the MSB and separate into trap type and cause.
1614      */
1615     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1616     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1617     uint64_t deleg = async ? env->mideleg : env->medeleg;
1618     target_ulong tval = 0;
1619     target_ulong tinst = 0;
1620     target_ulong htval = 0;
1621     target_ulong mtval2 = 0;
1622 
1623     if  (cause == RISCV_EXCP_SEMIHOST) {
1624         do_common_semihosting(cs);
1625         env->pc += 4;
1626         return;
1627     }
1628 
1629     if (!async) {
1630         /* set tval to badaddr for traps with address information */
1631         switch (cause) {
1632         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1633         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1634         case RISCV_EXCP_LOAD_ADDR_MIS:
1635         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1636         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1637         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1638         case RISCV_EXCP_LOAD_PAGE_FAULT:
1639         case RISCV_EXCP_STORE_PAGE_FAULT:
1640             write_gva = env->two_stage_lookup;
1641             tval = env->badaddr;
1642             if (env->two_stage_indirect_lookup) {
1643                 /*
1644                  * special pseudoinstruction for G-stage fault taken while
1645                  * doing VS-stage page table walk.
1646                  */
1647                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1648             } else {
1649                 /*
1650                  * The "Addr. Offset" field in transformed instruction is
1651                  * non-zero only for misaligned access.
1652                  */
1653                 tinst = riscv_transformed_insn(env, env->bins, tval);
1654             }
1655             break;
1656         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1657         case RISCV_EXCP_INST_ADDR_MIS:
1658         case RISCV_EXCP_INST_ACCESS_FAULT:
1659         case RISCV_EXCP_INST_PAGE_FAULT:
1660             write_gva = env->two_stage_lookup;
1661             tval = env->badaddr;
1662             if (env->two_stage_indirect_lookup) {
1663                 /*
1664                  * special pseudoinstruction for G-stage fault taken while
1665                  * doing VS-stage page table walk.
1666                  */
1667                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1668             }
1669             break;
1670         case RISCV_EXCP_ILLEGAL_INST:
1671         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1672             tval = env->bins;
1673             break;
1674         case RISCV_EXCP_BREAKPOINT:
1675             if (cs->watchpoint_hit) {
1676                 tval = cs->watchpoint_hit->hitaddr;
1677                 cs->watchpoint_hit = NULL;
1678             }
1679             break;
1680         default:
1681             break;
1682         }
1683         /* ecall is dispatched as one cause so translate based on mode */
1684         if (cause == RISCV_EXCP_U_ECALL) {
1685             assert(env->priv <= 3);
1686 
1687             if (env->priv == PRV_M) {
1688                 cause = RISCV_EXCP_M_ECALL;
1689             } else if (env->priv == PRV_S && env->virt_enabled) {
1690                 cause = RISCV_EXCP_VS_ECALL;
1691             } else if (env->priv == PRV_S && !env->virt_enabled) {
1692                 cause = RISCV_EXCP_S_ECALL;
1693             } else if (env->priv == PRV_U) {
1694                 cause = RISCV_EXCP_U_ECALL;
1695             }
1696         }
1697     }
1698 
1699     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1700                      riscv_cpu_get_trap_name(cause, async));
1701 
1702     qemu_log_mask(CPU_LOG_INT,
1703                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1704                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1705                   __func__, env->mhartid, async, cause, env->pc, tval,
1706                   riscv_cpu_get_trap_name(cause, async));
1707 
1708     if (env->priv <= PRV_S &&
1709             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1710         /* handle the trap in S-mode */
1711         if (riscv_has_ext(env, RVH)) {
1712             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1713 
1714             if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
1715                 /* Trap to VS mode */
1716                 /*
1717                  * See if we need to adjust cause. Yes if its VS mode interrupt
1718                  * no if hypervisor has delegated one of hs mode's interrupt
1719                  */
1720                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1721                     cause == IRQ_VS_EXT) {
1722                     cause = cause - 1;
1723                 }
1724                 write_gva = false;
1725             } else if (env->virt_enabled) {
1726                 /* Trap into HS mode, from virt */
1727                 riscv_cpu_swap_hypervisor_regs(env);
1728                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1729                                          env->priv);
1730                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1731 
1732                 htval = env->guest_phys_fault_addr;
1733 
1734                 riscv_cpu_set_virt_enabled(env, 0);
1735             } else {
1736                 /* Trap into HS mode */
1737                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1738                 htval = env->guest_phys_fault_addr;
1739             }
1740             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1741         }
1742 
1743         s = env->mstatus;
1744         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1745         s = set_field(s, MSTATUS_SPP, env->priv);
1746         s = set_field(s, MSTATUS_SIE, 0);
1747         env->mstatus = s;
1748         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1749         env->sepc = env->pc;
1750         env->stval = tval;
1751         env->htval = htval;
1752         env->htinst = tinst;
1753         env->pc = (env->stvec >> 2 << 2) +
1754                   ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1755         riscv_cpu_set_mode(env, PRV_S);
1756     } else {
1757         /* handle the trap in M-mode */
1758         if (riscv_has_ext(env, RVH)) {
1759             if (env->virt_enabled) {
1760                 riscv_cpu_swap_hypervisor_regs(env);
1761             }
1762             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1763                                      env->virt_enabled);
1764             if (env->virt_enabled && tval) {
1765                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1766             }
1767 
1768             mtval2 = env->guest_phys_fault_addr;
1769 
1770             /* Trapping to M mode, virt is disabled */
1771             riscv_cpu_set_virt_enabled(env, 0);
1772         }
1773 
1774         s = env->mstatus;
1775         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1776         s = set_field(s, MSTATUS_MPP, env->priv);
1777         s = set_field(s, MSTATUS_MIE, 0);
1778         env->mstatus = s;
1779         env->mcause = cause | ~(((target_ulong)-1) >> async);
1780         env->mepc = env->pc;
1781         env->mtval = tval;
1782         env->mtval2 = mtval2;
1783         env->mtinst = tinst;
1784         env->pc = (env->mtvec >> 2 << 2) +
1785                   ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1786         riscv_cpu_set_mode(env, PRV_M);
1787     }
1788 
1789     /*
1790      * NOTE: it is not necessary to yield load reservations here. It is only
1791      * necessary for an SC from "another hart" to cause a load reservation
1792      * to be yielded. Refer to the memory consistency model section of the
1793      * RISC-V ISA Specification.
1794      */
1795 
1796     env->two_stage_lookup = false;
1797     env->two_stage_indirect_lookup = false;
1798 #endif
1799     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1800 }
1801