1 /* 2 * RISC-V CPU helpers for qemu. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/main-loop.h" 23 #include "cpu.h" 24 #include "exec/exec-all.h" 25 #include "tcg/tcg-op.h" 26 #include "trace.h" 27 28 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch) 29 { 30 #ifdef CONFIG_USER_ONLY 31 return 0; 32 #else 33 return env->priv; 34 #endif 35 } 36 37 #ifndef CONFIG_USER_ONLY 38 static int riscv_cpu_local_irq_pending(CPURISCVState *env) 39 { 40 target_ulong irqs; 41 42 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE); 43 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE); 44 target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE); 45 46 target_ulong pending = env->mip & env->mie & 47 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 48 target_ulong vspending = (env->mip & env->mie & 49 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)); 50 51 target_ulong mie = env->priv < PRV_M || 52 (env->priv == PRV_M && mstatus_mie); 53 target_ulong sie = env->priv < PRV_S || 54 (env->priv == PRV_S && mstatus_sie); 55 target_ulong hs_sie = env->priv < PRV_S || 56 (env->priv == PRV_S && hs_mstatus_sie); 57 58 if (riscv_cpu_virt_enabled(env)) { 59 target_ulong pending_hs_irq = pending & -hs_sie; 60 61 if (pending_hs_irq) { 62 riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP); 63 return ctz64(pending_hs_irq); 64 } 65 66 pending = vspending; 67 } 68 69 irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie); 70 71 if (irqs) { 72 return ctz64(irqs); /* since non-zero */ 73 } else { 74 return EXCP_NONE; /* indicates no pending interrupt */ 75 } 76 } 77 #endif 78 79 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 80 { 81 #if !defined(CONFIG_USER_ONLY) 82 if (interrupt_request & CPU_INTERRUPT_HARD) { 83 RISCVCPU *cpu = RISCV_CPU(cs); 84 CPURISCVState *env = &cpu->env; 85 int interruptno = riscv_cpu_local_irq_pending(env); 86 if (interruptno >= 0) { 87 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; 88 riscv_cpu_do_interrupt(cs); 89 return true; 90 } 91 } 92 #endif 93 return false; 94 } 95 96 #if !defined(CONFIG_USER_ONLY) 97 98 /* Return true is floating point support is currently enabled */ 99 bool riscv_cpu_fp_enabled(CPURISCVState *env) 100 { 101 if (env->mstatus & MSTATUS_FS) { 102 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) { 103 return false; 104 } 105 return true; 106 } 107 108 return false; 109 } 110 111 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) 112 { 113 target_ulong mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS | 114 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE; 115 bool current_virt = riscv_cpu_virt_enabled(env); 116 117 g_assert(riscv_has_ext(env, RVH)); 118 119 #if defined(TARGET_RISCV64) 120 mstatus_mask |= MSTATUS64_UXL; 121 #endif 122 123 if (current_virt) { 124 /* Current V=1 and we are about to change to V=0 */ 125 env->vsstatus = env->mstatus & mstatus_mask; 126 env->mstatus &= ~mstatus_mask; 127 env->mstatus |= env->mstatus_hs; 128 129 #if defined(TARGET_RISCV32) 130 env->vsstatush = env->mstatush; 131 env->mstatush |= env->mstatush_hs; 132 #endif 133 134 env->vstvec = env->stvec; 135 env->stvec = env->stvec_hs; 136 137 env->vsscratch = env->sscratch; 138 env->sscratch = env->sscratch_hs; 139 140 env->vsepc = env->sepc; 141 env->sepc = env->sepc_hs; 142 143 env->vscause = env->scause; 144 env->scause = env->scause_hs; 145 146 env->vstval = env->sbadaddr; 147 env->sbadaddr = env->stval_hs; 148 149 env->vsatp = env->satp; 150 env->satp = env->satp_hs; 151 } else { 152 /* Current V=0 and we are about to change to V=1 */ 153 env->mstatus_hs = env->mstatus & mstatus_mask; 154 env->mstatus &= ~mstatus_mask; 155 env->mstatus |= env->vsstatus; 156 157 #if defined(TARGET_RISCV32) 158 env->mstatush_hs = env->mstatush; 159 env->mstatush |= env->vsstatush; 160 #endif 161 162 env->stvec_hs = env->stvec; 163 env->stvec = env->vstvec; 164 165 env->sscratch_hs = env->sscratch; 166 env->sscratch = env->vsscratch; 167 168 env->sepc_hs = env->sepc; 169 env->sepc = env->vsepc; 170 171 env->scause_hs = env->scause; 172 env->scause = env->vscause; 173 174 env->stval_hs = env->sbadaddr; 175 env->sbadaddr = env->vstval; 176 177 env->satp_hs = env->satp; 178 env->satp = env->vsatp; 179 } 180 } 181 182 bool riscv_cpu_virt_enabled(CPURISCVState *env) 183 { 184 if (!riscv_has_ext(env, RVH)) { 185 return false; 186 } 187 188 return get_field(env->virt, VIRT_ONOFF); 189 } 190 191 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable) 192 { 193 if (!riscv_has_ext(env, RVH)) { 194 return; 195 } 196 197 /* Flush the TLB on all virt mode changes. */ 198 if (get_field(env->virt, VIRT_ONOFF) != enable) { 199 tlb_flush(env_cpu(env)); 200 } 201 202 env->virt = set_field(env->virt, VIRT_ONOFF, enable); 203 } 204 205 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env) 206 { 207 if (!riscv_has_ext(env, RVH)) { 208 return false; 209 } 210 211 return get_field(env->virt, FORCE_HS_EXCEP); 212 } 213 214 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable) 215 { 216 if (!riscv_has_ext(env, RVH)) { 217 return; 218 } 219 220 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable); 221 } 222 223 bool riscv_cpu_two_stage_lookup(CPURISCVState *env) 224 { 225 if (!riscv_has_ext(env, RVH)) { 226 return false; 227 } 228 229 return get_field(env->virt, HS_TWO_STAGE); 230 } 231 232 void riscv_cpu_set_two_stage_lookup(CPURISCVState *env, bool enable) 233 { 234 if (!riscv_has_ext(env, RVH)) { 235 return; 236 } 237 238 env->virt = set_field(env->virt, HS_TWO_STAGE, enable); 239 } 240 241 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts) 242 { 243 CPURISCVState *env = &cpu->env; 244 if (env->miclaim & interrupts) { 245 return -1; 246 } else { 247 env->miclaim |= interrupts; 248 return 0; 249 } 250 } 251 252 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value) 253 { 254 CPURISCVState *env = &cpu->env; 255 CPUState *cs = CPU(cpu); 256 uint32_t old = env->mip; 257 bool locked = false; 258 259 if (!qemu_mutex_iothread_locked()) { 260 locked = true; 261 qemu_mutex_lock_iothread(); 262 } 263 264 env->mip = (env->mip & ~mask) | (value & mask); 265 266 if (env->mip) { 267 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 268 } else { 269 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 270 } 271 272 if (locked) { 273 qemu_mutex_unlock_iothread(); 274 } 275 276 return old; 277 } 278 279 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void)) 280 { 281 env->rdtime_fn = fn; 282 } 283 284 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) 285 { 286 if (newpriv > PRV_M) { 287 g_assert_not_reached(); 288 } 289 if (newpriv == PRV_H) { 290 newpriv = PRV_U; 291 } 292 /* tlb_flush is unnecessary as mode is contained in mmu_idx */ 293 env->priv = newpriv; 294 295 /* 296 * Clear the load reservation - otherwise a reservation placed in one 297 * context/process can be used by another, resulting in an SC succeeding 298 * incorrectly. Version 2.2 of the ISA specification explicitly requires 299 * this behaviour, while later revisions say that the kernel "should" use 300 * an SC instruction to force the yielding of a load reservation on a 301 * preemptive context switch. As a result, do both. 302 */ 303 env->load_res = -1; 304 } 305 306 /* get_physical_address - get the physical address for this virtual address 307 * 308 * Do a page table walk to obtain the physical address corresponding to a 309 * virtual address. Returns 0 if the translation was successful 310 * 311 * Adapted from Spike's mmu_t::translate and mmu_t::walk 312 * 313 * @env: CPURISCVState 314 * @physical: This will be set to the calculated physical address 315 * @prot: The returned protection attributes 316 * @addr: The virtual address to be translated 317 * @access_type: The type of MMU access 318 * @mmu_idx: Indicates current privilege level 319 * @first_stage: Are we in first stage translation? 320 * Second stage is used for hypervisor guest translation 321 * @two_stage: Are we going to perform two stage translation 322 */ 323 static int get_physical_address(CPURISCVState *env, hwaddr *physical, 324 int *prot, target_ulong addr, 325 int access_type, int mmu_idx, 326 bool first_stage, bool two_stage) 327 { 328 /* NOTE: the env->pc value visible here will not be 329 * correct, but the value visible to the exception handler 330 * (riscv_cpu_do_interrupt) is correct */ 331 MemTxResult res; 332 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 333 int mode = mmu_idx; 334 bool use_background = false; 335 336 /* 337 * Check if we should use the background registers for the two 338 * stage translation. We don't need to check if we actually need 339 * two stage translation as that happened before this function 340 * was called. Background registers will be used if the guest has 341 * forced a two stage translation to be on (in HS or M mode). 342 */ 343 if (riscv_cpu_two_stage_lookup(env) && access_type != MMU_INST_FETCH) { 344 use_background = true; 345 } 346 347 if (mode == PRV_M && access_type != MMU_INST_FETCH) { 348 if (get_field(env->mstatus, MSTATUS_MPRV)) { 349 mode = get_field(env->mstatus, MSTATUS_MPP); 350 } 351 } 352 353 if (first_stage == false) { 354 /* We are in stage 2 translation, this is similar to stage 1. */ 355 /* Stage 2 is always taken as U-mode */ 356 mode = PRV_U; 357 } 358 359 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) { 360 *physical = addr; 361 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 362 return TRANSLATE_SUCCESS; 363 } 364 365 *prot = 0; 366 367 hwaddr base; 368 int levels, ptidxbits, ptesize, vm, sum, mxr, widened; 369 370 if (first_stage == true) { 371 mxr = get_field(env->mstatus, MSTATUS_MXR); 372 } else { 373 mxr = get_field(env->vsstatus, MSTATUS_MXR); 374 } 375 376 if (first_stage == true) { 377 if (use_background) { 378 base = (hwaddr)get_field(env->vsatp, SATP_PPN) << PGSHIFT; 379 vm = get_field(env->vsatp, SATP_MODE); 380 } else { 381 base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT; 382 vm = get_field(env->satp, SATP_MODE); 383 } 384 widened = 0; 385 } else { 386 base = (hwaddr)get_field(env->hgatp, HGATP_PPN) << PGSHIFT; 387 vm = get_field(env->hgatp, HGATP_MODE); 388 widened = 2; 389 } 390 sum = get_field(env->mstatus, MSTATUS_SUM); 391 switch (vm) { 392 case VM_1_10_SV32: 393 levels = 2; ptidxbits = 10; ptesize = 4; break; 394 case VM_1_10_SV39: 395 levels = 3; ptidxbits = 9; ptesize = 8; break; 396 case VM_1_10_SV48: 397 levels = 4; ptidxbits = 9; ptesize = 8; break; 398 case VM_1_10_SV57: 399 levels = 5; ptidxbits = 9; ptesize = 8; break; 400 case VM_1_10_MBARE: 401 *physical = addr; 402 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 403 return TRANSLATE_SUCCESS; 404 default: 405 g_assert_not_reached(); 406 } 407 408 CPUState *cs = env_cpu(env); 409 int va_bits = PGSHIFT + levels * ptidxbits + widened; 410 target_ulong mask, masked_msbs; 411 412 if (TARGET_LONG_BITS > (va_bits - 1)) { 413 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; 414 } else { 415 mask = 0; 416 } 417 masked_msbs = (addr >> (va_bits - 1)) & mask; 418 419 if (masked_msbs != 0 && masked_msbs != mask) { 420 return TRANSLATE_FAIL; 421 } 422 423 int ptshift = (levels - 1) * ptidxbits; 424 int i; 425 426 #if !TCG_OVERSIZED_GUEST 427 restart: 428 #endif 429 for (i = 0; i < levels; i++, ptshift -= ptidxbits) { 430 target_ulong idx; 431 if (i == 0) { 432 idx = (addr >> (PGSHIFT + ptshift)) & 433 ((1 << (ptidxbits + widened)) - 1); 434 } else { 435 idx = (addr >> (PGSHIFT + ptshift)) & 436 ((1 << ptidxbits) - 1); 437 } 438 439 /* check that physical address of PTE is legal */ 440 hwaddr pte_addr; 441 442 if (two_stage && first_stage) { 443 int vbase_prot; 444 hwaddr vbase; 445 446 /* Do the second stage translation on the base PTE address. */ 447 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, 448 base, MMU_DATA_LOAD, 449 mmu_idx, false, true); 450 451 if (vbase_ret != TRANSLATE_SUCCESS) { 452 return vbase_ret; 453 } 454 455 pte_addr = vbase + idx * ptesize; 456 } else { 457 pte_addr = base + idx * ptesize; 458 } 459 460 if (riscv_feature(env, RISCV_FEATURE_PMP) && 461 !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong), 462 1 << MMU_DATA_LOAD, PRV_S)) { 463 return TRANSLATE_PMP_FAIL; 464 } 465 466 #if defined(TARGET_RISCV32) 467 target_ulong pte = address_space_ldl(cs->as, pte_addr, attrs, &res); 468 #elif defined(TARGET_RISCV64) 469 target_ulong pte = address_space_ldq(cs->as, pte_addr, attrs, &res); 470 #endif 471 if (res != MEMTX_OK) { 472 return TRANSLATE_FAIL; 473 } 474 475 hwaddr ppn = pte >> PTE_PPN_SHIFT; 476 477 if (!(pte & PTE_V)) { 478 /* Invalid PTE */ 479 return TRANSLATE_FAIL; 480 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) { 481 /* Inner PTE, continue walking */ 482 base = ppn << PGSHIFT; 483 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) { 484 /* Reserved leaf PTE flags: PTE_W */ 485 return TRANSLATE_FAIL; 486 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) { 487 /* Reserved leaf PTE flags: PTE_W + PTE_X */ 488 return TRANSLATE_FAIL; 489 } else if ((pte & PTE_U) && ((mode != PRV_U) && 490 (!sum || access_type == MMU_INST_FETCH))) { 491 /* User PTE flags when not U mode and mstatus.SUM is not set, 492 or the access type is an instruction fetch */ 493 return TRANSLATE_FAIL; 494 } else if (!(pte & PTE_U) && (mode != PRV_S)) { 495 /* Supervisor PTE flags when not S mode */ 496 return TRANSLATE_FAIL; 497 } else if (ppn & ((1ULL << ptshift) - 1)) { 498 /* Misaligned PPN */ 499 return TRANSLATE_FAIL; 500 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) || 501 ((pte & PTE_X) && mxr))) { 502 /* Read access check failed */ 503 return TRANSLATE_FAIL; 504 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) { 505 /* Write access check failed */ 506 return TRANSLATE_FAIL; 507 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) { 508 /* Fetch access check failed */ 509 return TRANSLATE_FAIL; 510 } else { 511 /* if necessary, set accessed and dirty bits. */ 512 target_ulong updated_pte = pte | PTE_A | 513 (access_type == MMU_DATA_STORE ? PTE_D : 0); 514 515 /* Page table updates need to be atomic with MTTCG enabled */ 516 if (updated_pte != pte) { 517 /* 518 * - if accessed or dirty bits need updating, and the PTE is 519 * in RAM, then we do so atomically with a compare and swap. 520 * - if the PTE is in IO space or ROM, then it can't be updated 521 * and we return TRANSLATE_FAIL. 522 * - if the PTE changed by the time we went to update it, then 523 * it is no longer valid and we must re-walk the page table. 524 */ 525 MemoryRegion *mr; 526 hwaddr l = sizeof(target_ulong), addr1; 527 mr = address_space_translate(cs->as, pte_addr, 528 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED); 529 if (memory_region_is_ram(mr)) { 530 target_ulong *pte_pa = 531 qemu_map_ram_ptr(mr->ram_block, addr1); 532 #if TCG_OVERSIZED_GUEST 533 /* MTTCG is not enabled on oversized TCG guests so 534 * page table updates do not need to be atomic */ 535 *pte_pa = pte = updated_pte; 536 #else 537 target_ulong old_pte = 538 atomic_cmpxchg(pte_pa, pte, updated_pte); 539 if (old_pte != pte) { 540 goto restart; 541 } else { 542 pte = updated_pte; 543 } 544 #endif 545 } else { 546 /* misconfigured PTE in ROM (AD bits are not preset) or 547 * PTE is in IO space and can't be updated atomically */ 548 return TRANSLATE_FAIL; 549 } 550 } 551 552 /* for superpage mappings, make a fake leaf PTE for the TLB's 553 benefit. */ 554 target_ulong vpn = addr >> PGSHIFT; 555 *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) | 556 (addr & ~TARGET_PAGE_MASK); 557 558 /* set permissions on the TLB entry */ 559 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) { 560 *prot |= PAGE_READ; 561 } 562 if ((pte & PTE_X)) { 563 *prot |= PAGE_EXEC; 564 } 565 /* add write permission on stores or if the page is already dirty, 566 so that we TLB miss on later writes to update the dirty bit */ 567 if ((pte & PTE_W) && 568 (access_type == MMU_DATA_STORE || (pte & PTE_D))) { 569 *prot |= PAGE_WRITE; 570 } 571 return TRANSLATE_SUCCESS; 572 } 573 } 574 return TRANSLATE_FAIL; 575 } 576 577 static void raise_mmu_exception(CPURISCVState *env, target_ulong address, 578 MMUAccessType access_type, bool pmp_violation, 579 bool first_stage) 580 { 581 CPUState *cs = env_cpu(env); 582 int page_fault_exceptions; 583 if (first_stage) { 584 page_fault_exceptions = 585 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE && 586 !pmp_violation; 587 } else { 588 page_fault_exceptions = 589 get_field(env->hgatp, HGATP_MODE) != VM_1_10_MBARE && 590 !pmp_violation; 591 } 592 switch (access_type) { 593 case MMU_INST_FETCH: 594 if (riscv_cpu_virt_enabled(env) && !first_stage) { 595 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; 596 } else { 597 cs->exception_index = page_fault_exceptions ? 598 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT; 599 } 600 break; 601 case MMU_DATA_LOAD: 602 if ((riscv_cpu_virt_enabled(env) || riscv_cpu_two_stage_lookup(env)) && 603 !first_stage) { 604 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; 605 } else { 606 cs->exception_index = page_fault_exceptions ? 607 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT; 608 } 609 break; 610 case MMU_DATA_STORE: 611 if ((riscv_cpu_virt_enabled(env) || riscv_cpu_two_stage_lookup(env)) && 612 !first_stage) { 613 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; 614 } else { 615 cs->exception_index = page_fault_exceptions ? 616 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 617 } 618 break; 619 default: 620 g_assert_not_reached(); 621 } 622 env->badaddr = address; 623 } 624 625 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 626 { 627 RISCVCPU *cpu = RISCV_CPU(cs); 628 CPURISCVState *env = &cpu->env; 629 hwaddr phys_addr; 630 int prot; 631 int mmu_idx = cpu_mmu_index(&cpu->env, false); 632 633 if (get_physical_address(env, &phys_addr, &prot, addr, 0, mmu_idx, 634 true, riscv_cpu_virt_enabled(env))) { 635 return -1; 636 } 637 638 if (riscv_cpu_virt_enabled(env)) { 639 if (get_physical_address(env, &phys_addr, &prot, phys_addr, 640 0, mmu_idx, false, true)) { 641 return -1; 642 } 643 } 644 645 return phys_addr & TARGET_PAGE_MASK; 646 } 647 648 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 649 vaddr addr, unsigned size, 650 MMUAccessType access_type, 651 int mmu_idx, MemTxAttrs attrs, 652 MemTxResult response, uintptr_t retaddr) 653 { 654 RISCVCPU *cpu = RISCV_CPU(cs); 655 CPURISCVState *env = &cpu->env; 656 657 if (access_type == MMU_DATA_STORE) { 658 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 659 } else { 660 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 661 } 662 663 env->badaddr = addr; 664 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr); 665 } 666 667 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 668 MMUAccessType access_type, int mmu_idx, 669 uintptr_t retaddr) 670 { 671 RISCVCPU *cpu = RISCV_CPU(cs); 672 CPURISCVState *env = &cpu->env; 673 switch (access_type) { 674 case MMU_INST_FETCH: 675 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; 676 break; 677 case MMU_DATA_LOAD: 678 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; 679 break; 680 case MMU_DATA_STORE: 681 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; 682 break; 683 default: 684 g_assert_not_reached(); 685 } 686 env->badaddr = addr; 687 riscv_raise_exception(env, cs->exception_index, retaddr); 688 } 689 #endif 690 691 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 692 MMUAccessType access_type, int mmu_idx, 693 bool probe, uintptr_t retaddr) 694 { 695 RISCVCPU *cpu = RISCV_CPU(cs); 696 CPURISCVState *env = &cpu->env; 697 #ifndef CONFIG_USER_ONLY 698 vaddr im_address; 699 hwaddr pa = 0; 700 int prot, prot2; 701 bool pmp_violation = false; 702 bool first_stage_error = true; 703 int ret = TRANSLATE_FAIL; 704 int mode = mmu_idx; 705 target_ulong tlb_size = 0; 706 707 env->guest_phys_fault_addr = 0; 708 709 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", 710 __func__, address, access_type, mmu_idx); 711 712 if (mode == PRV_M && access_type != MMU_INST_FETCH) { 713 if (get_field(env->mstatus, MSTATUS_MPRV)) { 714 mode = get_field(env->mstatus, MSTATUS_MPP); 715 } 716 } 717 718 if (riscv_has_ext(env, RVH) && env->priv == PRV_M && 719 access_type != MMU_INST_FETCH && 720 get_field(env->mstatus, MSTATUS_MPRV) && 721 MSTATUS_MPV_ISSET(env)) { 722 riscv_cpu_set_two_stage_lookup(env, true); 723 } 724 725 if (riscv_cpu_virt_enabled(env) || 726 (riscv_cpu_two_stage_lookup(env) && access_type != MMU_INST_FETCH)) { 727 /* Two stage lookup */ 728 ret = get_physical_address(env, &pa, &prot, address, access_type, 729 mmu_idx, true, true); 730 731 qemu_log_mask(CPU_LOG_MMU, 732 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " 733 TARGET_FMT_plx " prot %d\n", 734 __func__, address, ret, pa, prot); 735 736 if (ret != TRANSLATE_FAIL) { 737 /* Second stage lookup */ 738 im_address = pa; 739 740 ret = get_physical_address(env, &pa, &prot2, im_address, 741 access_type, mmu_idx, false, true); 742 743 qemu_log_mask(CPU_LOG_MMU, 744 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical " 745 TARGET_FMT_plx " prot %d\n", 746 __func__, im_address, ret, pa, prot2); 747 748 prot &= prot2; 749 750 if (riscv_feature(env, RISCV_FEATURE_PMP) && 751 (ret == TRANSLATE_SUCCESS) && 752 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) { 753 ret = TRANSLATE_PMP_FAIL; 754 } 755 756 if (ret != TRANSLATE_SUCCESS) { 757 /* 758 * Guest physical address translation failed, this is a HS 759 * level exception 760 */ 761 first_stage_error = false; 762 env->guest_phys_fault_addr = (im_address | 763 (address & 764 (TARGET_PAGE_SIZE - 1))) >> 2; 765 } 766 } 767 } else { 768 /* Single stage lookup */ 769 ret = get_physical_address(env, &pa, &prot, address, access_type, 770 mmu_idx, true, false); 771 772 qemu_log_mask(CPU_LOG_MMU, 773 "%s address=%" VADDR_PRIx " ret %d physical " 774 TARGET_FMT_plx " prot %d\n", 775 __func__, address, ret, pa, prot); 776 } 777 778 /* We did the two stage lookup based on MPRV, unset the lookup */ 779 if (riscv_has_ext(env, RVH) && env->priv == PRV_M && 780 access_type != MMU_INST_FETCH && 781 get_field(env->mstatus, MSTATUS_MPRV) && 782 MSTATUS_MPV_ISSET(env)) { 783 riscv_cpu_set_two_stage_lookup(env, false); 784 } 785 786 if (riscv_feature(env, RISCV_FEATURE_PMP) && 787 (ret == TRANSLATE_SUCCESS) && 788 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) { 789 ret = TRANSLATE_PMP_FAIL; 790 } 791 if (ret == TRANSLATE_PMP_FAIL) { 792 pmp_violation = true; 793 } 794 795 if (ret == TRANSLATE_SUCCESS) { 796 if (pmp_is_range_in_tlb(env, pa & TARGET_PAGE_MASK, &tlb_size)) { 797 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), 798 prot, mmu_idx, tlb_size); 799 } else { 800 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK, 801 prot, mmu_idx, TARGET_PAGE_SIZE); 802 } 803 return true; 804 } else if (probe) { 805 return false; 806 } else { 807 raise_mmu_exception(env, address, access_type, pmp_violation, first_stage_error); 808 riscv_raise_exception(env, cs->exception_index, retaddr); 809 } 810 811 return true; 812 813 #else 814 switch (access_type) { 815 case MMU_INST_FETCH: 816 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT; 817 break; 818 case MMU_DATA_LOAD: 819 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT; 820 break; 821 case MMU_DATA_STORE: 822 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT; 823 break; 824 default: 825 g_assert_not_reached(); 826 } 827 env->badaddr = address; 828 cpu_loop_exit_restore(cs, retaddr); 829 #endif 830 } 831 832 /* 833 * Handle Traps 834 * 835 * Adapted from Spike's processor_t::take_trap. 836 * 837 */ 838 void riscv_cpu_do_interrupt(CPUState *cs) 839 { 840 #if !defined(CONFIG_USER_ONLY) 841 842 RISCVCPU *cpu = RISCV_CPU(cs); 843 CPURISCVState *env = &cpu->env; 844 bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env); 845 target_ulong s; 846 847 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide 848 * so we mask off the MSB and separate into trap type and cause. 849 */ 850 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); 851 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; 852 target_ulong deleg = async ? env->mideleg : env->medeleg; 853 target_ulong tval = 0; 854 target_ulong htval = 0; 855 target_ulong mtval2 = 0; 856 857 if (!async) { 858 /* set tval to badaddr for traps with address information */ 859 switch (cause) { 860 case RISCV_EXCP_INST_GUEST_PAGE_FAULT: 861 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: 862 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: 863 force_hs_execp = true; 864 /* fallthrough */ 865 case RISCV_EXCP_INST_ADDR_MIS: 866 case RISCV_EXCP_INST_ACCESS_FAULT: 867 case RISCV_EXCP_LOAD_ADDR_MIS: 868 case RISCV_EXCP_STORE_AMO_ADDR_MIS: 869 case RISCV_EXCP_LOAD_ACCESS_FAULT: 870 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: 871 case RISCV_EXCP_INST_PAGE_FAULT: 872 case RISCV_EXCP_LOAD_PAGE_FAULT: 873 case RISCV_EXCP_STORE_PAGE_FAULT: 874 tval = env->badaddr; 875 break; 876 default: 877 break; 878 } 879 /* ecall is dispatched as one cause so translate based on mode */ 880 if (cause == RISCV_EXCP_U_ECALL) { 881 assert(env->priv <= 3); 882 883 if (env->priv == PRV_M) { 884 cause = RISCV_EXCP_M_ECALL; 885 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) { 886 cause = RISCV_EXCP_VS_ECALL; 887 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) { 888 cause = RISCV_EXCP_S_ECALL; 889 } else if (env->priv == PRV_U) { 890 cause = RISCV_EXCP_U_ECALL; 891 } 892 } 893 } 894 895 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, 896 riscv_cpu_get_trap_name(cause, async)); 897 898 if (env->priv <= PRV_S && 899 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) { 900 /* handle the trap in S-mode */ 901 if (riscv_has_ext(env, RVH)) { 902 target_ulong hdeleg = async ? env->hideleg : env->hedeleg; 903 904 if ((riscv_cpu_virt_enabled(env) || 905 riscv_cpu_two_stage_lookup(env)) && tval) { 906 /* 907 * If we are writing a guest virtual address to stval, set 908 * this to 1. If we are trapping to VS we will set this to 0 909 * later. 910 */ 911 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1); 912 } else { 913 /* For other HS-mode traps, we set this to 0. */ 914 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0); 915 } 916 917 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) && 918 !force_hs_execp) { 919 /* Trap to VS mode */ 920 /* 921 * See if we need to adjust cause. Yes if its VS mode interrupt 922 * no if hypervisor has delegated one of hs mode's interrupt 923 */ 924 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || 925 cause == IRQ_VS_EXT) { 926 cause = cause - 1; 927 } 928 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0); 929 } else if (riscv_cpu_virt_enabled(env)) { 930 /* Trap into HS mode, from virt */ 931 riscv_cpu_swap_hypervisor_regs(env); 932 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, 933 get_field(env->mstatus, SSTATUS_SPP)); 934 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, 935 riscv_cpu_virt_enabled(env)); 936 937 htval = env->guest_phys_fault_addr; 938 939 riscv_cpu_set_virt_enabled(env, 0); 940 riscv_cpu_set_force_hs_excep(env, 0); 941 } else { 942 /* Trap into HS mode */ 943 if (!riscv_cpu_two_stage_lookup(env)) { 944 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, 945 riscv_cpu_virt_enabled(env)); 946 } 947 riscv_cpu_set_two_stage_lookup(env, false); 948 htval = env->guest_phys_fault_addr; 949 } 950 } 951 952 s = env->mstatus; 953 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); 954 s = set_field(s, MSTATUS_SPP, env->priv); 955 s = set_field(s, MSTATUS_SIE, 0); 956 env->mstatus = s; 957 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); 958 env->sepc = env->pc; 959 env->sbadaddr = tval; 960 env->htval = htval; 961 env->pc = (env->stvec >> 2 << 2) + 962 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); 963 riscv_cpu_set_mode(env, PRV_S); 964 } else { 965 /* handle the trap in M-mode */ 966 if (riscv_has_ext(env, RVH)) { 967 if (riscv_cpu_virt_enabled(env)) { 968 riscv_cpu_swap_hypervisor_regs(env); 969 } 970 #ifdef TARGET_RISCV32 971 env->mstatush = set_field(env->mstatush, MSTATUS_MPV, 972 riscv_cpu_virt_enabled(env)); 973 if (riscv_cpu_virt_enabled(env) && tval) { 974 env->mstatush = set_field(env->mstatush, MSTATUS_GVA, 1); 975 } 976 #else 977 env->mstatus = set_field(env->mstatus, MSTATUS_MPV, 978 riscv_cpu_virt_enabled(env)); 979 if (riscv_cpu_virt_enabled(env) && tval) { 980 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); 981 } 982 #endif 983 984 mtval2 = env->guest_phys_fault_addr; 985 986 /* Trapping to M mode, virt is disabled */ 987 riscv_cpu_set_virt_enabled(env, 0); 988 riscv_cpu_set_force_hs_excep(env, 0); 989 } 990 991 s = env->mstatus; 992 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); 993 s = set_field(s, MSTATUS_MPP, env->priv); 994 s = set_field(s, MSTATUS_MIE, 0); 995 env->mstatus = s; 996 env->mcause = cause | ~(((target_ulong)-1) >> async); 997 env->mepc = env->pc; 998 env->mbadaddr = tval; 999 env->mtval2 = mtval2; 1000 env->pc = (env->mtvec >> 2 << 2) + 1001 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); 1002 riscv_cpu_set_mode(env, PRV_M); 1003 } 1004 1005 /* NOTE: it is not necessary to yield load reservations here. It is only 1006 * necessary for an SC from "another hart" to cause a load reservation 1007 * to be yielded. Refer to the memory consistency model section of the 1008 * RISC-V ISA Specification. 1009 */ 1010 1011 #endif 1012 cs->exception_index = EXCP_NONE; /* mark handled to qemu */ 1013 } 1014