1 /* 2 * RISC-V CPU helpers for qemu. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/main-loop.h" 23 #include "cpu.h" 24 #include "exec/exec-all.h" 25 #include "tcg/tcg-op.h" 26 #include "trace.h" 27 28 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch) 29 { 30 #ifdef CONFIG_USER_ONLY 31 return 0; 32 #else 33 return env->priv; 34 #endif 35 } 36 37 #ifndef CONFIG_USER_ONLY 38 static int riscv_cpu_local_irq_pending(CPURISCVState *env) 39 { 40 target_ulong irqs; 41 42 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE); 43 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE); 44 target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE); 45 46 target_ulong pending = env->mip & env->mie & 47 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 48 target_ulong vspending = (env->mip & env->mie & 49 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)); 50 51 target_ulong mie = env->priv < PRV_M || 52 (env->priv == PRV_M && mstatus_mie); 53 target_ulong sie = env->priv < PRV_S || 54 (env->priv == PRV_S && mstatus_sie); 55 target_ulong hs_sie = env->priv < PRV_S || 56 (env->priv == PRV_S && hs_mstatus_sie); 57 58 if (riscv_cpu_virt_enabled(env)) { 59 target_ulong pending_hs_irq = pending & -hs_sie; 60 61 if (pending_hs_irq) { 62 riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP); 63 return ctz64(pending_hs_irq); 64 } 65 66 pending = vspending; 67 } 68 69 irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie); 70 71 if (irqs) { 72 return ctz64(irqs); /* since non-zero */ 73 } else { 74 return EXCP_NONE; /* indicates no pending interrupt */ 75 } 76 } 77 #endif 78 79 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 80 { 81 #if !defined(CONFIG_USER_ONLY) 82 if (interrupt_request & CPU_INTERRUPT_HARD) { 83 RISCVCPU *cpu = RISCV_CPU(cs); 84 CPURISCVState *env = &cpu->env; 85 int interruptno = riscv_cpu_local_irq_pending(env); 86 if (interruptno >= 0) { 87 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; 88 riscv_cpu_do_interrupt(cs); 89 return true; 90 } 91 } 92 #endif 93 return false; 94 } 95 96 #if !defined(CONFIG_USER_ONLY) 97 98 /* Return true is floating point support is currently enabled */ 99 bool riscv_cpu_fp_enabled(CPURISCVState *env) 100 { 101 if (env->mstatus & MSTATUS_FS) { 102 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) { 103 return false; 104 } 105 return true; 106 } 107 108 return false; 109 } 110 111 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) 112 { 113 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS | 114 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE | 115 MSTATUS64_UXL; 116 bool current_virt = riscv_cpu_virt_enabled(env); 117 118 g_assert(riscv_has_ext(env, RVH)); 119 120 if (current_virt) { 121 /* Current V=1 and we are about to change to V=0 */ 122 env->vsstatus = env->mstatus & mstatus_mask; 123 env->mstatus &= ~mstatus_mask; 124 env->mstatus |= env->mstatus_hs; 125 126 env->vstvec = env->stvec; 127 env->stvec = env->stvec_hs; 128 129 env->vsscratch = env->sscratch; 130 env->sscratch = env->sscratch_hs; 131 132 env->vsepc = env->sepc; 133 env->sepc = env->sepc_hs; 134 135 env->vscause = env->scause; 136 env->scause = env->scause_hs; 137 138 env->vstval = env->sbadaddr; 139 env->sbadaddr = env->stval_hs; 140 141 env->vsatp = env->satp; 142 env->satp = env->satp_hs; 143 } else { 144 /* Current V=0 and we are about to change to V=1 */ 145 env->mstatus_hs = env->mstatus & mstatus_mask; 146 env->mstatus &= ~mstatus_mask; 147 env->mstatus |= env->vsstatus; 148 149 env->stvec_hs = env->stvec; 150 env->stvec = env->vstvec; 151 152 env->sscratch_hs = env->sscratch; 153 env->sscratch = env->vsscratch; 154 155 env->sepc_hs = env->sepc; 156 env->sepc = env->vsepc; 157 158 env->scause_hs = env->scause; 159 env->scause = env->vscause; 160 161 env->stval_hs = env->sbadaddr; 162 env->sbadaddr = env->vstval; 163 164 env->satp_hs = env->satp; 165 env->satp = env->vsatp; 166 } 167 } 168 169 bool riscv_cpu_virt_enabled(CPURISCVState *env) 170 { 171 if (!riscv_has_ext(env, RVH)) { 172 return false; 173 } 174 175 return get_field(env->virt, VIRT_ONOFF); 176 } 177 178 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable) 179 { 180 if (!riscv_has_ext(env, RVH)) { 181 return; 182 } 183 184 /* Flush the TLB on all virt mode changes. */ 185 if (get_field(env->virt, VIRT_ONOFF) != enable) { 186 tlb_flush(env_cpu(env)); 187 } 188 189 env->virt = set_field(env->virt, VIRT_ONOFF, enable); 190 } 191 192 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env) 193 { 194 if (!riscv_has_ext(env, RVH)) { 195 return false; 196 } 197 198 return get_field(env->virt, FORCE_HS_EXCEP); 199 } 200 201 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable) 202 { 203 if (!riscv_has_ext(env, RVH)) { 204 return; 205 } 206 207 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable); 208 } 209 210 bool riscv_cpu_two_stage_lookup(CPURISCVState *env) 211 { 212 if (!riscv_has_ext(env, RVH)) { 213 return false; 214 } 215 216 return get_field(env->virt, HS_TWO_STAGE); 217 } 218 219 void riscv_cpu_set_two_stage_lookup(CPURISCVState *env, bool enable) 220 { 221 if (!riscv_has_ext(env, RVH)) { 222 return; 223 } 224 225 env->virt = set_field(env->virt, HS_TWO_STAGE, enable); 226 } 227 228 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts) 229 { 230 CPURISCVState *env = &cpu->env; 231 if (env->miclaim & interrupts) { 232 return -1; 233 } else { 234 env->miclaim |= interrupts; 235 return 0; 236 } 237 } 238 239 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value) 240 { 241 CPURISCVState *env = &cpu->env; 242 CPUState *cs = CPU(cpu); 243 uint32_t old = env->mip; 244 bool locked = false; 245 246 if (!qemu_mutex_iothread_locked()) { 247 locked = true; 248 qemu_mutex_lock_iothread(); 249 } 250 251 env->mip = (env->mip & ~mask) | (value & mask); 252 253 if (env->mip) { 254 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 255 } else { 256 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 257 } 258 259 if (locked) { 260 qemu_mutex_unlock_iothread(); 261 } 262 263 return old; 264 } 265 266 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t), 267 uint32_t arg) 268 { 269 env->rdtime_fn = fn; 270 env->rdtime_fn_arg = arg; 271 } 272 273 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) 274 { 275 if (newpriv > PRV_M) { 276 g_assert_not_reached(); 277 } 278 if (newpriv == PRV_H) { 279 newpriv = PRV_U; 280 } 281 /* tlb_flush is unnecessary as mode is contained in mmu_idx */ 282 env->priv = newpriv; 283 284 /* 285 * Clear the load reservation - otherwise a reservation placed in one 286 * context/process can be used by another, resulting in an SC succeeding 287 * incorrectly. Version 2.2 of the ISA specification explicitly requires 288 * this behaviour, while later revisions say that the kernel "should" use 289 * an SC instruction to force the yielding of a load reservation on a 290 * preemptive context switch. As a result, do both. 291 */ 292 env->load_res = -1; 293 } 294 295 /* get_physical_address - get the physical address for this virtual address 296 * 297 * Do a page table walk to obtain the physical address corresponding to a 298 * virtual address. Returns 0 if the translation was successful 299 * 300 * Adapted from Spike's mmu_t::translate and mmu_t::walk 301 * 302 * @env: CPURISCVState 303 * @physical: This will be set to the calculated physical address 304 * @prot: The returned protection attributes 305 * @addr: The virtual address to be translated 306 * @fault_pte_addr: If not NULL, this will be set to fault pte address 307 * when a error occurs on pte address translation. 308 * This will already be shifted to match htval. 309 * @access_type: The type of MMU access 310 * @mmu_idx: Indicates current privilege level 311 * @first_stage: Are we in first stage translation? 312 * Second stage is used for hypervisor guest translation 313 * @two_stage: Are we going to perform two stage translation 314 */ 315 static int get_physical_address(CPURISCVState *env, hwaddr *physical, 316 int *prot, target_ulong addr, 317 target_ulong *fault_pte_addr, 318 int access_type, int mmu_idx, 319 bool first_stage, bool two_stage) 320 { 321 /* NOTE: the env->pc value visible here will not be 322 * correct, but the value visible to the exception handler 323 * (riscv_cpu_do_interrupt) is correct */ 324 MemTxResult res; 325 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 326 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK; 327 bool use_background = false; 328 329 /* 330 * Check if we should use the background registers for the two 331 * stage translation. We don't need to check if we actually need 332 * two stage translation as that happened before this function 333 * was called. Background registers will be used if the guest has 334 * forced a two stage translation to be on (in HS or M mode). 335 */ 336 if (riscv_cpu_two_stage_lookup(env) && access_type != MMU_INST_FETCH) { 337 use_background = true; 338 } 339 340 if (mode == PRV_M && access_type != MMU_INST_FETCH) { 341 if (get_field(env->mstatus, MSTATUS_MPRV)) { 342 mode = get_field(env->mstatus, MSTATUS_MPP); 343 } 344 } 345 346 if (first_stage == false) { 347 /* We are in stage 2 translation, this is similar to stage 1. */ 348 /* Stage 2 is always taken as U-mode */ 349 mode = PRV_U; 350 } 351 352 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) { 353 *physical = addr; 354 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 355 return TRANSLATE_SUCCESS; 356 } 357 358 *prot = 0; 359 360 hwaddr base; 361 int levels, ptidxbits, ptesize, vm, sum, mxr, widened; 362 363 if (first_stage == true) { 364 mxr = get_field(env->mstatus, MSTATUS_MXR); 365 } else { 366 mxr = get_field(env->vsstatus, MSTATUS_MXR); 367 } 368 369 if (first_stage == true) { 370 if (use_background) { 371 base = (hwaddr)get_field(env->vsatp, SATP_PPN) << PGSHIFT; 372 vm = get_field(env->vsatp, SATP_MODE); 373 } else { 374 base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT; 375 vm = get_field(env->satp, SATP_MODE); 376 } 377 widened = 0; 378 } else { 379 base = (hwaddr)get_field(env->hgatp, HGATP_PPN) << PGSHIFT; 380 vm = get_field(env->hgatp, HGATP_MODE); 381 widened = 2; 382 } 383 sum = get_field(env->mstatus, MSTATUS_SUM); 384 switch (vm) { 385 case VM_1_10_SV32: 386 levels = 2; ptidxbits = 10; ptesize = 4; break; 387 case VM_1_10_SV39: 388 levels = 3; ptidxbits = 9; ptesize = 8; break; 389 case VM_1_10_SV48: 390 levels = 4; ptidxbits = 9; ptesize = 8; break; 391 case VM_1_10_SV57: 392 levels = 5; ptidxbits = 9; ptesize = 8; break; 393 case VM_1_10_MBARE: 394 *physical = addr; 395 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 396 return TRANSLATE_SUCCESS; 397 default: 398 g_assert_not_reached(); 399 } 400 401 CPUState *cs = env_cpu(env); 402 int va_bits = PGSHIFT + levels * ptidxbits + widened; 403 target_ulong mask, masked_msbs; 404 405 if (TARGET_LONG_BITS > (va_bits - 1)) { 406 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; 407 } else { 408 mask = 0; 409 } 410 masked_msbs = (addr >> (va_bits - 1)) & mask; 411 412 if (masked_msbs != 0 && masked_msbs != mask) { 413 return TRANSLATE_FAIL; 414 } 415 416 int ptshift = (levels - 1) * ptidxbits; 417 int i; 418 419 #if !TCG_OVERSIZED_GUEST 420 restart: 421 #endif 422 for (i = 0; i < levels; i++, ptshift -= ptidxbits) { 423 target_ulong idx; 424 if (i == 0) { 425 idx = (addr >> (PGSHIFT + ptshift)) & 426 ((1 << (ptidxbits + widened)) - 1); 427 } else { 428 idx = (addr >> (PGSHIFT + ptshift)) & 429 ((1 << ptidxbits) - 1); 430 } 431 432 /* check that physical address of PTE is legal */ 433 hwaddr pte_addr; 434 435 if (two_stage && first_stage) { 436 int vbase_prot; 437 hwaddr vbase; 438 439 /* Do the second stage translation on the base PTE address. */ 440 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, 441 base, NULL, MMU_DATA_LOAD, 442 mmu_idx, false, true); 443 444 if (vbase_ret != TRANSLATE_SUCCESS) { 445 if (fault_pte_addr) { 446 *fault_pte_addr = (base + idx * ptesize) >> 2; 447 } 448 return TRANSLATE_G_STAGE_FAIL; 449 } 450 451 pte_addr = vbase + idx * ptesize; 452 } else { 453 pte_addr = base + idx * ptesize; 454 } 455 456 if (riscv_feature(env, RISCV_FEATURE_PMP) && 457 !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong), 458 1 << MMU_DATA_LOAD, PRV_S)) { 459 return TRANSLATE_PMP_FAIL; 460 } 461 462 #if defined(TARGET_RISCV32) 463 target_ulong pte = address_space_ldl(cs->as, pte_addr, attrs, &res); 464 #elif defined(TARGET_RISCV64) 465 target_ulong pte = address_space_ldq(cs->as, pte_addr, attrs, &res); 466 #endif 467 if (res != MEMTX_OK) { 468 return TRANSLATE_FAIL; 469 } 470 471 hwaddr ppn = pte >> PTE_PPN_SHIFT; 472 473 if (!(pte & PTE_V)) { 474 /* Invalid PTE */ 475 return TRANSLATE_FAIL; 476 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) { 477 /* Inner PTE, continue walking */ 478 base = ppn << PGSHIFT; 479 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) { 480 /* Reserved leaf PTE flags: PTE_W */ 481 return TRANSLATE_FAIL; 482 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) { 483 /* Reserved leaf PTE flags: PTE_W + PTE_X */ 484 return TRANSLATE_FAIL; 485 } else if ((pte & PTE_U) && ((mode != PRV_U) && 486 (!sum || access_type == MMU_INST_FETCH))) { 487 /* User PTE flags when not U mode and mstatus.SUM is not set, 488 or the access type is an instruction fetch */ 489 return TRANSLATE_FAIL; 490 } else if (!(pte & PTE_U) && (mode != PRV_S)) { 491 /* Supervisor PTE flags when not S mode */ 492 return TRANSLATE_FAIL; 493 } else if (ppn & ((1ULL << ptshift) - 1)) { 494 /* Misaligned PPN */ 495 return TRANSLATE_FAIL; 496 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) || 497 ((pte & PTE_X) && mxr))) { 498 /* Read access check failed */ 499 return TRANSLATE_FAIL; 500 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) { 501 /* Write access check failed */ 502 return TRANSLATE_FAIL; 503 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) { 504 /* Fetch access check failed */ 505 return TRANSLATE_FAIL; 506 } else { 507 /* if necessary, set accessed and dirty bits. */ 508 target_ulong updated_pte = pte | PTE_A | 509 (access_type == MMU_DATA_STORE ? PTE_D : 0); 510 511 /* Page table updates need to be atomic with MTTCG enabled */ 512 if (updated_pte != pte) { 513 /* 514 * - if accessed or dirty bits need updating, and the PTE is 515 * in RAM, then we do so atomically with a compare and swap. 516 * - if the PTE is in IO space or ROM, then it can't be updated 517 * and we return TRANSLATE_FAIL. 518 * - if the PTE changed by the time we went to update it, then 519 * it is no longer valid and we must re-walk the page table. 520 */ 521 MemoryRegion *mr; 522 hwaddr l = sizeof(target_ulong), addr1; 523 mr = address_space_translate(cs->as, pte_addr, 524 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED); 525 if (memory_region_is_ram(mr)) { 526 target_ulong *pte_pa = 527 qemu_map_ram_ptr(mr->ram_block, addr1); 528 #if TCG_OVERSIZED_GUEST 529 /* MTTCG is not enabled on oversized TCG guests so 530 * page table updates do not need to be atomic */ 531 *pte_pa = pte = updated_pte; 532 #else 533 target_ulong old_pte = 534 qatomic_cmpxchg(pte_pa, pte, updated_pte); 535 if (old_pte != pte) { 536 goto restart; 537 } else { 538 pte = updated_pte; 539 } 540 #endif 541 } else { 542 /* misconfigured PTE in ROM (AD bits are not preset) or 543 * PTE is in IO space and can't be updated atomically */ 544 return TRANSLATE_FAIL; 545 } 546 } 547 548 /* for superpage mappings, make a fake leaf PTE for the TLB's 549 benefit. */ 550 target_ulong vpn = addr >> PGSHIFT; 551 *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) | 552 (addr & ~TARGET_PAGE_MASK); 553 554 /* set permissions on the TLB entry */ 555 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) { 556 *prot |= PAGE_READ; 557 } 558 if ((pte & PTE_X)) { 559 *prot |= PAGE_EXEC; 560 } 561 /* add write permission on stores or if the page is already dirty, 562 so that we TLB miss on later writes to update the dirty bit */ 563 if ((pte & PTE_W) && 564 (access_type == MMU_DATA_STORE || (pte & PTE_D))) { 565 *prot |= PAGE_WRITE; 566 } 567 return TRANSLATE_SUCCESS; 568 } 569 } 570 return TRANSLATE_FAIL; 571 } 572 573 static void raise_mmu_exception(CPURISCVState *env, target_ulong address, 574 MMUAccessType access_type, bool pmp_violation, 575 bool first_stage) 576 { 577 CPUState *cs = env_cpu(env); 578 int page_fault_exceptions; 579 if (first_stage) { 580 page_fault_exceptions = 581 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE && 582 !pmp_violation; 583 } else { 584 page_fault_exceptions = 585 get_field(env->hgatp, HGATP_MODE) != VM_1_10_MBARE && 586 !pmp_violation; 587 } 588 switch (access_type) { 589 case MMU_INST_FETCH: 590 if (riscv_cpu_virt_enabled(env) && !first_stage) { 591 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; 592 } else { 593 cs->exception_index = page_fault_exceptions ? 594 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT; 595 } 596 break; 597 case MMU_DATA_LOAD: 598 if ((riscv_cpu_virt_enabled(env) || riscv_cpu_two_stage_lookup(env)) && 599 !first_stage) { 600 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; 601 } else { 602 cs->exception_index = page_fault_exceptions ? 603 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT; 604 } 605 break; 606 case MMU_DATA_STORE: 607 if ((riscv_cpu_virt_enabled(env) || riscv_cpu_two_stage_lookup(env)) && 608 !first_stage) { 609 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; 610 } else { 611 cs->exception_index = page_fault_exceptions ? 612 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 613 } 614 break; 615 default: 616 g_assert_not_reached(); 617 } 618 env->badaddr = address; 619 } 620 621 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 622 { 623 RISCVCPU *cpu = RISCV_CPU(cs); 624 CPURISCVState *env = &cpu->env; 625 hwaddr phys_addr; 626 int prot; 627 int mmu_idx = cpu_mmu_index(&cpu->env, false); 628 629 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx, 630 true, riscv_cpu_virt_enabled(env))) { 631 return -1; 632 } 633 634 if (riscv_cpu_virt_enabled(env)) { 635 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL, 636 0, mmu_idx, false, true)) { 637 return -1; 638 } 639 } 640 641 return phys_addr & TARGET_PAGE_MASK; 642 } 643 644 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 645 vaddr addr, unsigned size, 646 MMUAccessType access_type, 647 int mmu_idx, MemTxAttrs attrs, 648 MemTxResult response, uintptr_t retaddr) 649 { 650 RISCVCPU *cpu = RISCV_CPU(cs); 651 CPURISCVState *env = &cpu->env; 652 653 if (access_type == MMU_DATA_STORE) { 654 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 655 } else { 656 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 657 } 658 659 env->badaddr = addr; 660 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr); 661 } 662 663 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 664 MMUAccessType access_type, int mmu_idx, 665 uintptr_t retaddr) 666 { 667 RISCVCPU *cpu = RISCV_CPU(cs); 668 CPURISCVState *env = &cpu->env; 669 switch (access_type) { 670 case MMU_INST_FETCH: 671 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; 672 break; 673 case MMU_DATA_LOAD: 674 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; 675 break; 676 case MMU_DATA_STORE: 677 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; 678 break; 679 default: 680 g_assert_not_reached(); 681 } 682 env->badaddr = addr; 683 riscv_raise_exception(env, cs->exception_index, retaddr); 684 } 685 #endif 686 687 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 688 MMUAccessType access_type, int mmu_idx, 689 bool probe, uintptr_t retaddr) 690 { 691 RISCVCPU *cpu = RISCV_CPU(cs); 692 CPURISCVState *env = &cpu->env; 693 #ifndef CONFIG_USER_ONLY 694 vaddr im_address; 695 hwaddr pa = 0; 696 int prot, prot2; 697 bool pmp_violation = false; 698 bool first_stage_error = true; 699 int ret = TRANSLATE_FAIL; 700 int mode = mmu_idx; 701 target_ulong tlb_size = 0; 702 703 env->guest_phys_fault_addr = 0; 704 705 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", 706 __func__, address, access_type, mmu_idx); 707 708 if (mode == PRV_M && access_type != MMU_INST_FETCH) { 709 if (get_field(env->mstatus, MSTATUS_MPRV)) { 710 mode = get_field(env->mstatus, MSTATUS_MPP); 711 } 712 } 713 714 if (riscv_has_ext(env, RVH) && env->priv == PRV_M && 715 access_type != MMU_INST_FETCH && 716 get_field(env->mstatus, MSTATUS_MPRV) && 717 get_field(env->mstatus, MSTATUS_MPV)) { 718 riscv_cpu_set_two_stage_lookup(env, true); 719 } 720 721 if (riscv_cpu_virt_enabled(env) || 722 (riscv_cpu_two_stage_lookup(env) && access_type != MMU_INST_FETCH)) { 723 /* Two stage lookup */ 724 ret = get_physical_address(env, &pa, &prot, address, 725 &env->guest_phys_fault_addr, access_type, 726 mmu_idx, true, true); 727 728 /* 729 * A G-stage exception may be triggered during two state lookup. 730 * And the env->guest_phys_fault_addr has already been set in 731 * get_physical_address(). 732 */ 733 if (ret == TRANSLATE_G_STAGE_FAIL) { 734 first_stage_error = false; 735 access_type = MMU_DATA_LOAD; 736 } 737 738 qemu_log_mask(CPU_LOG_MMU, 739 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " 740 TARGET_FMT_plx " prot %d\n", 741 __func__, address, ret, pa, prot); 742 743 if (ret == TRANSLATE_SUCCESS) { 744 /* Second stage lookup */ 745 im_address = pa; 746 747 ret = get_physical_address(env, &pa, &prot2, im_address, NULL, 748 access_type, mmu_idx, false, true); 749 750 qemu_log_mask(CPU_LOG_MMU, 751 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical " 752 TARGET_FMT_plx " prot %d\n", 753 __func__, im_address, ret, pa, prot2); 754 755 prot &= prot2; 756 757 if (riscv_feature(env, RISCV_FEATURE_PMP) && 758 (ret == TRANSLATE_SUCCESS) && 759 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) { 760 ret = TRANSLATE_PMP_FAIL; 761 } 762 763 if (ret != TRANSLATE_SUCCESS) { 764 /* 765 * Guest physical address translation failed, this is a HS 766 * level exception 767 */ 768 first_stage_error = false; 769 env->guest_phys_fault_addr = (im_address | 770 (address & 771 (TARGET_PAGE_SIZE - 1))) >> 2; 772 } 773 } 774 } else { 775 /* Single stage lookup */ 776 ret = get_physical_address(env, &pa, &prot, address, NULL, 777 access_type, mmu_idx, true, false); 778 779 qemu_log_mask(CPU_LOG_MMU, 780 "%s address=%" VADDR_PRIx " ret %d physical " 781 TARGET_FMT_plx " prot %d\n", 782 __func__, address, ret, pa, prot); 783 } 784 785 /* We did the two stage lookup based on MPRV, unset the lookup */ 786 if (riscv_has_ext(env, RVH) && env->priv == PRV_M && 787 access_type != MMU_INST_FETCH && 788 get_field(env->mstatus, MSTATUS_MPRV) && 789 get_field(env->mstatus, MSTATUS_MPV)) { 790 riscv_cpu_set_two_stage_lookup(env, false); 791 } 792 793 if (riscv_feature(env, RISCV_FEATURE_PMP) && 794 (ret == TRANSLATE_SUCCESS) && 795 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) { 796 ret = TRANSLATE_PMP_FAIL; 797 } 798 if (ret == TRANSLATE_PMP_FAIL) { 799 pmp_violation = true; 800 } 801 802 if (ret == TRANSLATE_SUCCESS) { 803 if (pmp_is_range_in_tlb(env, pa & TARGET_PAGE_MASK, &tlb_size)) { 804 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), 805 prot, mmu_idx, tlb_size); 806 } else { 807 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK, 808 prot, mmu_idx, TARGET_PAGE_SIZE); 809 } 810 return true; 811 } else if (probe) { 812 return false; 813 } else { 814 raise_mmu_exception(env, address, access_type, pmp_violation, first_stage_error); 815 riscv_raise_exception(env, cs->exception_index, retaddr); 816 } 817 818 return true; 819 820 #else 821 switch (access_type) { 822 case MMU_INST_FETCH: 823 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT; 824 break; 825 case MMU_DATA_LOAD: 826 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT; 827 break; 828 case MMU_DATA_STORE: 829 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT; 830 break; 831 default: 832 g_assert_not_reached(); 833 } 834 env->badaddr = address; 835 cpu_loop_exit_restore(cs, retaddr); 836 #endif 837 } 838 839 /* 840 * Handle Traps 841 * 842 * Adapted from Spike's processor_t::take_trap. 843 * 844 */ 845 void riscv_cpu_do_interrupt(CPUState *cs) 846 { 847 #if !defined(CONFIG_USER_ONLY) 848 849 RISCVCPU *cpu = RISCV_CPU(cs); 850 CPURISCVState *env = &cpu->env; 851 bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env); 852 uint64_t s; 853 854 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide 855 * so we mask off the MSB and separate into trap type and cause. 856 */ 857 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); 858 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; 859 target_ulong deleg = async ? env->mideleg : env->medeleg; 860 bool write_tval = false; 861 target_ulong tval = 0; 862 target_ulong htval = 0; 863 target_ulong mtval2 = 0; 864 865 if (!async) { 866 /* set tval to badaddr for traps with address information */ 867 switch (cause) { 868 case RISCV_EXCP_INST_GUEST_PAGE_FAULT: 869 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: 870 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: 871 force_hs_execp = true; 872 /* fallthrough */ 873 case RISCV_EXCP_INST_ADDR_MIS: 874 case RISCV_EXCP_INST_ACCESS_FAULT: 875 case RISCV_EXCP_LOAD_ADDR_MIS: 876 case RISCV_EXCP_STORE_AMO_ADDR_MIS: 877 case RISCV_EXCP_LOAD_ACCESS_FAULT: 878 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: 879 case RISCV_EXCP_INST_PAGE_FAULT: 880 case RISCV_EXCP_LOAD_PAGE_FAULT: 881 case RISCV_EXCP_STORE_PAGE_FAULT: 882 write_tval = true; 883 tval = env->badaddr; 884 break; 885 default: 886 break; 887 } 888 /* ecall is dispatched as one cause so translate based on mode */ 889 if (cause == RISCV_EXCP_U_ECALL) { 890 assert(env->priv <= 3); 891 892 if (env->priv == PRV_M) { 893 cause = RISCV_EXCP_M_ECALL; 894 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) { 895 cause = RISCV_EXCP_VS_ECALL; 896 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) { 897 cause = RISCV_EXCP_S_ECALL; 898 } else if (env->priv == PRV_U) { 899 cause = RISCV_EXCP_U_ECALL; 900 } 901 } 902 } 903 904 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, 905 riscv_cpu_get_trap_name(cause, async)); 906 907 qemu_log_mask(CPU_LOG_INT, 908 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", " 909 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n", 910 __func__, env->mhartid, async, cause, env->pc, tval, 911 riscv_cpu_get_trap_name(cause, async)); 912 913 if (env->priv <= PRV_S && 914 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) { 915 /* handle the trap in S-mode */ 916 if (riscv_has_ext(env, RVH)) { 917 target_ulong hdeleg = async ? env->hideleg : env->hedeleg; 918 919 if ((riscv_cpu_virt_enabled(env) || 920 riscv_cpu_two_stage_lookup(env)) && write_tval) { 921 /* 922 * If we are writing a guest virtual address to stval, set 923 * this to 1. If we are trapping to VS we will set this to 0 924 * later. 925 */ 926 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1); 927 } else { 928 /* For other HS-mode traps, we set this to 0. */ 929 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0); 930 } 931 932 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) && 933 !force_hs_execp) { 934 /* Trap to VS mode */ 935 /* 936 * See if we need to adjust cause. Yes if its VS mode interrupt 937 * no if hypervisor has delegated one of hs mode's interrupt 938 */ 939 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || 940 cause == IRQ_VS_EXT) { 941 cause = cause - 1; 942 } 943 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0); 944 } else if (riscv_cpu_virt_enabled(env)) { 945 /* Trap into HS mode, from virt */ 946 riscv_cpu_swap_hypervisor_regs(env); 947 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, 948 env->priv); 949 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, 950 riscv_cpu_virt_enabled(env)); 951 952 htval = env->guest_phys_fault_addr; 953 954 riscv_cpu_set_virt_enabled(env, 0); 955 riscv_cpu_set_force_hs_excep(env, 0); 956 } else { 957 /* Trap into HS mode */ 958 if (!riscv_cpu_two_stage_lookup(env)) { 959 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, 960 riscv_cpu_virt_enabled(env)); 961 } 962 riscv_cpu_set_two_stage_lookup(env, false); 963 htval = env->guest_phys_fault_addr; 964 } 965 } 966 967 s = env->mstatus; 968 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); 969 s = set_field(s, MSTATUS_SPP, env->priv); 970 s = set_field(s, MSTATUS_SIE, 0); 971 env->mstatus = s; 972 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); 973 env->sepc = env->pc; 974 env->sbadaddr = tval; 975 env->htval = htval; 976 env->pc = (env->stvec >> 2 << 2) + 977 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); 978 riscv_cpu_set_mode(env, PRV_S); 979 } else { 980 /* handle the trap in M-mode */ 981 if (riscv_has_ext(env, RVH)) { 982 if (riscv_cpu_virt_enabled(env)) { 983 riscv_cpu_swap_hypervisor_regs(env); 984 } 985 env->mstatus = set_field(env->mstatus, MSTATUS_MPV, 986 riscv_cpu_virt_enabled(env)); 987 if (riscv_cpu_virt_enabled(env) && tval) { 988 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); 989 } 990 991 mtval2 = env->guest_phys_fault_addr; 992 993 /* Trapping to M mode, virt is disabled */ 994 riscv_cpu_set_virt_enabled(env, 0); 995 riscv_cpu_set_force_hs_excep(env, 0); 996 } 997 998 s = env->mstatus; 999 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); 1000 s = set_field(s, MSTATUS_MPP, env->priv); 1001 s = set_field(s, MSTATUS_MIE, 0); 1002 env->mstatus = s; 1003 env->mcause = cause | ~(((target_ulong)-1) >> async); 1004 env->mepc = env->pc; 1005 env->mbadaddr = tval; 1006 env->mtval2 = mtval2; 1007 env->pc = (env->mtvec >> 2 << 2) + 1008 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); 1009 riscv_cpu_set_mode(env, PRV_M); 1010 } 1011 1012 /* NOTE: it is not necessary to yield load reservations here. It is only 1013 * necessary for an SC from "another hart" to cause a load reservation 1014 * to be yielded. Refer to the memory consistency model section of the 1015 * RISC-V ISA Specification. 1016 */ 1017 1018 #endif 1019 cs->exception_index = EXCP_NONE; /* mark handled to qemu */ 1020 } 1021