xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision c43732f5)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "pmu.h"
25 #include "exec/exec-all.h"
26 #include "instmap.h"
27 #include "tcg/tcg-op.h"
28 #include "trace.h"
29 #include "semihosting/common-semi.h"
30 #include "sysemu/cpu-timers.h"
31 #include "cpu_bits.h"
32 #include "debug.h"
33 
34 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
35 {
36 #ifdef CONFIG_USER_ONLY
37     return 0;
38 #else
39     return env->priv;
40 #endif
41 }
42 
43 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
44                           target_ulong *cs_base, uint32_t *pflags)
45 {
46     CPUState *cs = env_cpu(env);
47     RISCVCPU *cpu = RISCV_CPU(cs);
48 
49     uint32_t flags = 0;
50 
51     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
52     *cs_base = 0;
53 
54     if (cpu->cfg.ext_zve32f) {
55         /*
56          * If env->vl equals to VLMAX, we can use generic vector operation
57          * expanders (GVEC) to accerlate the vector operations.
58          * However, as LMUL could be a fractional number. The maximum
59          * vector size can be operated might be less than 8 bytes,
60          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
61          * only when maxsz >= 8 bytes.
62          */
63         uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
64         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
65         uint32_t maxsz = vlmax << sew;
66         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
67                            (maxsz >= 8);
68         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
69         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
70         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
71                     FIELD_EX64(env->vtype, VTYPE, VLMUL));
72         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
73         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
74                     FIELD_EX64(env->vtype, VTYPE, VTA));
75         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
76                     FIELD_EX64(env->vtype, VTYPE, VMA));
77     } else {
78         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
79     }
80 
81 #ifdef CONFIG_USER_ONLY
82     flags |= TB_FLAGS_MSTATUS_FS;
83     flags |= TB_FLAGS_MSTATUS_VS;
84 #else
85     flags |= cpu_mmu_index(env, 0);
86     if (riscv_cpu_fp_enabled(env)) {
87         flags |= env->mstatus & MSTATUS_FS;
88     }
89 
90     if (riscv_cpu_vector_enabled(env)) {
91         flags |= env->mstatus & MSTATUS_VS;
92     }
93 
94     if (riscv_has_ext(env, RVH)) {
95         if (env->priv == PRV_M ||
96             (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
97             (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
98                 get_field(env->hstatus, HSTATUS_HU))) {
99             flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
100         }
101 
102         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
103                            get_field(env->mstatus_hs, MSTATUS_FS));
104 
105         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS,
106                            get_field(env->mstatus_hs, MSTATUS_VS));
107     }
108     if (cpu->cfg.debug && !icount_enabled()) {
109         flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
110     }
111 #endif
112 
113     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
114     if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
115         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
116     }
117     if (env->cur_pmbase != 0) {
118         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
119     }
120 
121     *pflags = flags;
122 }
123 
124 void riscv_cpu_update_mask(CPURISCVState *env)
125 {
126     target_ulong mask = -1, base = 0;
127     /*
128      * TODO: Current RVJ spec does not specify
129      * how the extension interacts with XLEN.
130      */
131 #ifndef CONFIG_USER_ONLY
132     if (riscv_has_ext(env, RVJ)) {
133         switch (env->priv) {
134         case PRV_M:
135             if (env->mmte & M_PM_ENABLE) {
136                 mask = env->mpmmask;
137                 base = env->mpmbase;
138             }
139             break;
140         case PRV_S:
141             if (env->mmte & S_PM_ENABLE) {
142                 mask = env->spmmask;
143                 base = env->spmbase;
144             }
145             break;
146         case PRV_U:
147             if (env->mmte & U_PM_ENABLE) {
148                 mask = env->upmmask;
149                 base = env->upmbase;
150             }
151             break;
152         default:
153             g_assert_not_reached();
154         }
155     }
156 #endif
157     if (env->xl == MXL_RV32) {
158         env->cur_pmmask = mask & UINT32_MAX;
159         env->cur_pmbase = base & UINT32_MAX;
160     } else {
161         env->cur_pmmask = mask;
162         env->cur_pmbase = base;
163     }
164 }
165 
166 #ifndef CONFIG_USER_ONLY
167 
168 /*
169  * The HS-mode is allowed to configure priority only for the
170  * following VS-mode local interrupts:
171  *
172  * 0  (Reserved interrupt, reads as zero)
173  * 1  Supervisor software interrupt
174  * 4  (Reserved interrupt, reads as zero)
175  * 5  Supervisor timer interrupt
176  * 8  (Reserved interrupt, reads as zero)
177  * 13 (Reserved interrupt)
178  * 14 "
179  * 15 "
180  * 16 "
181  * 17 "
182  * 18 "
183  * 19 "
184  * 20 "
185  * 21 "
186  * 22 "
187  * 23 "
188  */
189 
190 static const int hviprio_index2irq[] = {
191     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
192 static const int hviprio_index2rdzero[] = {
193     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
194 
195 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
196 {
197     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
198         return -EINVAL;
199     }
200 
201     if (out_irq) {
202         *out_irq = hviprio_index2irq[index];
203     }
204 
205     if (out_rdzero) {
206         *out_rdzero = hviprio_index2rdzero[index];
207     }
208 
209     return 0;
210 }
211 
212 /*
213  * Default priorities of local interrupts are defined in the
214  * RISC-V Advanced Interrupt Architecture specification.
215  *
216  * ----------------------------------------------------------------
217  *  Default  |
218  *  Priority | Major Interrupt Numbers
219  * ----------------------------------------------------------------
220  *  Highest  | 47, 23, 46, 45, 22, 44,
221  *           | 43, 21, 42, 41, 20, 40
222  *           |
223  *           | 11 (0b),  3 (03),  7 (07)
224  *           |  9 (09),  1 (01),  5 (05)
225  *           | 12 (0c)
226  *           | 10 (0a),  2 (02),  6 (06)
227  *           |
228  *           | 39, 19, 38, 37, 18, 36,
229  *  Lowest   | 35, 17, 34, 33, 16, 32
230  * ----------------------------------------------------------------
231  */
232 static const uint8_t default_iprio[64] = {
233  /* Custom interrupts 48 to 63 */
234  [63] = IPRIO_MMAXIPRIO,
235  [62] = IPRIO_MMAXIPRIO,
236  [61] = IPRIO_MMAXIPRIO,
237  [60] = IPRIO_MMAXIPRIO,
238  [59] = IPRIO_MMAXIPRIO,
239  [58] = IPRIO_MMAXIPRIO,
240  [57] = IPRIO_MMAXIPRIO,
241  [56] = IPRIO_MMAXIPRIO,
242  [55] = IPRIO_MMAXIPRIO,
243  [54] = IPRIO_MMAXIPRIO,
244  [53] = IPRIO_MMAXIPRIO,
245  [52] = IPRIO_MMAXIPRIO,
246  [51] = IPRIO_MMAXIPRIO,
247  [50] = IPRIO_MMAXIPRIO,
248  [49] = IPRIO_MMAXIPRIO,
249  [48] = IPRIO_MMAXIPRIO,
250 
251  /* Custom interrupts 24 to 31 */
252  [31] = IPRIO_MMAXIPRIO,
253  [30] = IPRIO_MMAXIPRIO,
254  [29] = IPRIO_MMAXIPRIO,
255  [28] = IPRIO_MMAXIPRIO,
256  [27] = IPRIO_MMAXIPRIO,
257  [26] = IPRIO_MMAXIPRIO,
258  [25] = IPRIO_MMAXIPRIO,
259  [24] = IPRIO_MMAXIPRIO,
260 
261  [47] = IPRIO_DEFAULT_UPPER,
262  [23] = IPRIO_DEFAULT_UPPER + 1,
263  [46] = IPRIO_DEFAULT_UPPER + 2,
264  [45] = IPRIO_DEFAULT_UPPER + 3,
265  [22] = IPRIO_DEFAULT_UPPER + 4,
266  [44] = IPRIO_DEFAULT_UPPER + 5,
267 
268  [43] = IPRIO_DEFAULT_UPPER + 6,
269  [21] = IPRIO_DEFAULT_UPPER + 7,
270  [42] = IPRIO_DEFAULT_UPPER + 8,
271  [41] = IPRIO_DEFAULT_UPPER + 9,
272  [20] = IPRIO_DEFAULT_UPPER + 10,
273  [40] = IPRIO_DEFAULT_UPPER + 11,
274 
275  [11] = IPRIO_DEFAULT_M,
276  [3]  = IPRIO_DEFAULT_M + 1,
277  [7]  = IPRIO_DEFAULT_M + 2,
278 
279  [9]  = IPRIO_DEFAULT_S,
280  [1]  = IPRIO_DEFAULT_S + 1,
281  [5]  = IPRIO_DEFAULT_S + 2,
282 
283  [12] = IPRIO_DEFAULT_SGEXT,
284 
285  [10] = IPRIO_DEFAULT_VS,
286  [2]  = IPRIO_DEFAULT_VS + 1,
287  [6]  = IPRIO_DEFAULT_VS + 2,
288 
289  [39] = IPRIO_DEFAULT_LOWER,
290  [19] = IPRIO_DEFAULT_LOWER + 1,
291  [38] = IPRIO_DEFAULT_LOWER + 2,
292  [37] = IPRIO_DEFAULT_LOWER + 3,
293  [18] = IPRIO_DEFAULT_LOWER + 4,
294  [36] = IPRIO_DEFAULT_LOWER + 5,
295 
296  [35] = IPRIO_DEFAULT_LOWER + 6,
297  [17] = IPRIO_DEFAULT_LOWER + 7,
298  [34] = IPRIO_DEFAULT_LOWER + 8,
299  [33] = IPRIO_DEFAULT_LOWER + 9,
300  [16] = IPRIO_DEFAULT_LOWER + 10,
301  [32] = IPRIO_DEFAULT_LOWER + 11,
302 };
303 
304 uint8_t riscv_cpu_default_priority(int irq)
305 {
306     if (irq < 0 || irq > 63) {
307         return IPRIO_MMAXIPRIO;
308     }
309 
310     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
311 };
312 
313 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
314                                     int extirq, unsigned int extirq_def_prio,
315                                     uint64_t pending, uint8_t *iprio)
316 {
317     int irq, best_irq = RISCV_EXCP_NONE;
318     unsigned int prio, best_prio = UINT_MAX;
319 
320     if (!pending) {
321         return RISCV_EXCP_NONE;
322     }
323 
324     irq = ctz64(pending);
325     if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
326                                   riscv_cpu_cfg(env)->ext_ssaia)) {
327         return irq;
328     }
329 
330     pending = pending >> irq;
331     while (pending) {
332         prio = iprio[irq];
333         if (!prio) {
334             if (irq == extirq) {
335                 prio = extirq_def_prio;
336             } else {
337                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
338                        1 : IPRIO_MMAXIPRIO;
339             }
340         }
341         if ((pending & 0x1) && (prio <= best_prio)) {
342             best_irq = irq;
343             best_prio = prio;
344         }
345         irq++;
346         pending = pending >> 1;
347     }
348 
349     return best_irq;
350 }
351 
352 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
353 {
354     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
355     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
356     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
357 
358     return (env->mip | vsgein | vstip) & env->mie;
359 }
360 
361 int riscv_cpu_mirq_pending(CPURISCVState *env)
362 {
363     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
364                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
365 
366     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
367                                     irqs, env->miprio);
368 }
369 
370 int riscv_cpu_sirq_pending(CPURISCVState *env)
371 {
372     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
373                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
374 
375     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
376                                     irqs, env->siprio);
377 }
378 
379 int riscv_cpu_vsirq_pending(CPURISCVState *env)
380 {
381     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
382                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
383 
384     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
385                                     irqs >> 1, env->hviprio);
386 }
387 
388 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
389 {
390     int virq;
391     uint64_t irqs, pending, mie, hsie, vsie;
392 
393     /* Determine interrupt enable state of all privilege modes */
394     if (riscv_cpu_virt_enabled(env)) {
395         mie = 1;
396         hsie = 1;
397         vsie = (env->priv < PRV_S) ||
398                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
399     } else {
400         mie = (env->priv < PRV_M) ||
401               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
402         hsie = (env->priv < PRV_S) ||
403                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
404         vsie = 0;
405     }
406 
407     /* Determine all pending interrupts */
408     pending = riscv_cpu_all_pending(env);
409 
410     /* Check M-mode interrupts */
411     irqs = pending & ~env->mideleg & -mie;
412     if (irqs) {
413         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
414                                         irqs, env->miprio);
415     }
416 
417     /* Check HS-mode interrupts */
418     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
419     if (irqs) {
420         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
421                                         irqs, env->siprio);
422     }
423 
424     /* Check VS-mode interrupts */
425     irqs = pending & env->mideleg & env->hideleg & -vsie;
426     if (irqs) {
427         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
428                                         irqs >> 1, env->hviprio);
429         return (virq <= 0) ? virq : virq + 1;
430     }
431 
432     /* Indicate no pending interrupt */
433     return RISCV_EXCP_NONE;
434 }
435 
436 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
437 {
438     if (interrupt_request & CPU_INTERRUPT_HARD) {
439         RISCVCPU *cpu = RISCV_CPU(cs);
440         CPURISCVState *env = &cpu->env;
441         int interruptno = riscv_cpu_local_irq_pending(env);
442         if (interruptno >= 0) {
443             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
444             riscv_cpu_do_interrupt(cs);
445             return true;
446         }
447     }
448     return false;
449 }
450 
451 /* Return true is floating point support is currently enabled */
452 bool riscv_cpu_fp_enabled(CPURISCVState *env)
453 {
454     if (env->mstatus & MSTATUS_FS) {
455         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
456             return false;
457         }
458         return true;
459     }
460 
461     return false;
462 }
463 
464 /* Return true is vector support is currently enabled */
465 bool riscv_cpu_vector_enabled(CPURISCVState *env)
466 {
467     if (env->mstatus & MSTATUS_VS) {
468         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) {
469             return false;
470         }
471         return true;
472     }
473 
474     return false;
475 }
476 
477 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
478 {
479     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
480                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
481                             MSTATUS64_UXL | MSTATUS_VS;
482 
483     if (riscv_has_ext(env, RVF)) {
484         mstatus_mask |= MSTATUS_FS;
485     }
486     bool current_virt = riscv_cpu_virt_enabled(env);
487 
488     g_assert(riscv_has_ext(env, RVH));
489 
490     if (current_virt) {
491         /* Current V=1 and we are about to change to V=0 */
492         env->vsstatus = env->mstatus & mstatus_mask;
493         env->mstatus &= ~mstatus_mask;
494         env->mstatus |= env->mstatus_hs;
495 
496         env->vstvec = env->stvec;
497         env->stvec = env->stvec_hs;
498 
499         env->vsscratch = env->sscratch;
500         env->sscratch = env->sscratch_hs;
501 
502         env->vsepc = env->sepc;
503         env->sepc = env->sepc_hs;
504 
505         env->vscause = env->scause;
506         env->scause = env->scause_hs;
507 
508         env->vstval = env->stval;
509         env->stval = env->stval_hs;
510 
511         env->vsatp = env->satp;
512         env->satp = env->satp_hs;
513     } else {
514         /* Current V=0 and we are about to change to V=1 */
515         env->mstatus_hs = env->mstatus & mstatus_mask;
516         env->mstatus &= ~mstatus_mask;
517         env->mstatus |= env->vsstatus;
518 
519         env->stvec_hs = env->stvec;
520         env->stvec = env->vstvec;
521 
522         env->sscratch_hs = env->sscratch;
523         env->sscratch = env->vsscratch;
524 
525         env->sepc_hs = env->sepc;
526         env->sepc = env->vsepc;
527 
528         env->scause_hs = env->scause;
529         env->scause = env->vscause;
530 
531         env->stval_hs = env->stval;
532         env->stval = env->vstval;
533 
534         env->satp_hs = env->satp;
535         env->satp = env->vsatp;
536     }
537 }
538 
539 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
540 {
541     if (!riscv_has_ext(env, RVH)) {
542         return 0;
543     }
544 
545     return env->geilen;
546 }
547 
548 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
549 {
550     if (!riscv_has_ext(env, RVH)) {
551         return;
552     }
553 
554     if (geilen > (TARGET_LONG_BITS - 1)) {
555         return;
556     }
557 
558     env->geilen = geilen;
559 }
560 
561 bool riscv_cpu_virt_enabled(CPURISCVState *env)
562 {
563     return get_field(env->virt, VIRT_ONOFF);
564 }
565 
566 /* This function can only be called to set virt when RVH is enabled */
567 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
568 {
569     /* Flush the TLB on all virt mode changes. */
570     if (get_field(env->virt, VIRT_ONOFF) != enable) {
571         tlb_flush(env_cpu(env));
572     }
573 
574     env->virt = set_field(env->virt, VIRT_ONOFF, enable);
575 
576     if (enable) {
577         /*
578          * The guest external interrupts from an interrupt controller are
579          * delivered only when the Guest/VM is running (i.e. V=1). This means
580          * any guest external interrupt which is triggered while the Guest/VM
581          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
582          * with sluggish response to serial console input and other I/O events.
583          *
584          * To solve this, we check and inject interrupt after setting V=1.
585          */
586         riscv_cpu_update_mip(env, 0, 0);
587     }
588 }
589 
590 bool riscv_cpu_two_stage_lookup(int mmu_idx)
591 {
592     return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
593 }
594 
595 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
596 {
597     CPURISCVState *env = &cpu->env;
598     if (env->miclaim & interrupts) {
599         return -1;
600     } else {
601         env->miclaim |= interrupts;
602         return 0;
603     }
604 }
605 
606 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
607                               uint64_t value)
608 {
609     CPUState *cs = env_cpu(env);
610     uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
611 
612     if (riscv_cpu_virt_enabled(env)) {
613         gein = get_field(env->hstatus, HSTATUS_VGEIN);
614         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
615     }
616 
617     vstip = env->vstime_irq ? MIP_VSTIP : 0;
618 
619     QEMU_IOTHREAD_LOCK_GUARD();
620 
621     env->mip = (env->mip & ~mask) | (value & mask);
622 
623     if (env->mip | vsgein | vstip) {
624         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
625     } else {
626         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
627     }
628 
629     return old;
630 }
631 
632 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
633                              void *arg)
634 {
635     env->rdtime_fn = fn;
636     env->rdtime_fn_arg = arg;
637 }
638 
639 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
640                                    int (*rmw_fn)(void *arg,
641                                                  target_ulong reg,
642                                                  target_ulong *val,
643                                                  target_ulong new_val,
644                                                  target_ulong write_mask),
645                                    void *rmw_fn_arg)
646 {
647     if (priv <= PRV_M) {
648         env->aia_ireg_rmw_fn[priv] = rmw_fn;
649         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
650     }
651 }
652 
653 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
654 {
655     if (newpriv > PRV_M) {
656         g_assert_not_reached();
657     }
658     if (newpriv == PRV_H) {
659         newpriv = PRV_U;
660     }
661     if (icount_enabled() && newpriv != env->priv) {
662         riscv_itrigger_update_priv(env);
663     }
664     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
665     env->priv = newpriv;
666     env->xl = cpu_recompute_xl(env);
667     riscv_cpu_update_mask(env);
668 
669     /*
670      * Clear the load reservation - otherwise a reservation placed in one
671      * context/process can be used by another, resulting in an SC succeeding
672      * incorrectly. Version 2.2 of the ISA specification explicitly requires
673      * this behaviour, while later revisions say that the kernel "should" use
674      * an SC instruction to force the yielding of a load reservation on a
675      * preemptive context switch. As a result, do both.
676      */
677     env->load_res = -1;
678 }
679 
680 /*
681  * get_physical_address_pmp - check PMP permission for this physical address
682  *
683  * Match the PMP region and check permission for this physical address and it's
684  * TLB page. Returns 0 if the permission checking was successful
685  *
686  * @env: CPURISCVState
687  * @prot: The returned protection attributes
688  * @tlb_size: TLB page size containing addr. It could be modified after PMP
689  *            permission checking. NULL if not set TLB page for addr.
690  * @addr: The physical address to be checked permission
691  * @access_type: The type of MMU access
692  * @mode: Indicates current privilege level.
693  */
694 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
695                                     target_ulong *tlb_size, hwaddr addr,
696                                     int size, MMUAccessType access_type,
697                                     int mode)
698 {
699     pmp_priv_t pmp_priv;
700     int pmp_index = -1;
701 
702     if (!riscv_cpu_cfg(env)->pmp) {
703         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
704         return TRANSLATE_SUCCESS;
705     }
706 
707     pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
708                                    &pmp_priv, mode);
709     if (pmp_index < 0) {
710         *prot = 0;
711         return TRANSLATE_PMP_FAIL;
712     }
713 
714     *prot = pmp_priv_to_page_prot(pmp_priv);
715     if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
716         target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
717         target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
718 
719         *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
720     }
721 
722     return TRANSLATE_SUCCESS;
723 }
724 
725 /* get_physical_address - get the physical address for this virtual address
726  *
727  * Do a page table walk to obtain the physical address corresponding to a
728  * virtual address. Returns 0 if the translation was successful
729  *
730  * Adapted from Spike's mmu_t::translate and mmu_t::walk
731  *
732  * @env: CPURISCVState
733  * @physical: This will be set to the calculated physical address
734  * @prot: The returned protection attributes
735  * @addr: The virtual address to be translated
736  * @fault_pte_addr: If not NULL, this will be set to fault pte address
737  *                  when a error occurs on pte address translation.
738  *                  This will already be shifted to match htval.
739  * @access_type: The type of MMU access
740  * @mmu_idx: Indicates current privilege level
741  * @first_stage: Are we in first stage translation?
742  *               Second stage is used for hypervisor guest translation
743  * @two_stage: Are we going to perform two stage translation
744  * @is_debug: Is this access from a debugger or the monitor?
745  */
746 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
747                                 int *prot, target_ulong addr,
748                                 target_ulong *fault_pte_addr,
749                                 int access_type, int mmu_idx,
750                                 bool first_stage, bool two_stage,
751                                 bool is_debug)
752 {
753     /* NOTE: the env->pc value visible here will not be
754      * correct, but the value visible to the exception handler
755      * (riscv_cpu_do_interrupt) is correct */
756     MemTxResult res;
757     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
758     int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
759     bool use_background = false;
760     hwaddr ppn;
761     int napot_bits = 0;
762     target_ulong napot_mask;
763 
764     /*
765      * Check if we should use the background registers for the two
766      * stage translation. We don't need to check if we actually need
767      * two stage translation as that happened before this function
768      * was called. Background registers will be used if the guest has
769      * forced a two stage translation to be on (in HS or M mode).
770      */
771     if (!riscv_cpu_virt_enabled(env) && two_stage) {
772         use_background = true;
773     }
774 
775     /* MPRV does not affect the virtual-machine load/store
776        instructions, HLV, HLVX, and HSV. */
777     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
778         mode = get_field(env->hstatus, HSTATUS_SPVP);
779     } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
780         if (get_field(env->mstatus, MSTATUS_MPRV)) {
781             mode = get_field(env->mstatus, MSTATUS_MPP);
782         }
783     }
784 
785     if (first_stage == false) {
786         /* We are in stage 2 translation, this is similar to stage 1. */
787         /* Stage 2 is always taken as U-mode */
788         mode = PRV_U;
789     }
790 
791     if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
792         *physical = addr;
793         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
794         return TRANSLATE_SUCCESS;
795     }
796 
797     *prot = 0;
798 
799     hwaddr base;
800     int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
801 
802     if (first_stage == true) {
803         mxr = get_field(env->mstatus, MSTATUS_MXR);
804     } else {
805         mxr = get_field(env->vsstatus, MSTATUS_MXR);
806     }
807 
808     if (first_stage == true) {
809         if (use_background) {
810             if (riscv_cpu_mxl(env) == MXL_RV32) {
811                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
812                 vm = get_field(env->vsatp, SATP32_MODE);
813             } else {
814                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
815                 vm = get_field(env->vsatp, SATP64_MODE);
816             }
817         } else {
818             if (riscv_cpu_mxl(env) == MXL_RV32) {
819                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
820                 vm = get_field(env->satp, SATP32_MODE);
821             } else {
822                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
823                 vm = get_field(env->satp, SATP64_MODE);
824             }
825         }
826         widened = 0;
827     } else {
828         if (riscv_cpu_mxl(env) == MXL_RV32) {
829             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
830             vm = get_field(env->hgatp, SATP32_MODE);
831         } else {
832             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
833             vm = get_field(env->hgatp, SATP64_MODE);
834         }
835         widened = 2;
836     }
837     /* status.SUM will be ignored if execute on background */
838     sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
839     switch (vm) {
840     case VM_1_10_SV32:
841       levels = 2; ptidxbits = 10; ptesize = 4; break;
842     case VM_1_10_SV39:
843       levels = 3; ptidxbits = 9; ptesize = 8; break;
844     case VM_1_10_SV48:
845       levels = 4; ptidxbits = 9; ptesize = 8; break;
846     case VM_1_10_SV57:
847       levels = 5; ptidxbits = 9; ptesize = 8; break;
848     case VM_1_10_MBARE:
849         *physical = addr;
850         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
851         return TRANSLATE_SUCCESS;
852     default:
853       g_assert_not_reached();
854     }
855 
856     CPUState *cs = env_cpu(env);
857     int va_bits = PGSHIFT + levels * ptidxbits + widened;
858     target_ulong mask, masked_msbs;
859 
860     if (TARGET_LONG_BITS > (va_bits - 1)) {
861         mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
862     } else {
863         mask = 0;
864     }
865     masked_msbs = (addr >> (va_bits - 1)) & mask;
866 
867     if (masked_msbs != 0 && masked_msbs != mask) {
868         return TRANSLATE_FAIL;
869     }
870 
871     int ptshift = (levels - 1) * ptidxbits;
872     int i;
873 
874 #if !TCG_OVERSIZED_GUEST
875 restart:
876 #endif
877     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
878         target_ulong idx;
879         if (i == 0) {
880             idx = (addr >> (PGSHIFT + ptshift)) &
881                            ((1 << (ptidxbits + widened)) - 1);
882         } else {
883             idx = (addr >> (PGSHIFT + ptshift)) &
884                            ((1 << ptidxbits) - 1);
885         }
886 
887         /* check that physical address of PTE is legal */
888         hwaddr pte_addr;
889 
890         if (two_stage && first_stage) {
891             int vbase_prot;
892             hwaddr vbase;
893 
894             /* Do the second stage translation on the base PTE address. */
895             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
896                                                  base, NULL, MMU_DATA_LOAD,
897                                                  mmu_idx, false, true,
898                                                  is_debug);
899 
900             if (vbase_ret != TRANSLATE_SUCCESS) {
901                 if (fault_pte_addr) {
902                     *fault_pte_addr = (base + idx * ptesize) >> 2;
903                 }
904                 return TRANSLATE_G_STAGE_FAIL;
905             }
906 
907             pte_addr = vbase + idx * ptesize;
908         } else {
909             pte_addr = base + idx * ptesize;
910         }
911 
912         int pmp_prot;
913         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
914                                                sizeof(target_ulong),
915                                                MMU_DATA_LOAD, PRV_S);
916         if (pmp_ret != TRANSLATE_SUCCESS) {
917             return TRANSLATE_PMP_FAIL;
918         }
919 
920         target_ulong pte;
921         if (riscv_cpu_mxl(env) == MXL_RV32) {
922             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
923         } else {
924             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
925         }
926 
927         if (res != MEMTX_OK) {
928             return TRANSLATE_FAIL;
929         }
930 
931         bool pbmte = env->menvcfg & MENVCFG_PBMTE;
932         bool hade = env->menvcfg & MENVCFG_HADE;
933 
934         if (first_stage && two_stage && riscv_cpu_virt_enabled(env)) {
935             pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
936             hade = hade && (env->henvcfg & HENVCFG_HADE);
937         }
938 
939         if (riscv_cpu_sxl(env) == MXL_RV32) {
940             ppn = pte >> PTE_PPN_SHIFT;
941         } else if (pbmte || riscv_cpu_cfg(env)->ext_svnapot) {
942             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
943         } else {
944             ppn = pte >> PTE_PPN_SHIFT;
945             if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
946                 return TRANSLATE_FAIL;
947             }
948         }
949 
950         if (!(pte & PTE_V)) {
951             /* Invalid PTE */
952             return TRANSLATE_FAIL;
953         } else if (!pbmte && (pte & PTE_PBMT)) {
954             return TRANSLATE_FAIL;
955         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
956             /* Inner PTE, continue walking */
957             if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
958                 return TRANSLATE_FAIL;
959             }
960             base = ppn << PGSHIFT;
961         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
962             /* Reserved leaf PTE flags: PTE_W */
963             return TRANSLATE_FAIL;
964         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
965             /* Reserved leaf PTE flags: PTE_W + PTE_X */
966             return TRANSLATE_FAIL;
967         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
968                    (!sum || access_type == MMU_INST_FETCH))) {
969             /* User PTE flags when not U mode and mstatus.SUM is not set,
970                or the access type is an instruction fetch */
971             return TRANSLATE_FAIL;
972         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
973             /* Supervisor PTE flags when not S mode */
974             return TRANSLATE_FAIL;
975         } else if (ppn & ((1ULL << ptshift) - 1)) {
976             /* Misaligned PPN */
977             return TRANSLATE_FAIL;
978         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
979                    ((pte & PTE_X) && mxr))) {
980             /* Read access check failed */
981             return TRANSLATE_FAIL;
982         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
983             /* Write access check failed */
984             return TRANSLATE_FAIL;
985         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
986             /* Fetch access check failed */
987             return TRANSLATE_FAIL;
988         } else {
989             /* if necessary, set accessed and dirty bits. */
990             target_ulong updated_pte = pte | PTE_A |
991                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
992 
993             /* Page table updates need to be atomic with MTTCG enabled */
994             if (updated_pte != pte) {
995                 if (!hade) {
996                     return TRANSLATE_FAIL;
997                 }
998 
999                 /*
1000                  * - if accessed or dirty bits need updating, and the PTE is
1001                  *   in RAM, then we do so atomically with a compare and swap.
1002                  * - if the PTE is in IO space or ROM, then it can't be updated
1003                  *   and we return TRANSLATE_FAIL.
1004                  * - if the PTE changed by the time we went to update it, then
1005                  *   it is no longer valid and we must re-walk the page table.
1006                  */
1007                 MemoryRegion *mr;
1008                 hwaddr l = sizeof(target_ulong), addr1;
1009                 mr = address_space_translate(cs->as, pte_addr,
1010                     &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
1011                 if (memory_region_is_ram(mr)) {
1012                     target_ulong *pte_pa =
1013                         qemu_map_ram_ptr(mr->ram_block, addr1);
1014 #if TCG_OVERSIZED_GUEST
1015                     /* MTTCG is not enabled on oversized TCG guests so
1016                      * page table updates do not need to be atomic */
1017                     *pte_pa = pte = updated_pte;
1018 #else
1019                     target_ulong old_pte =
1020                         qatomic_cmpxchg(pte_pa, pte, updated_pte);
1021                     if (old_pte != pte) {
1022                         goto restart;
1023                     } else {
1024                         pte = updated_pte;
1025                     }
1026 #endif
1027                 } else {
1028                     /* misconfigured PTE in ROM (AD bits are not preset) or
1029                      * PTE is in IO space and can't be updated atomically */
1030                     return TRANSLATE_FAIL;
1031                 }
1032             }
1033 
1034             /* for superpage mappings, make a fake leaf PTE for the TLB's
1035                benefit. */
1036             target_ulong vpn = addr >> PGSHIFT;
1037 
1038             if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1039                 napot_bits = ctzl(ppn) + 1;
1040                 if ((i != (levels - 1)) || (napot_bits != 4)) {
1041                     return TRANSLATE_FAIL;
1042                 }
1043             }
1044 
1045             napot_mask = (1 << napot_bits) - 1;
1046             *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1047                           (vpn & (((target_ulong)1 << ptshift) - 1))
1048                          ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1049 
1050             /* set permissions on the TLB entry */
1051             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
1052                 *prot |= PAGE_READ;
1053             }
1054             if ((pte & PTE_X)) {
1055                 *prot |= PAGE_EXEC;
1056             }
1057             /* add write permission on stores or if the page is already dirty,
1058                so that we TLB miss on later writes to update the dirty bit */
1059             if ((pte & PTE_W) &&
1060                     (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1061                 *prot |= PAGE_WRITE;
1062             }
1063             return TRANSLATE_SUCCESS;
1064         }
1065     }
1066     return TRANSLATE_FAIL;
1067 }
1068 
1069 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1070                                 MMUAccessType access_type, bool pmp_violation,
1071                                 bool first_stage, bool two_stage,
1072                                 bool two_stage_indirect)
1073 {
1074     CPUState *cs = env_cpu(env);
1075     int page_fault_exceptions, vm;
1076     uint64_t stap_mode;
1077 
1078     if (riscv_cpu_mxl(env) == MXL_RV32) {
1079         stap_mode = SATP32_MODE;
1080     } else {
1081         stap_mode = SATP64_MODE;
1082     }
1083 
1084     if (first_stage) {
1085         vm = get_field(env->satp, stap_mode);
1086     } else {
1087         vm = get_field(env->hgatp, stap_mode);
1088     }
1089 
1090     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1091 
1092     switch (access_type) {
1093     case MMU_INST_FETCH:
1094         if (riscv_cpu_virt_enabled(env) && !first_stage) {
1095             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1096         } else {
1097             cs->exception_index = page_fault_exceptions ?
1098                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1099         }
1100         break;
1101     case MMU_DATA_LOAD:
1102         if (two_stage && !first_stage) {
1103             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1104         } else {
1105             cs->exception_index = page_fault_exceptions ?
1106                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1107         }
1108         break;
1109     case MMU_DATA_STORE:
1110         if (two_stage && !first_stage) {
1111             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1112         } else {
1113             cs->exception_index = page_fault_exceptions ?
1114                 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1115         }
1116         break;
1117     default:
1118         g_assert_not_reached();
1119     }
1120     env->badaddr = address;
1121     env->two_stage_lookup = two_stage;
1122     env->two_stage_indirect_lookup = two_stage_indirect;
1123 }
1124 
1125 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1126 {
1127     RISCVCPU *cpu = RISCV_CPU(cs);
1128     CPURISCVState *env = &cpu->env;
1129     hwaddr phys_addr;
1130     int prot;
1131     int mmu_idx = cpu_mmu_index(&cpu->env, false);
1132 
1133     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1134                              true, riscv_cpu_virt_enabled(env), true)) {
1135         return -1;
1136     }
1137 
1138     if (riscv_cpu_virt_enabled(env)) {
1139         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1140                                  0, mmu_idx, false, true, true)) {
1141             return -1;
1142         }
1143     }
1144 
1145     return phys_addr & TARGET_PAGE_MASK;
1146 }
1147 
1148 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1149                                      vaddr addr, unsigned size,
1150                                      MMUAccessType access_type,
1151                                      int mmu_idx, MemTxAttrs attrs,
1152                                      MemTxResult response, uintptr_t retaddr)
1153 {
1154     RISCVCPU *cpu = RISCV_CPU(cs);
1155     CPURISCVState *env = &cpu->env;
1156 
1157     if (access_type == MMU_DATA_STORE) {
1158         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1159     } else if (access_type == MMU_DATA_LOAD) {
1160         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1161     } else {
1162         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1163     }
1164 
1165     env->badaddr = addr;
1166     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1167                             riscv_cpu_two_stage_lookup(mmu_idx);
1168     env->two_stage_indirect_lookup = false;
1169     cpu_loop_exit_restore(cs, retaddr);
1170 }
1171 
1172 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1173                                    MMUAccessType access_type, int mmu_idx,
1174                                    uintptr_t retaddr)
1175 {
1176     RISCVCPU *cpu = RISCV_CPU(cs);
1177     CPURISCVState *env = &cpu->env;
1178     switch (access_type) {
1179     case MMU_INST_FETCH:
1180         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1181         break;
1182     case MMU_DATA_LOAD:
1183         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1184         break;
1185     case MMU_DATA_STORE:
1186         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1187         break;
1188     default:
1189         g_assert_not_reached();
1190     }
1191     env->badaddr = addr;
1192     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1193                             riscv_cpu_two_stage_lookup(mmu_idx);
1194     env->two_stage_indirect_lookup = false;
1195     cpu_loop_exit_restore(cs, retaddr);
1196 }
1197 
1198 
1199 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1200 {
1201     enum riscv_pmu_event_idx pmu_event_type;
1202 
1203     switch (access_type) {
1204     case MMU_INST_FETCH:
1205         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1206         break;
1207     case MMU_DATA_LOAD:
1208         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1209         break;
1210     case MMU_DATA_STORE:
1211         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1212         break;
1213     default:
1214         return;
1215     }
1216 
1217     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1218 }
1219 
1220 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1221                         MMUAccessType access_type, int mmu_idx,
1222                         bool probe, uintptr_t retaddr)
1223 {
1224     RISCVCPU *cpu = RISCV_CPU(cs);
1225     CPURISCVState *env = &cpu->env;
1226     vaddr im_address;
1227     hwaddr pa = 0;
1228     int prot, prot2, prot_pmp;
1229     bool pmp_violation = false;
1230     bool first_stage_error = true;
1231     bool two_stage_lookup = false;
1232     bool two_stage_indirect_error = false;
1233     int ret = TRANSLATE_FAIL;
1234     int mode = mmu_idx;
1235     /* default TLB page size */
1236     target_ulong tlb_size = TARGET_PAGE_SIZE;
1237 
1238     env->guest_phys_fault_addr = 0;
1239 
1240     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1241                   __func__, address, access_type, mmu_idx);
1242 
1243     /* MPRV does not affect the virtual-machine load/store
1244        instructions, HLV, HLVX, and HSV. */
1245     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1246         mode = get_field(env->hstatus, HSTATUS_SPVP);
1247     } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1248                get_field(env->mstatus, MSTATUS_MPRV)) {
1249         mode = get_field(env->mstatus, MSTATUS_MPP);
1250         if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1251             two_stage_lookup = true;
1252         }
1253     }
1254 
1255     pmu_tlb_fill_incr_ctr(cpu, access_type);
1256     if (riscv_cpu_virt_enabled(env) ||
1257         ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1258          access_type != MMU_INST_FETCH)) {
1259         /* Two stage lookup */
1260         ret = get_physical_address(env, &pa, &prot, address,
1261                                    &env->guest_phys_fault_addr, access_type,
1262                                    mmu_idx, true, true, false);
1263 
1264         /*
1265          * A G-stage exception may be triggered during two state lookup.
1266          * And the env->guest_phys_fault_addr has already been set in
1267          * get_physical_address().
1268          */
1269         if (ret == TRANSLATE_G_STAGE_FAIL) {
1270             first_stage_error = false;
1271             two_stage_indirect_error = true;
1272             access_type = MMU_DATA_LOAD;
1273         }
1274 
1275         qemu_log_mask(CPU_LOG_MMU,
1276                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1277                       HWADDR_FMT_plx " prot %d\n",
1278                       __func__, address, ret, pa, prot);
1279 
1280         if (ret == TRANSLATE_SUCCESS) {
1281             /* Second stage lookup */
1282             im_address = pa;
1283 
1284             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1285                                        access_type, mmu_idx, false, true,
1286                                        false);
1287 
1288             qemu_log_mask(CPU_LOG_MMU,
1289                     "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
1290                     HWADDR_FMT_plx " prot %d\n",
1291                     __func__, im_address, ret, pa, prot2);
1292 
1293             prot &= prot2;
1294 
1295             if (ret == TRANSLATE_SUCCESS) {
1296                 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1297                                                size, access_type, mode);
1298 
1299                 qemu_log_mask(CPU_LOG_MMU,
1300                               "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1301                               " %d tlb_size " TARGET_FMT_lu "\n",
1302                               __func__, pa, ret, prot_pmp, tlb_size);
1303 
1304                 prot &= prot_pmp;
1305             }
1306 
1307             if (ret != TRANSLATE_SUCCESS) {
1308                 /*
1309                  * Guest physical address translation failed, this is a HS
1310                  * level exception
1311                  */
1312                 first_stage_error = false;
1313                 env->guest_phys_fault_addr = (im_address |
1314                                               (address &
1315                                                (TARGET_PAGE_SIZE - 1))) >> 2;
1316             }
1317         }
1318     } else {
1319         /* Single stage lookup */
1320         ret = get_physical_address(env, &pa, &prot, address, NULL,
1321                                    access_type, mmu_idx, true, false, false);
1322 
1323         qemu_log_mask(CPU_LOG_MMU,
1324                       "%s address=%" VADDR_PRIx " ret %d physical "
1325                       HWADDR_FMT_plx " prot %d\n",
1326                       __func__, address, ret, pa, prot);
1327 
1328         if (ret == TRANSLATE_SUCCESS) {
1329             ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1330                                            size, access_type, mode);
1331 
1332             qemu_log_mask(CPU_LOG_MMU,
1333                           "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1334                           " %d tlb_size " TARGET_FMT_lu "\n",
1335                           __func__, pa, ret, prot_pmp, tlb_size);
1336 
1337             prot &= prot_pmp;
1338         }
1339     }
1340 
1341     if (ret == TRANSLATE_PMP_FAIL) {
1342         pmp_violation = true;
1343     }
1344 
1345     if (ret == TRANSLATE_SUCCESS) {
1346         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1347                      prot, mmu_idx, tlb_size);
1348         return true;
1349     } else if (probe) {
1350         return false;
1351     } else {
1352         raise_mmu_exception(env, address, access_type, pmp_violation,
1353                             first_stage_error,
1354                             riscv_cpu_virt_enabled(env) ||
1355                                 riscv_cpu_two_stage_lookup(mmu_idx),
1356                             two_stage_indirect_error);
1357         cpu_loop_exit_restore(cs, retaddr);
1358     }
1359 
1360     return true;
1361 }
1362 
1363 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1364                                            target_ulong insn,
1365                                            target_ulong taddr)
1366 {
1367     target_ulong xinsn = 0;
1368     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1369 
1370     /*
1371      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1372      * be uncompressed. The Quadrant 1 of RVC instruction space need
1373      * not be transformed because these instructions won't generate
1374      * any load/store trap.
1375      */
1376 
1377     if ((insn & 0x3) != 0x3) {
1378         /* Transform 16bit instruction into 32bit instruction */
1379         switch (GET_C_OP(insn)) {
1380         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1381             switch (GET_C_FUNC(insn)) {
1382             case OPC_RISC_C_FUNC_FLD_LQ:
1383                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1384                     xinsn = OPC_RISC_FLD;
1385                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1386                     access_rs1 = GET_C_RS1S(insn);
1387                     access_imm = GET_C_LD_IMM(insn);
1388                     access_size = 8;
1389                 }
1390                 break;
1391             case OPC_RISC_C_FUNC_LW: /* C.LW */
1392                 xinsn = OPC_RISC_LW;
1393                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1394                 access_rs1 = GET_C_RS1S(insn);
1395                 access_imm = GET_C_LW_IMM(insn);
1396                 access_size = 4;
1397                 break;
1398             case OPC_RISC_C_FUNC_FLW_LD:
1399                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1400                     xinsn = OPC_RISC_FLW;
1401                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1402                     access_rs1 = GET_C_RS1S(insn);
1403                     access_imm = GET_C_LW_IMM(insn);
1404                     access_size = 4;
1405                 } else { /* C.LD (RV64/RV128) */
1406                     xinsn = OPC_RISC_LD;
1407                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1408                     access_rs1 = GET_C_RS1S(insn);
1409                     access_imm = GET_C_LD_IMM(insn);
1410                     access_size = 8;
1411                 }
1412                 break;
1413             case OPC_RISC_C_FUNC_FSD_SQ:
1414                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1415                     xinsn = OPC_RISC_FSD;
1416                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1417                     access_rs1 = GET_C_RS1S(insn);
1418                     access_imm = GET_C_SD_IMM(insn);
1419                     access_size = 8;
1420                 }
1421                 break;
1422             case OPC_RISC_C_FUNC_SW: /* C.SW */
1423                 xinsn = OPC_RISC_SW;
1424                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1425                 access_rs1 = GET_C_RS1S(insn);
1426                 access_imm = GET_C_SW_IMM(insn);
1427                 access_size = 4;
1428                 break;
1429             case OPC_RISC_C_FUNC_FSW_SD:
1430                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1431                     xinsn = OPC_RISC_FSW;
1432                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1433                     access_rs1 = GET_C_RS1S(insn);
1434                     access_imm = GET_C_SW_IMM(insn);
1435                     access_size = 4;
1436                 } else { /* C.SD (RV64/RV128) */
1437                     xinsn = OPC_RISC_SD;
1438                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1439                     access_rs1 = GET_C_RS1S(insn);
1440                     access_imm = GET_C_SD_IMM(insn);
1441                     access_size = 8;
1442                 }
1443                 break;
1444             default:
1445                 break;
1446             }
1447             break;
1448         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1449             switch (GET_C_FUNC(insn)) {
1450             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1451                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1452                     xinsn = OPC_RISC_FLD;
1453                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1454                     access_rs1 = 2;
1455                     access_imm = GET_C_LDSP_IMM(insn);
1456                     access_size = 8;
1457                 }
1458                 break;
1459             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1460                 xinsn = OPC_RISC_LW;
1461                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1462                 access_rs1 = 2;
1463                 access_imm = GET_C_LWSP_IMM(insn);
1464                 access_size = 4;
1465                 break;
1466             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1467                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1468                     xinsn = OPC_RISC_FLW;
1469                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1470                     access_rs1 = 2;
1471                     access_imm = GET_C_LWSP_IMM(insn);
1472                     access_size = 4;
1473                 } else { /* C.LDSP (RV64/RV128) */
1474                     xinsn = OPC_RISC_LD;
1475                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1476                     access_rs1 = 2;
1477                     access_imm = GET_C_LDSP_IMM(insn);
1478                     access_size = 8;
1479                 }
1480                 break;
1481             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1482                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1483                     xinsn = OPC_RISC_FSD;
1484                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1485                     access_rs1 = 2;
1486                     access_imm = GET_C_SDSP_IMM(insn);
1487                     access_size = 8;
1488                 }
1489                 break;
1490             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1491                 xinsn = OPC_RISC_SW;
1492                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1493                 access_rs1 = 2;
1494                 access_imm = GET_C_SWSP_IMM(insn);
1495                 access_size = 4;
1496                 break;
1497             case 7:
1498                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1499                     xinsn = OPC_RISC_FSW;
1500                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1501                     access_rs1 = 2;
1502                     access_imm = GET_C_SWSP_IMM(insn);
1503                     access_size = 4;
1504                 } else { /* C.SDSP (RV64/RV128) */
1505                     xinsn = OPC_RISC_SD;
1506                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1507                     access_rs1 = 2;
1508                     access_imm = GET_C_SDSP_IMM(insn);
1509                     access_size = 8;
1510                 }
1511                 break;
1512             default:
1513                 break;
1514             }
1515             break;
1516         default:
1517             break;
1518         }
1519 
1520         /*
1521          * Clear Bit1 of transformed instruction to indicate that
1522          * original insruction was a 16bit instruction
1523          */
1524         xinsn &= ~((target_ulong)0x2);
1525     } else {
1526         /* Transform 32bit (or wider) instructions */
1527         switch (MASK_OP_MAJOR(insn)) {
1528         case OPC_RISC_ATOMIC:
1529             xinsn = insn;
1530             access_rs1 = GET_RS1(insn);
1531             access_size = 1 << GET_FUNCT3(insn);
1532             break;
1533         case OPC_RISC_LOAD:
1534         case OPC_RISC_FP_LOAD:
1535             xinsn = SET_I_IMM(insn, 0);
1536             access_rs1 = GET_RS1(insn);
1537             access_imm = GET_IMM(insn);
1538             access_size = 1 << GET_FUNCT3(insn);
1539             break;
1540         case OPC_RISC_STORE:
1541         case OPC_RISC_FP_STORE:
1542             xinsn = SET_S_IMM(insn, 0);
1543             access_rs1 = GET_RS1(insn);
1544             access_imm = GET_STORE_IMM(insn);
1545             access_size = 1 << GET_FUNCT3(insn);
1546             break;
1547         case OPC_RISC_SYSTEM:
1548             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1549                 xinsn = insn;
1550                 access_rs1 = GET_RS1(insn);
1551                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1552                 access_size = 1 << access_size;
1553             }
1554             break;
1555         default:
1556             break;
1557         }
1558     }
1559 
1560     if (access_size) {
1561         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1562                                (access_size - 1));
1563     }
1564 
1565     return xinsn;
1566 }
1567 #endif /* !CONFIG_USER_ONLY */
1568 
1569 /*
1570  * Handle Traps
1571  *
1572  * Adapted from Spike's processor_t::take_trap.
1573  *
1574  */
1575 void riscv_cpu_do_interrupt(CPUState *cs)
1576 {
1577 #if !defined(CONFIG_USER_ONLY)
1578 
1579     RISCVCPU *cpu = RISCV_CPU(cs);
1580     CPURISCVState *env = &cpu->env;
1581     bool write_gva = false;
1582     uint64_t s;
1583 
1584     /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1585      * so we mask off the MSB and separate into trap type and cause.
1586      */
1587     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1588     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1589     uint64_t deleg = async ? env->mideleg : env->medeleg;
1590     target_ulong tval = 0;
1591     target_ulong tinst = 0;
1592     target_ulong htval = 0;
1593     target_ulong mtval2 = 0;
1594 
1595     if  (cause == RISCV_EXCP_SEMIHOST) {
1596         do_common_semihosting(cs);
1597         env->pc += 4;
1598         return;
1599     }
1600 
1601     if (!async) {
1602         /* set tval to badaddr for traps with address information */
1603         switch (cause) {
1604         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1605         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1606         case RISCV_EXCP_LOAD_ADDR_MIS:
1607         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1608         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1609         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1610         case RISCV_EXCP_LOAD_PAGE_FAULT:
1611         case RISCV_EXCP_STORE_PAGE_FAULT:
1612             write_gva = env->two_stage_lookup;
1613             tval = env->badaddr;
1614             if (env->two_stage_indirect_lookup) {
1615                 /*
1616                  * special pseudoinstruction for G-stage fault taken while
1617                  * doing VS-stage page table walk.
1618                  */
1619                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1620             } else {
1621                 /*
1622                  * The "Addr. Offset" field in transformed instruction is
1623                  * non-zero only for misaligned access.
1624                  */
1625                 tinst = riscv_transformed_insn(env, env->bins, tval);
1626             }
1627             break;
1628         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1629         case RISCV_EXCP_INST_ADDR_MIS:
1630         case RISCV_EXCP_INST_ACCESS_FAULT:
1631         case RISCV_EXCP_INST_PAGE_FAULT:
1632             write_gva = env->two_stage_lookup;
1633             tval = env->badaddr;
1634             if (env->two_stage_indirect_lookup) {
1635                 /*
1636                  * special pseudoinstruction for G-stage fault taken while
1637                  * doing VS-stage page table walk.
1638                  */
1639                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1640             }
1641             break;
1642         case RISCV_EXCP_ILLEGAL_INST:
1643         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1644             tval = env->bins;
1645             break;
1646         case RISCV_EXCP_BREAKPOINT:
1647             if (cs->watchpoint_hit) {
1648                 tval = cs->watchpoint_hit->hitaddr;
1649                 cs->watchpoint_hit = NULL;
1650             }
1651             break;
1652         default:
1653             break;
1654         }
1655         /* ecall is dispatched as one cause so translate based on mode */
1656         if (cause == RISCV_EXCP_U_ECALL) {
1657             assert(env->priv <= 3);
1658 
1659             if (env->priv == PRV_M) {
1660                 cause = RISCV_EXCP_M_ECALL;
1661             } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
1662                 cause = RISCV_EXCP_VS_ECALL;
1663             } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
1664                 cause = RISCV_EXCP_S_ECALL;
1665             } else if (env->priv == PRV_U) {
1666                 cause = RISCV_EXCP_U_ECALL;
1667             }
1668         }
1669     }
1670 
1671     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1672                      riscv_cpu_get_trap_name(cause, async));
1673 
1674     qemu_log_mask(CPU_LOG_INT,
1675                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1676                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1677                   __func__, env->mhartid, async, cause, env->pc, tval,
1678                   riscv_cpu_get_trap_name(cause, async));
1679 
1680     if (env->priv <= PRV_S &&
1681             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1682         /* handle the trap in S-mode */
1683         if (riscv_has_ext(env, RVH)) {
1684             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1685 
1686             if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
1687                 /* Trap to VS mode */
1688                 /*
1689                  * See if we need to adjust cause. Yes if its VS mode interrupt
1690                  * no if hypervisor has delegated one of hs mode's interrupt
1691                  */
1692                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1693                     cause == IRQ_VS_EXT) {
1694                     cause = cause - 1;
1695                 }
1696                 write_gva = false;
1697             } else if (riscv_cpu_virt_enabled(env)) {
1698                 /* Trap into HS mode, from virt */
1699                 riscv_cpu_swap_hypervisor_regs(env);
1700                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1701                                          env->priv);
1702                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1703 
1704                 htval = env->guest_phys_fault_addr;
1705 
1706                 riscv_cpu_set_virt_enabled(env, 0);
1707             } else {
1708                 /* Trap into HS mode */
1709                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1710                 htval = env->guest_phys_fault_addr;
1711             }
1712             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1713         }
1714 
1715         s = env->mstatus;
1716         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1717         s = set_field(s, MSTATUS_SPP, env->priv);
1718         s = set_field(s, MSTATUS_SIE, 0);
1719         env->mstatus = s;
1720         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1721         env->sepc = env->pc;
1722         env->stval = tval;
1723         env->htval = htval;
1724         env->htinst = tinst;
1725         env->pc = (env->stvec >> 2 << 2) +
1726             ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1727         riscv_cpu_set_mode(env, PRV_S);
1728     } else {
1729         /* handle the trap in M-mode */
1730         if (riscv_has_ext(env, RVH)) {
1731             if (riscv_cpu_virt_enabled(env)) {
1732                 riscv_cpu_swap_hypervisor_regs(env);
1733             }
1734             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1735                                      riscv_cpu_virt_enabled(env));
1736             if (riscv_cpu_virt_enabled(env) && tval) {
1737                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1738             }
1739 
1740             mtval2 = env->guest_phys_fault_addr;
1741 
1742             /* Trapping to M mode, virt is disabled */
1743             riscv_cpu_set_virt_enabled(env, 0);
1744         }
1745 
1746         s = env->mstatus;
1747         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1748         s = set_field(s, MSTATUS_MPP, env->priv);
1749         s = set_field(s, MSTATUS_MIE, 0);
1750         env->mstatus = s;
1751         env->mcause = cause | ~(((target_ulong)-1) >> async);
1752         env->mepc = env->pc;
1753         env->mtval = tval;
1754         env->mtval2 = mtval2;
1755         env->mtinst = tinst;
1756         env->pc = (env->mtvec >> 2 << 2) +
1757             ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1758         riscv_cpu_set_mode(env, PRV_M);
1759     }
1760 
1761     /* NOTE: it is not necessary to yield load reservations here. It is only
1762      * necessary for an SC from "another hart" to cause a load reservation
1763      * to be yielded. Refer to the memory consistency model section of the
1764      * RISC-V ISA Specification.
1765      */
1766 
1767     env->two_stage_lookup = false;
1768     env->two_stage_indirect_lookup = false;
1769 #endif
1770     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1771 }
1772