xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision c13b169f)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "tcg-op.h"
25 #include "trace.h"
26 
27 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
28 {
29 #ifdef CONFIG_USER_ONLY
30     return 0;
31 #else
32     return env->priv;
33 #endif
34 }
35 
36 #ifndef CONFIG_USER_ONLY
37 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
38 {
39     target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
40     target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
41     target_ulong pending = atomic_read(&env->mip) & env->mie;
42     target_ulong mie = env->priv < PRV_M || (env->priv == PRV_M && mstatus_mie);
43     target_ulong sie = env->priv < PRV_S || (env->priv == PRV_S && mstatus_sie);
44     target_ulong irqs = (pending & ~env->mideleg & -mie) |
45                         (pending &  env->mideleg & -sie);
46 
47     if (irqs) {
48         return ctz64(irqs); /* since non-zero */
49     } else {
50         return EXCP_NONE; /* indicates no pending interrupt */
51     }
52 }
53 #endif
54 
55 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
56 {
57 #if !defined(CONFIG_USER_ONLY)
58     if (interrupt_request & CPU_INTERRUPT_HARD) {
59         RISCVCPU *cpu = RISCV_CPU(cs);
60         CPURISCVState *env = &cpu->env;
61         int interruptno = riscv_cpu_local_irq_pending(env);
62         if (interruptno >= 0) {
63             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
64             riscv_cpu_do_interrupt(cs);
65             return true;
66         }
67     }
68 #endif
69     return false;
70 }
71 
72 #if !defined(CONFIG_USER_ONLY)
73 
74 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
75 {
76     CPURISCVState *env = &cpu->env;
77     if (env->miclaim & interrupts) {
78         return -1;
79     } else {
80         env->miclaim |= interrupts;
81         return 0;
82     }
83 }
84 
85 struct CpuAsyncInfo {
86     uint32_t new_mip;
87 };
88 
89 static void riscv_cpu_update_mip_irqs_async(CPUState *target_cpu_state,
90                                             run_on_cpu_data data)
91 {
92     struct CpuAsyncInfo *info = (struct CpuAsyncInfo *) data.host_ptr;
93 
94     if (info->new_mip) {
95         cpu_interrupt(target_cpu_state, CPU_INTERRUPT_HARD);
96     } else {
97         cpu_reset_interrupt(target_cpu_state, CPU_INTERRUPT_HARD);
98     }
99 
100     g_free(info);
101 }
102 
103 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
104 {
105     CPURISCVState *env = &cpu->env;
106     CPUState *cs = CPU(cpu);
107     struct CpuAsyncInfo *info;
108     uint32_t old, new, cmp = atomic_read(&env->mip);
109 
110     do {
111         old = cmp;
112         new = (old & ~mask) | (value & mask);
113         cmp = atomic_cmpxchg(&env->mip, old, new);
114     } while (old != cmp);
115 
116     info = g_new(struct CpuAsyncInfo, 1);
117     info->new_mip = new;
118 
119     async_run_on_cpu(cs, riscv_cpu_update_mip_irqs_async,
120                      RUN_ON_CPU_HOST_PTR(info));
121 
122     return old;
123 }
124 
125 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
126 {
127     if (newpriv > PRV_M) {
128         g_assert_not_reached();
129     }
130     if (newpriv == PRV_H) {
131         newpriv = PRV_U;
132     }
133     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
134     env->priv = newpriv;
135 
136     /*
137      * Clear the load reservation - otherwise a reservation placed in one
138      * context/process can be used by another, resulting in an SC succeeding
139      * incorrectly. Version 2.2 of the ISA specification explicitly requires
140      * this behaviour, while later revisions say that the kernel "should" use
141      * an SC instruction to force the yielding of a load reservation on a
142      * preemptive context switch. As a result, do both.
143      */
144     env->load_res = -1;
145 }
146 
147 /* get_physical_address - get the physical address for this virtual address
148  *
149  * Do a page table walk to obtain the physical address corresponding to a
150  * virtual address. Returns 0 if the translation was successful
151  *
152  * Adapted from Spike's mmu_t::translate and mmu_t::walk
153  *
154  */
155 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
156                                 int *prot, target_ulong addr,
157                                 int access_type, int mmu_idx)
158 {
159     /* NOTE: the env->pc value visible here will not be
160      * correct, but the value visible to the exception handler
161      * (riscv_cpu_do_interrupt) is correct */
162 
163     int mode = mmu_idx;
164 
165     if (mode == PRV_M && access_type != MMU_INST_FETCH) {
166         if (get_field(env->mstatus, MSTATUS_MPRV)) {
167             mode = get_field(env->mstatus, MSTATUS_MPP);
168         }
169     }
170 
171     if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
172         *physical = addr;
173         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
174         return TRANSLATE_SUCCESS;
175     }
176 
177     *prot = 0;
178 
179     target_ulong base;
180     int levels, ptidxbits, ptesize, vm, sum;
181     int mxr = get_field(env->mstatus, MSTATUS_MXR);
182 
183     if (env->priv_ver >= PRIV_VERSION_1_10_0) {
184         base = get_field(env->satp, SATP_PPN) << PGSHIFT;
185         sum = get_field(env->mstatus, MSTATUS_SUM);
186         vm = get_field(env->satp, SATP_MODE);
187         switch (vm) {
188         case VM_1_10_SV32:
189           levels = 2; ptidxbits = 10; ptesize = 4; break;
190         case VM_1_10_SV39:
191           levels = 3; ptidxbits = 9; ptesize = 8; break;
192         case VM_1_10_SV48:
193           levels = 4; ptidxbits = 9; ptesize = 8; break;
194         case VM_1_10_SV57:
195           levels = 5; ptidxbits = 9; ptesize = 8; break;
196         case VM_1_10_MBARE:
197             *physical = addr;
198             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
199             return TRANSLATE_SUCCESS;
200         default:
201           g_assert_not_reached();
202         }
203     } else {
204         base = env->sptbr << PGSHIFT;
205         sum = !get_field(env->mstatus, MSTATUS_PUM);
206         vm = get_field(env->mstatus, MSTATUS_VM);
207         switch (vm) {
208         case VM_1_09_SV32:
209           levels = 2; ptidxbits = 10; ptesize = 4; break;
210         case VM_1_09_SV39:
211           levels = 3; ptidxbits = 9; ptesize = 8; break;
212         case VM_1_09_SV48:
213           levels = 4; ptidxbits = 9; ptesize = 8; break;
214         case VM_1_09_MBARE:
215             *physical = addr;
216             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
217             return TRANSLATE_SUCCESS;
218         default:
219           g_assert_not_reached();
220         }
221     }
222 
223     CPUState *cs = env_cpu(env);
224     int va_bits = PGSHIFT + levels * ptidxbits;
225     target_ulong mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
226     target_ulong masked_msbs = (addr >> (va_bits - 1)) & mask;
227     if (masked_msbs != 0 && masked_msbs != mask) {
228         return TRANSLATE_FAIL;
229     }
230 
231     int ptshift = (levels - 1) * ptidxbits;
232     int i;
233 
234 #if !TCG_OVERSIZED_GUEST
235 restart:
236 #endif
237     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
238         target_ulong idx = (addr >> (PGSHIFT + ptshift)) &
239                            ((1 << ptidxbits) - 1);
240 
241         /* check that physical address of PTE is legal */
242         target_ulong pte_addr = base + idx * ptesize;
243 
244         if (riscv_feature(env, RISCV_FEATURE_PMP) &&
245             !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
246             1 << MMU_DATA_LOAD, PRV_S)) {
247             return TRANSLATE_PMP_FAIL;
248         }
249 #if defined(TARGET_RISCV32)
250         target_ulong pte = ldl_phys(cs->as, pte_addr);
251 #elif defined(TARGET_RISCV64)
252         target_ulong pte = ldq_phys(cs->as, pte_addr);
253 #endif
254         target_ulong ppn = pte >> PTE_PPN_SHIFT;
255 
256         if (!(pte & PTE_V)) {
257             /* Invalid PTE */
258             return TRANSLATE_FAIL;
259         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
260             /* Inner PTE, continue walking */
261             base = ppn << PGSHIFT;
262         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
263             /* Reserved leaf PTE flags: PTE_W */
264             return TRANSLATE_FAIL;
265         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
266             /* Reserved leaf PTE flags: PTE_W + PTE_X */
267             return TRANSLATE_FAIL;
268         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
269                    (!sum || access_type == MMU_INST_FETCH))) {
270             /* User PTE flags when not U mode and mstatus.SUM is not set,
271                or the access type is an instruction fetch */
272             return TRANSLATE_FAIL;
273         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
274             /* Supervisor PTE flags when not S mode */
275             return TRANSLATE_FAIL;
276         } else if (ppn & ((1ULL << ptshift) - 1)) {
277             /* Misaligned PPN */
278             return TRANSLATE_FAIL;
279         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
280                    ((pte & PTE_X) && mxr))) {
281             /* Read access check failed */
282             return TRANSLATE_FAIL;
283         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
284             /* Write access check failed */
285             return TRANSLATE_FAIL;
286         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
287             /* Fetch access check failed */
288             return TRANSLATE_FAIL;
289         } else {
290             /* if necessary, set accessed and dirty bits. */
291             target_ulong updated_pte = pte | PTE_A |
292                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
293 
294             /* Page table updates need to be atomic with MTTCG enabled */
295             if (updated_pte != pte) {
296                 /*
297                  * - if accessed or dirty bits need updating, and the PTE is
298                  *   in RAM, then we do so atomically with a compare and swap.
299                  * - if the PTE is in IO space or ROM, then it can't be updated
300                  *   and we return TRANSLATE_FAIL.
301                  * - if the PTE changed by the time we went to update it, then
302                  *   it is no longer valid and we must re-walk the page table.
303                  */
304                 MemoryRegion *mr;
305                 hwaddr l = sizeof(target_ulong), addr1;
306                 mr = address_space_translate(cs->as, pte_addr,
307                     &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
308                 if (memory_region_is_ram(mr)) {
309                     target_ulong *pte_pa =
310                         qemu_map_ram_ptr(mr->ram_block, addr1);
311 #if TCG_OVERSIZED_GUEST
312                     /* MTTCG is not enabled on oversized TCG guests so
313                      * page table updates do not need to be atomic */
314                     *pte_pa = pte = updated_pte;
315 #else
316                     target_ulong old_pte =
317                         atomic_cmpxchg(pte_pa, pte, updated_pte);
318                     if (old_pte != pte) {
319                         goto restart;
320                     } else {
321                         pte = updated_pte;
322                     }
323 #endif
324                 } else {
325                     /* misconfigured PTE in ROM (AD bits are not preset) or
326                      * PTE is in IO space and can't be updated atomically */
327                     return TRANSLATE_FAIL;
328                 }
329             }
330 
331             /* for superpage mappings, make a fake leaf PTE for the TLB's
332                benefit. */
333             target_ulong vpn = addr >> PGSHIFT;
334             *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
335 
336             /* set permissions on the TLB entry */
337             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
338                 *prot |= PAGE_READ;
339             }
340             if ((pte & PTE_X)) {
341                 *prot |= PAGE_EXEC;
342             }
343             /* add write permission on stores or if the page is already dirty,
344                so that we TLB miss on later writes to update the dirty bit */
345             if ((pte & PTE_W) &&
346                     (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
347                 *prot |= PAGE_WRITE;
348             }
349             return TRANSLATE_SUCCESS;
350         }
351     }
352     return TRANSLATE_FAIL;
353 }
354 
355 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
356                                 MMUAccessType access_type, bool pmp_violation)
357 {
358     CPUState *cs = env_cpu(env);
359     int page_fault_exceptions =
360         (env->priv_ver >= PRIV_VERSION_1_10_0) &&
361         get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
362         !pmp_violation;
363     switch (access_type) {
364     case MMU_INST_FETCH:
365         cs->exception_index = page_fault_exceptions ?
366             RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
367         break;
368     case MMU_DATA_LOAD:
369         cs->exception_index = page_fault_exceptions ?
370             RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
371         break;
372     case MMU_DATA_STORE:
373         cs->exception_index = page_fault_exceptions ?
374             RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
375         break;
376     default:
377         g_assert_not_reached();
378     }
379     env->badaddr = address;
380 }
381 
382 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
383 {
384     RISCVCPU *cpu = RISCV_CPU(cs);
385     hwaddr phys_addr;
386     int prot;
387     int mmu_idx = cpu_mmu_index(&cpu->env, false);
388 
389     if (get_physical_address(&cpu->env, &phys_addr, &prot, addr, 0, mmu_idx)) {
390         return -1;
391     }
392     return phys_addr;
393 }
394 
395 void riscv_cpu_unassigned_access(CPUState *cs, hwaddr addr, bool is_write,
396                                  bool is_exec, int unused, unsigned size)
397 {
398     RISCVCPU *cpu = RISCV_CPU(cs);
399     CPURISCVState *env = &cpu->env;
400 
401     if (is_write) {
402         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
403     } else {
404         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
405     }
406 
407     env->badaddr = addr;
408     riscv_raise_exception(&cpu->env, cs->exception_index, GETPC());
409 }
410 
411 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
412                                    MMUAccessType access_type, int mmu_idx,
413                                    uintptr_t retaddr)
414 {
415     RISCVCPU *cpu = RISCV_CPU(cs);
416     CPURISCVState *env = &cpu->env;
417     switch (access_type) {
418     case MMU_INST_FETCH:
419         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
420         break;
421     case MMU_DATA_LOAD:
422         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
423         break;
424     case MMU_DATA_STORE:
425         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
426         break;
427     default:
428         g_assert_not_reached();
429     }
430     env->badaddr = addr;
431     riscv_raise_exception(env, cs->exception_index, retaddr);
432 }
433 #endif
434 
435 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
436                         MMUAccessType access_type, int mmu_idx,
437                         bool probe, uintptr_t retaddr)
438 {
439 #ifndef CONFIG_USER_ONLY
440     RISCVCPU *cpu = RISCV_CPU(cs);
441     CPURISCVState *env = &cpu->env;
442     hwaddr pa = 0;
443     int prot;
444     bool pmp_violation = false;
445     int ret = TRANSLATE_FAIL;
446     int mode = mmu_idx;
447 
448     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
449                   __func__, address, access_type, mmu_idx);
450 
451     ret = get_physical_address(env, &pa, &prot, address, access_type, mmu_idx);
452 
453     if (mode == PRV_M && access_type != MMU_INST_FETCH) {
454         if (get_field(env->mstatus, MSTATUS_MPRV)) {
455             mode = get_field(env->mstatus, MSTATUS_MPP);
456         }
457     }
458 
459     qemu_log_mask(CPU_LOG_MMU,
460                   "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx
461                   " prot %d\n", __func__, address, ret, pa, prot);
462 
463     if (riscv_feature(env, RISCV_FEATURE_PMP) &&
464         (ret == TRANSLATE_SUCCESS) &&
465         !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
466         ret = TRANSLATE_PMP_FAIL;
467     }
468     if (ret == TRANSLATE_PMP_FAIL) {
469         pmp_violation = true;
470     }
471     if (ret == TRANSLATE_SUCCESS) {
472         tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
473                      prot, mmu_idx, TARGET_PAGE_SIZE);
474         return true;
475     } else if (probe) {
476         return false;
477     } else {
478         raise_mmu_exception(env, address, access_type, pmp_violation);
479         riscv_raise_exception(env, cs->exception_index, retaddr);
480     }
481 #else
482     switch (access_type) {
483     case MMU_INST_FETCH:
484         cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
485         break;
486     case MMU_DATA_LOAD:
487         cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
488         break;
489     case MMU_DATA_STORE:
490         cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
491         break;
492     }
493     cpu_loop_exit_restore(cs, retaddr);
494 #endif
495 }
496 
497 /*
498  * Handle Traps
499  *
500  * Adapted from Spike's processor_t::take_trap.
501  *
502  */
503 void riscv_cpu_do_interrupt(CPUState *cs)
504 {
505 #if !defined(CONFIG_USER_ONLY)
506 
507     RISCVCPU *cpu = RISCV_CPU(cs);
508     CPURISCVState *env = &cpu->env;
509 
510     /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
511      * so we mask off the MSB and separate into trap type and cause.
512      */
513     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
514     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
515     target_ulong deleg = async ? env->mideleg : env->medeleg;
516     target_ulong tval = 0;
517 
518     static const int ecall_cause_map[] = {
519         [PRV_U] = RISCV_EXCP_U_ECALL,
520         [PRV_S] = RISCV_EXCP_S_ECALL,
521         [PRV_H] = RISCV_EXCP_H_ECALL,
522         [PRV_M] = RISCV_EXCP_M_ECALL
523     };
524 
525     if (!async) {
526         /* set tval to badaddr for traps with address information */
527         switch (cause) {
528         case RISCV_EXCP_INST_ADDR_MIS:
529         case RISCV_EXCP_INST_ACCESS_FAULT:
530         case RISCV_EXCP_LOAD_ADDR_MIS:
531         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
532         case RISCV_EXCP_LOAD_ACCESS_FAULT:
533         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
534         case RISCV_EXCP_INST_PAGE_FAULT:
535         case RISCV_EXCP_LOAD_PAGE_FAULT:
536         case RISCV_EXCP_STORE_PAGE_FAULT:
537             tval = env->badaddr;
538             break;
539         default:
540             break;
541         }
542         /* ecall is dispatched as one cause so translate based on mode */
543         if (cause == RISCV_EXCP_U_ECALL) {
544             assert(env->priv <= 3);
545             cause = ecall_cause_map[env->priv];
546         }
547     }
548 
549     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 16 ?
550         (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
551 
552     if (env->priv <= PRV_S &&
553             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
554         /* handle the trap in S-mode */
555         target_ulong s = env->mstatus;
556         s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
557             get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
558         s = set_field(s, MSTATUS_SPP, env->priv);
559         s = set_field(s, MSTATUS_SIE, 0);
560         env->mstatus = s;
561         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
562         env->sepc = env->pc;
563         env->sbadaddr = tval;
564         env->pc = (env->stvec >> 2 << 2) +
565             ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
566         riscv_cpu_set_mode(env, PRV_S);
567     } else {
568         /* handle the trap in M-mode */
569         target_ulong s = env->mstatus;
570         s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
571             get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
572         s = set_field(s, MSTATUS_MPP, env->priv);
573         s = set_field(s, MSTATUS_MIE, 0);
574         env->mstatus = s;
575         env->mcause = cause | ~(((target_ulong)-1) >> async);
576         env->mepc = env->pc;
577         env->mbadaddr = tval;
578         env->pc = (env->mtvec >> 2 << 2) +
579             ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
580         riscv_cpu_set_mode(env, PRV_M);
581     }
582 
583     /* NOTE: it is not necessary to yield load reservations here. It is only
584      * necessary for an SC from "another hart" to cause a load reservation
585      * to be yielded. Refer to the memory consistency model section of the
586      * RISC-V ISA Specification.
587      */
588 
589 #endif
590     cs->exception_index = EXCP_NONE; /* mark handled to qemu */
591 }
592