xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision bfc7ee12)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "pmu.h"
26 #include "exec/exec-all.h"
27 #include "instmap.h"
28 #include "tcg/tcg-op.h"
29 #include "trace.h"
30 #include "semihosting/common-semi.h"
31 #include "sysemu/cpu-timers.h"
32 #include "cpu_bits.h"
33 #include "debug.h"
34 #include "tcg/oversized-guest.h"
35 
36 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
37 {
38 #ifdef CONFIG_USER_ONLY
39     return 0;
40 #else
41     bool virt = env->virt_enabled;
42     int mode = env->priv;
43 
44     /* All priv -> mmu_idx mapping are here */
45     if (!ifetch) {
46         uint64_t status = env->mstatus;
47 
48         if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) {
49             mode = get_field(env->mstatus, MSTATUS_MPP);
50             virt = get_field(env->mstatus, MSTATUS_MPV);
51             if (virt) {
52                 status = env->vsstatus;
53             }
54         }
55         if (mode == PRV_S && get_field(status, MSTATUS_SUM)) {
56             mode = MMUIdx_S_SUM;
57         }
58     }
59 
60     return mode | (virt ? MMU_2STAGE_BIT : 0);
61 #endif
62 }
63 
64 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
65                           target_ulong *cs_base, uint32_t *pflags)
66 {
67     CPUState *cs = env_cpu(env);
68     RISCVCPU *cpu = RISCV_CPU(cs);
69     RISCVExtStatus fs, vs;
70     uint32_t flags = 0;
71 
72     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
73     *cs_base = 0;
74 
75     if (cpu->cfg.ext_zve32f) {
76         /*
77          * If env->vl equals to VLMAX, we can use generic vector operation
78          * expanders (GVEC) to accerlate the vector operations.
79          * However, as LMUL could be a fractional number. The maximum
80          * vector size can be operated might be less than 8 bytes,
81          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
82          * only when maxsz >= 8 bytes.
83          */
84         uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
85         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
86         uint32_t maxsz = vlmax << sew;
87         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
88                            (maxsz >= 8);
89         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
90         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
91         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
92                            FIELD_EX64(env->vtype, VTYPE, VLMUL));
93         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
94         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
95                            FIELD_EX64(env->vtype, VTYPE, VTA));
96         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
97                            FIELD_EX64(env->vtype, VTYPE, VMA));
98         flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
99     } else {
100         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
101     }
102 
103 #ifdef CONFIG_USER_ONLY
104     fs = EXT_STATUS_DIRTY;
105     vs = EXT_STATUS_DIRTY;
106 #else
107     flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
108 
109     flags |= cpu_mmu_index(env, 0);
110     fs = get_field(env->mstatus, MSTATUS_FS);
111     vs = get_field(env->mstatus, MSTATUS_VS);
112 
113     if (env->virt_enabled) {
114         flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
115         /*
116          * Merge DISABLED and !DIRTY states using MIN.
117          * We will set both fields when dirtying.
118          */
119         fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
120         vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
121     }
122 
123     if (cpu->cfg.debug && !icount_enabled()) {
124         flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
125     }
126 #endif
127 
128     flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
129     flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
130     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
131     if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
132         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
133     }
134     if (env->cur_pmbase != 0) {
135         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
136     }
137 
138     *pflags = flags;
139 }
140 
141 void riscv_cpu_update_mask(CPURISCVState *env)
142 {
143     target_ulong mask = -1, base = 0;
144     /*
145      * TODO: Current RVJ spec does not specify
146      * how the extension interacts with XLEN.
147      */
148 #ifndef CONFIG_USER_ONLY
149     if (riscv_has_ext(env, RVJ)) {
150         switch (env->priv) {
151         case PRV_M:
152             if (env->mmte & M_PM_ENABLE) {
153                 mask = env->mpmmask;
154                 base = env->mpmbase;
155             }
156             break;
157         case PRV_S:
158             if (env->mmte & S_PM_ENABLE) {
159                 mask = env->spmmask;
160                 base = env->spmbase;
161             }
162             break;
163         case PRV_U:
164             if (env->mmte & U_PM_ENABLE) {
165                 mask = env->upmmask;
166                 base = env->upmbase;
167             }
168             break;
169         default:
170             g_assert_not_reached();
171         }
172     }
173 #endif
174     if (env->xl == MXL_RV32) {
175         env->cur_pmmask = mask & UINT32_MAX;
176         env->cur_pmbase = base & UINT32_MAX;
177     } else {
178         env->cur_pmmask = mask;
179         env->cur_pmbase = base;
180     }
181 }
182 
183 #ifndef CONFIG_USER_ONLY
184 
185 /*
186  * The HS-mode is allowed to configure priority only for the
187  * following VS-mode local interrupts:
188  *
189  * 0  (Reserved interrupt, reads as zero)
190  * 1  Supervisor software interrupt
191  * 4  (Reserved interrupt, reads as zero)
192  * 5  Supervisor timer interrupt
193  * 8  (Reserved interrupt, reads as zero)
194  * 13 (Reserved interrupt)
195  * 14 "
196  * 15 "
197  * 16 "
198  * 17 "
199  * 18 "
200  * 19 "
201  * 20 "
202  * 21 "
203  * 22 "
204  * 23 "
205  */
206 
207 static const int hviprio_index2irq[] = {
208     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
209 static const int hviprio_index2rdzero[] = {
210     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
211 
212 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
213 {
214     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
215         return -EINVAL;
216     }
217 
218     if (out_irq) {
219         *out_irq = hviprio_index2irq[index];
220     }
221 
222     if (out_rdzero) {
223         *out_rdzero = hviprio_index2rdzero[index];
224     }
225 
226     return 0;
227 }
228 
229 /*
230  * Default priorities of local interrupts are defined in the
231  * RISC-V Advanced Interrupt Architecture specification.
232  *
233  * ----------------------------------------------------------------
234  *  Default  |
235  *  Priority | Major Interrupt Numbers
236  * ----------------------------------------------------------------
237  *  Highest  | 47, 23, 46, 45, 22, 44,
238  *           | 43, 21, 42, 41, 20, 40
239  *           |
240  *           | 11 (0b),  3 (03),  7 (07)
241  *           |  9 (09),  1 (01),  5 (05)
242  *           | 12 (0c)
243  *           | 10 (0a),  2 (02),  6 (06)
244  *           |
245  *           | 39, 19, 38, 37, 18, 36,
246  *  Lowest   | 35, 17, 34, 33, 16, 32
247  * ----------------------------------------------------------------
248  */
249 static const uint8_t default_iprio[64] = {
250     /* Custom interrupts 48 to 63 */
251     [63] = IPRIO_MMAXIPRIO,
252     [62] = IPRIO_MMAXIPRIO,
253     [61] = IPRIO_MMAXIPRIO,
254     [60] = IPRIO_MMAXIPRIO,
255     [59] = IPRIO_MMAXIPRIO,
256     [58] = IPRIO_MMAXIPRIO,
257     [57] = IPRIO_MMAXIPRIO,
258     [56] = IPRIO_MMAXIPRIO,
259     [55] = IPRIO_MMAXIPRIO,
260     [54] = IPRIO_MMAXIPRIO,
261     [53] = IPRIO_MMAXIPRIO,
262     [52] = IPRIO_MMAXIPRIO,
263     [51] = IPRIO_MMAXIPRIO,
264     [50] = IPRIO_MMAXIPRIO,
265     [49] = IPRIO_MMAXIPRIO,
266     [48] = IPRIO_MMAXIPRIO,
267 
268     /* Custom interrupts 24 to 31 */
269     [31] = IPRIO_MMAXIPRIO,
270     [30] = IPRIO_MMAXIPRIO,
271     [29] = IPRIO_MMAXIPRIO,
272     [28] = IPRIO_MMAXIPRIO,
273     [27] = IPRIO_MMAXIPRIO,
274     [26] = IPRIO_MMAXIPRIO,
275     [25] = IPRIO_MMAXIPRIO,
276     [24] = IPRIO_MMAXIPRIO,
277 
278     [47] = IPRIO_DEFAULT_UPPER,
279     [23] = IPRIO_DEFAULT_UPPER + 1,
280     [46] = IPRIO_DEFAULT_UPPER + 2,
281     [45] = IPRIO_DEFAULT_UPPER + 3,
282     [22] = IPRIO_DEFAULT_UPPER + 4,
283     [44] = IPRIO_DEFAULT_UPPER + 5,
284 
285     [43] = IPRIO_DEFAULT_UPPER + 6,
286     [21] = IPRIO_DEFAULT_UPPER + 7,
287     [42] = IPRIO_DEFAULT_UPPER + 8,
288     [41] = IPRIO_DEFAULT_UPPER + 9,
289     [20] = IPRIO_DEFAULT_UPPER + 10,
290     [40] = IPRIO_DEFAULT_UPPER + 11,
291 
292     [11] = IPRIO_DEFAULT_M,
293     [3]  = IPRIO_DEFAULT_M + 1,
294     [7]  = IPRIO_DEFAULT_M + 2,
295 
296     [9]  = IPRIO_DEFAULT_S,
297     [1]  = IPRIO_DEFAULT_S + 1,
298     [5]  = IPRIO_DEFAULT_S + 2,
299 
300     [12] = IPRIO_DEFAULT_SGEXT,
301 
302     [10] = IPRIO_DEFAULT_VS,
303     [2]  = IPRIO_DEFAULT_VS + 1,
304     [6]  = IPRIO_DEFAULT_VS + 2,
305 
306     [39] = IPRIO_DEFAULT_LOWER,
307     [19] = IPRIO_DEFAULT_LOWER + 1,
308     [38] = IPRIO_DEFAULT_LOWER + 2,
309     [37] = IPRIO_DEFAULT_LOWER + 3,
310     [18] = IPRIO_DEFAULT_LOWER + 4,
311     [36] = IPRIO_DEFAULT_LOWER + 5,
312 
313     [35] = IPRIO_DEFAULT_LOWER + 6,
314     [17] = IPRIO_DEFAULT_LOWER + 7,
315     [34] = IPRIO_DEFAULT_LOWER + 8,
316     [33] = IPRIO_DEFAULT_LOWER + 9,
317     [16] = IPRIO_DEFAULT_LOWER + 10,
318     [32] = IPRIO_DEFAULT_LOWER + 11,
319 };
320 
321 uint8_t riscv_cpu_default_priority(int irq)
322 {
323     if (irq < 0 || irq > 63) {
324         return IPRIO_MMAXIPRIO;
325     }
326 
327     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
328 };
329 
330 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
331                                     int extirq, unsigned int extirq_def_prio,
332                                     uint64_t pending, uint8_t *iprio)
333 {
334     int irq, best_irq = RISCV_EXCP_NONE;
335     unsigned int prio, best_prio = UINT_MAX;
336 
337     if (!pending) {
338         return RISCV_EXCP_NONE;
339     }
340 
341     irq = ctz64(pending);
342     if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
343                                   riscv_cpu_cfg(env)->ext_ssaia)) {
344         return irq;
345     }
346 
347     pending = pending >> irq;
348     while (pending) {
349         prio = iprio[irq];
350         if (!prio) {
351             if (irq == extirq) {
352                 prio = extirq_def_prio;
353             } else {
354                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
355                        1 : IPRIO_MMAXIPRIO;
356             }
357         }
358         if ((pending & 0x1) && (prio <= best_prio)) {
359             best_irq = irq;
360             best_prio = prio;
361         }
362         irq++;
363         pending = pending >> 1;
364     }
365 
366     return best_irq;
367 }
368 
369 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
370 {
371     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
372     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
373     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
374 
375     return (env->mip | vsgein | vstip) & env->mie;
376 }
377 
378 int riscv_cpu_mirq_pending(CPURISCVState *env)
379 {
380     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
381                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
382 
383     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
384                                     irqs, env->miprio);
385 }
386 
387 int riscv_cpu_sirq_pending(CPURISCVState *env)
388 {
389     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
390                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
391 
392     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
393                                     irqs, env->siprio);
394 }
395 
396 int riscv_cpu_vsirq_pending(CPURISCVState *env)
397 {
398     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
399                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
400 
401     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
402                                     irqs >> 1, env->hviprio);
403 }
404 
405 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
406 {
407     int virq;
408     uint64_t irqs, pending, mie, hsie, vsie;
409 
410     /* Determine interrupt enable state of all privilege modes */
411     if (env->virt_enabled) {
412         mie = 1;
413         hsie = 1;
414         vsie = (env->priv < PRV_S) ||
415                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
416     } else {
417         mie = (env->priv < PRV_M) ||
418               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
419         hsie = (env->priv < PRV_S) ||
420                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
421         vsie = 0;
422     }
423 
424     /* Determine all pending interrupts */
425     pending = riscv_cpu_all_pending(env);
426 
427     /* Check M-mode interrupts */
428     irqs = pending & ~env->mideleg & -mie;
429     if (irqs) {
430         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
431                                         irqs, env->miprio);
432     }
433 
434     /* Check HS-mode interrupts */
435     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
436     if (irqs) {
437         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
438                                         irqs, env->siprio);
439     }
440 
441     /* Check VS-mode interrupts */
442     irqs = pending & env->mideleg & env->hideleg & -vsie;
443     if (irqs) {
444         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
445                                         irqs >> 1, env->hviprio);
446         return (virq <= 0) ? virq : virq + 1;
447     }
448 
449     /* Indicate no pending interrupt */
450     return RISCV_EXCP_NONE;
451 }
452 
453 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
454 {
455     if (interrupt_request & CPU_INTERRUPT_HARD) {
456         RISCVCPU *cpu = RISCV_CPU(cs);
457         CPURISCVState *env = &cpu->env;
458         int interruptno = riscv_cpu_local_irq_pending(env);
459         if (interruptno >= 0) {
460             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
461             riscv_cpu_do_interrupt(cs);
462             return true;
463         }
464     }
465     return false;
466 }
467 
468 /* Return true is floating point support is currently enabled */
469 bool riscv_cpu_fp_enabled(CPURISCVState *env)
470 {
471     if (env->mstatus & MSTATUS_FS) {
472         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
473             return false;
474         }
475         return true;
476     }
477 
478     return false;
479 }
480 
481 /* Return true is vector support is currently enabled */
482 bool riscv_cpu_vector_enabled(CPURISCVState *env)
483 {
484     if (env->mstatus & MSTATUS_VS) {
485         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
486             return false;
487         }
488         return true;
489     }
490 
491     return false;
492 }
493 
494 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
495 {
496     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
497                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
498                             MSTATUS64_UXL | MSTATUS_VS;
499 
500     if (riscv_has_ext(env, RVF)) {
501         mstatus_mask |= MSTATUS_FS;
502     }
503     bool current_virt = env->virt_enabled;
504 
505     g_assert(riscv_has_ext(env, RVH));
506 
507     if (current_virt) {
508         /* Current V=1 and we are about to change to V=0 */
509         env->vsstatus = env->mstatus & mstatus_mask;
510         env->mstatus &= ~mstatus_mask;
511         env->mstatus |= env->mstatus_hs;
512 
513         env->vstvec = env->stvec;
514         env->stvec = env->stvec_hs;
515 
516         env->vsscratch = env->sscratch;
517         env->sscratch = env->sscratch_hs;
518 
519         env->vsepc = env->sepc;
520         env->sepc = env->sepc_hs;
521 
522         env->vscause = env->scause;
523         env->scause = env->scause_hs;
524 
525         env->vstval = env->stval;
526         env->stval = env->stval_hs;
527 
528         env->vsatp = env->satp;
529         env->satp = env->satp_hs;
530     } else {
531         /* Current V=0 and we are about to change to V=1 */
532         env->mstatus_hs = env->mstatus & mstatus_mask;
533         env->mstatus &= ~mstatus_mask;
534         env->mstatus |= env->vsstatus;
535 
536         env->stvec_hs = env->stvec;
537         env->stvec = env->vstvec;
538 
539         env->sscratch_hs = env->sscratch;
540         env->sscratch = env->vsscratch;
541 
542         env->sepc_hs = env->sepc;
543         env->sepc = env->vsepc;
544 
545         env->scause_hs = env->scause;
546         env->scause = env->vscause;
547 
548         env->stval_hs = env->stval;
549         env->stval = env->vstval;
550 
551         env->satp_hs = env->satp;
552         env->satp = env->vsatp;
553     }
554 }
555 
556 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
557 {
558     if (!riscv_has_ext(env, RVH)) {
559         return 0;
560     }
561 
562     return env->geilen;
563 }
564 
565 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
566 {
567     if (!riscv_has_ext(env, RVH)) {
568         return;
569     }
570 
571     if (geilen > (TARGET_LONG_BITS - 1)) {
572         return;
573     }
574 
575     env->geilen = geilen;
576 }
577 
578 /* This function can only be called to set virt when RVH is enabled */
579 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
580 {
581     /* Flush the TLB on all virt mode changes. */
582     if (env->virt_enabled != enable) {
583         tlb_flush(env_cpu(env));
584     }
585 
586     env->virt_enabled = enable;
587 
588     if (enable) {
589         /*
590          * The guest external interrupts from an interrupt controller are
591          * delivered only when the Guest/VM is running (i.e. V=1). This means
592          * any guest external interrupt which is triggered while the Guest/VM
593          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
594          * with sluggish response to serial console input and other I/O events.
595          *
596          * To solve this, we check and inject interrupt after setting V=1.
597          */
598         riscv_cpu_update_mip(env, 0, 0);
599     }
600 }
601 
602 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
603 {
604     CPURISCVState *env = &cpu->env;
605     if (env->miclaim & interrupts) {
606         return -1;
607     } else {
608         env->miclaim |= interrupts;
609         return 0;
610     }
611 }
612 
613 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
614                               uint64_t value)
615 {
616     CPUState *cs = env_cpu(env);
617     uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
618 
619     if (env->virt_enabled) {
620         gein = get_field(env->hstatus, HSTATUS_VGEIN);
621         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
622     }
623 
624     vstip = env->vstime_irq ? MIP_VSTIP : 0;
625 
626     QEMU_IOTHREAD_LOCK_GUARD();
627 
628     env->mip = (env->mip & ~mask) | (value & mask);
629 
630     if (env->mip | vsgein | vstip) {
631         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
632     } else {
633         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
634     }
635 
636     return old;
637 }
638 
639 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
640                              void *arg)
641 {
642     env->rdtime_fn = fn;
643     env->rdtime_fn_arg = arg;
644 }
645 
646 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
647                                    int (*rmw_fn)(void *arg,
648                                                  target_ulong reg,
649                                                  target_ulong *val,
650                                                  target_ulong new_val,
651                                                  target_ulong write_mask),
652                                    void *rmw_fn_arg)
653 {
654     if (priv <= PRV_M) {
655         env->aia_ireg_rmw_fn[priv] = rmw_fn;
656         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
657     }
658 }
659 
660 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
661 {
662     g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
663 
664     if (icount_enabled() && newpriv != env->priv) {
665         riscv_itrigger_update_priv(env);
666     }
667     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
668     env->priv = newpriv;
669     env->xl = cpu_recompute_xl(env);
670     riscv_cpu_update_mask(env);
671 
672     /*
673      * Clear the load reservation - otherwise a reservation placed in one
674      * context/process can be used by another, resulting in an SC succeeding
675      * incorrectly. Version 2.2 of the ISA specification explicitly requires
676      * this behaviour, while later revisions say that the kernel "should" use
677      * an SC instruction to force the yielding of a load reservation on a
678      * preemptive context switch. As a result, do both.
679      */
680     env->load_res = -1;
681 }
682 
683 /*
684  * get_physical_address_pmp - check PMP permission for this physical address
685  *
686  * Match the PMP region and check permission for this physical address and it's
687  * TLB page. Returns 0 if the permission checking was successful
688  *
689  * @env: CPURISCVState
690  * @prot: The returned protection attributes
691  * @addr: The physical address to be checked permission
692  * @access_type: The type of MMU access
693  * @mode: Indicates current privilege level.
694  */
695 static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr,
696                                     int size, MMUAccessType access_type,
697                                     int mode)
698 {
699     pmp_priv_t pmp_priv;
700     int pmp_index = -1;
701 
702     if (!riscv_cpu_cfg(env)->pmp) {
703         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
704         return TRANSLATE_SUCCESS;
705     }
706 
707     pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
708                                    &pmp_priv, mode);
709     if (pmp_index < 0) {
710         *prot = 0;
711         return TRANSLATE_PMP_FAIL;
712     }
713 
714     *prot = pmp_priv_to_page_prot(pmp_priv);
715 
716     return TRANSLATE_SUCCESS;
717 }
718 
719 /*
720  * get_physical_address - get the physical address for this virtual address
721  *
722  * Do a page table walk to obtain the physical address corresponding to a
723  * virtual address. Returns 0 if the translation was successful
724  *
725  * Adapted from Spike's mmu_t::translate and mmu_t::walk
726  *
727  * @env: CPURISCVState
728  * @physical: This will be set to the calculated physical address
729  * @prot: The returned protection attributes
730  * @addr: The virtual address or guest physical address to be translated
731  * @fault_pte_addr: If not NULL, this will be set to fault pte address
732  *                  when a error occurs on pte address translation.
733  *                  This will already be shifted to match htval.
734  * @access_type: The type of MMU access
735  * @mmu_idx: Indicates current privilege level
736  * @first_stage: Are we in first stage translation?
737  *               Second stage is used for hypervisor guest translation
738  * @two_stage: Are we going to perform two stage translation
739  * @is_debug: Is this access from a debugger or the monitor?
740  */
741 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
742                                 int *ret_prot, vaddr addr,
743                                 target_ulong *fault_pte_addr,
744                                 int access_type, int mmu_idx,
745                                 bool first_stage, bool two_stage,
746                                 bool is_debug)
747 {
748     /*
749      * NOTE: the env->pc value visible here will not be
750      * correct, but the value visible to the exception handler
751      * (riscv_cpu_do_interrupt) is correct
752      */
753     MemTxResult res;
754     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
755     int mode = mmuidx_priv(mmu_idx);
756     bool use_background = false;
757     hwaddr ppn;
758     int napot_bits = 0;
759     target_ulong napot_mask;
760 
761     /*
762      * Check if we should use the background registers for the two
763      * stage translation. We don't need to check if we actually need
764      * two stage translation as that happened before this function
765      * was called. Background registers will be used if the guest has
766      * forced a two stage translation to be on (in HS or M mode).
767      */
768     if (!env->virt_enabled && two_stage) {
769         use_background = true;
770     }
771 
772     if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
773         *physical = addr;
774         *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
775         return TRANSLATE_SUCCESS;
776     }
777 
778     *ret_prot = 0;
779 
780     hwaddr base;
781     int levels, ptidxbits, ptesize, vm, widened;
782 
783     if (first_stage == true) {
784         if (use_background) {
785             if (riscv_cpu_mxl(env) == MXL_RV32) {
786                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
787                 vm = get_field(env->vsatp, SATP32_MODE);
788             } else {
789                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
790                 vm = get_field(env->vsatp, SATP64_MODE);
791             }
792         } else {
793             if (riscv_cpu_mxl(env) == MXL_RV32) {
794                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
795                 vm = get_field(env->satp, SATP32_MODE);
796             } else {
797                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
798                 vm = get_field(env->satp, SATP64_MODE);
799             }
800         }
801         widened = 0;
802     } else {
803         if (riscv_cpu_mxl(env) == MXL_RV32) {
804             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
805             vm = get_field(env->hgatp, SATP32_MODE);
806         } else {
807             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
808             vm = get_field(env->hgatp, SATP64_MODE);
809         }
810         widened = 2;
811     }
812 
813     switch (vm) {
814     case VM_1_10_SV32:
815       levels = 2; ptidxbits = 10; ptesize = 4; break;
816     case VM_1_10_SV39:
817       levels = 3; ptidxbits = 9; ptesize = 8; break;
818     case VM_1_10_SV48:
819       levels = 4; ptidxbits = 9; ptesize = 8; break;
820     case VM_1_10_SV57:
821       levels = 5; ptidxbits = 9; ptesize = 8; break;
822     case VM_1_10_MBARE:
823         *physical = addr;
824         *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
825         return TRANSLATE_SUCCESS;
826     default:
827       g_assert_not_reached();
828     }
829 
830     CPUState *cs = env_cpu(env);
831     int va_bits = PGSHIFT + levels * ptidxbits + widened;
832 
833     if (first_stage == true) {
834         target_ulong mask, masked_msbs;
835 
836         if (TARGET_LONG_BITS > (va_bits - 1)) {
837             mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
838         } else {
839             mask = 0;
840         }
841         masked_msbs = (addr >> (va_bits - 1)) & mask;
842 
843         if (masked_msbs != 0 && masked_msbs != mask) {
844             return TRANSLATE_FAIL;
845         }
846     } else {
847         if (vm != VM_1_10_SV32 && addr >> va_bits != 0) {
848             return TRANSLATE_FAIL;
849         }
850     }
851 
852     bool pbmte = env->menvcfg & MENVCFG_PBMTE;
853     bool hade = env->menvcfg & MENVCFG_HADE;
854 
855     if (first_stage && two_stage && env->virt_enabled) {
856         pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
857         hade = hade && (env->henvcfg & HENVCFG_HADE);
858     }
859 
860     int ptshift = (levels - 1) * ptidxbits;
861     target_ulong pte;
862     hwaddr pte_addr;
863     int i;
864 
865 #if !TCG_OVERSIZED_GUEST
866 restart:
867 #endif
868     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
869         target_ulong idx;
870         if (i == 0) {
871             idx = (addr >> (PGSHIFT + ptshift)) &
872                            ((1 << (ptidxbits + widened)) - 1);
873         } else {
874             idx = (addr >> (PGSHIFT + ptshift)) &
875                            ((1 << ptidxbits) - 1);
876         }
877 
878         /* check that physical address of PTE is legal */
879 
880         if (two_stage && first_stage) {
881             int vbase_prot;
882             hwaddr vbase;
883 
884             /* Do the second stage translation on the base PTE address. */
885             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
886                                                  base, NULL, MMU_DATA_LOAD,
887                                                  MMUIdx_U, false, true,
888                                                  is_debug);
889 
890             if (vbase_ret != TRANSLATE_SUCCESS) {
891                 if (fault_pte_addr) {
892                     *fault_pte_addr = (base + idx * ptesize) >> 2;
893                 }
894                 return TRANSLATE_G_STAGE_FAIL;
895             }
896 
897             pte_addr = vbase + idx * ptesize;
898         } else {
899             pte_addr = base + idx * ptesize;
900         }
901 
902         int pmp_prot;
903         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr,
904                                                sizeof(target_ulong),
905                                                MMU_DATA_LOAD, PRV_S);
906         if (pmp_ret != TRANSLATE_SUCCESS) {
907             return TRANSLATE_PMP_FAIL;
908         }
909 
910         if (riscv_cpu_mxl(env) == MXL_RV32) {
911             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
912         } else {
913             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
914         }
915 
916         if (res != MEMTX_OK) {
917             return TRANSLATE_FAIL;
918         }
919 
920         if (riscv_cpu_sxl(env) == MXL_RV32) {
921             ppn = pte >> PTE_PPN_SHIFT;
922         } else {
923             if (pte & PTE_RESERVED) {
924                 return TRANSLATE_FAIL;
925             }
926 
927             if (!pbmte && (pte & PTE_PBMT)) {
928                 return TRANSLATE_FAIL;
929             }
930 
931             if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
932                 return TRANSLATE_FAIL;
933             }
934 
935             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
936         }
937 
938         if (!(pte & PTE_V)) {
939             /* Invalid PTE */
940             return TRANSLATE_FAIL;
941         }
942         if (pte & (PTE_R | PTE_W | PTE_X)) {
943             goto leaf;
944         }
945 
946         /* Inner PTE, continue walking */
947         if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
948             return TRANSLATE_FAIL;
949         }
950         base = ppn << PGSHIFT;
951     }
952 
953     /* No leaf pte at any translation level. */
954     return TRANSLATE_FAIL;
955 
956  leaf:
957     if (ppn & ((1ULL << ptshift) - 1)) {
958         /* Misaligned PPN */
959         return TRANSLATE_FAIL;
960     }
961     if (!pbmte && (pte & PTE_PBMT)) {
962         /* Reserved without Svpbmt. */
963         return TRANSLATE_FAIL;
964     }
965 
966     /* Check for reserved combinations of RWX flags. */
967     switch (pte & (PTE_R | PTE_W | PTE_X)) {
968     case PTE_W:
969     case PTE_W | PTE_X:
970         return TRANSLATE_FAIL;
971     }
972 
973     int prot = 0;
974     if (pte & PTE_R) {
975         prot |= PAGE_READ;
976     }
977     if (pte & PTE_W) {
978         prot |= PAGE_WRITE;
979     }
980     if (pte & PTE_X) {
981         bool mxr;
982 
983         if (first_stage == true) {
984             mxr = get_field(env->mstatus, MSTATUS_MXR);
985         } else {
986             mxr = get_field(env->vsstatus, MSTATUS_MXR);
987         }
988         if (mxr) {
989             prot |= PAGE_READ;
990         }
991         prot |= PAGE_EXEC;
992     }
993 
994     if (pte & PTE_U) {
995         if (mode != PRV_U) {
996             if (!mmuidx_sum(mmu_idx)) {
997                 return TRANSLATE_FAIL;
998             }
999             /* SUM allows only read+write, not execute. */
1000             prot &= PAGE_READ | PAGE_WRITE;
1001         }
1002     } else if (mode != PRV_S) {
1003         /* Supervisor PTE flags when not S mode */
1004         return TRANSLATE_FAIL;
1005     }
1006 
1007     if (!((prot >> access_type) & 1)) {
1008         /* Access check failed */
1009         return TRANSLATE_FAIL;
1010     }
1011 
1012     /* If necessary, set accessed and dirty bits. */
1013     target_ulong updated_pte = pte | PTE_A |
1014                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
1015 
1016     /* Page table updates need to be atomic with MTTCG enabled */
1017     if (updated_pte != pte && !is_debug) {
1018         if (!hade) {
1019             return TRANSLATE_FAIL;
1020         }
1021 
1022         /*
1023          * - if accessed or dirty bits need updating, and the PTE is
1024          *   in RAM, then we do so atomically with a compare and swap.
1025          * - if the PTE is in IO space or ROM, then it can't be updated
1026          *   and we return TRANSLATE_FAIL.
1027          * - if the PTE changed by the time we went to update it, then
1028          *   it is no longer valid and we must re-walk the page table.
1029          */
1030         MemoryRegion *mr;
1031         hwaddr l = sizeof(target_ulong), addr1;
1032         mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1033                                      false, MEMTXATTRS_UNSPECIFIED);
1034         if (memory_region_is_ram(mr)) {
1035             target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1);
1036 #if TCG_OVERSIZED_GUEST
1037             /*
1038              * MTTCG is not enabled on oversized TCG guests so
1039              * page table updates do not need to be atomic
1040              */
1041             *pte_pa = pte = updated_pte;
1042 #else
1043             target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte);
1044             if (old_pte != pte) {
1045                 goto restart;
1046             }
1047             pte = updated_pte;
1048 #endif
1049         } else {
1050             /*
1051              * Misconfigured PTE in ROM (AD bits are not preset) or
1052              * PTE is in IO space and can't be updated atomically.
1053              */
1054             return TRANSLATE_FAIL;
1055         }
1056     }
1057 
1058     /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */
1059     target_ulong vpn = addr >> PGSHIFT;
1060 
1061     if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1062         napot_bits = ctzl(ppn) + 1;
1063         if ((i != (levels - 1)) || (napot_bits != 4)) {
1064             return TRANSLATE_FAIL;
1065         }
1066     }
1067 
1068     napot_mask = (1 << napot_bits) - 1;
1069     *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1070                   (vpn & (((target_ulong)1 << ptshift) - 1))
1071                  ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1072 
1073     /*
1074      * Remove write permission unless this is a store, or the page is
1075      * already dirty, so that we TLB miss on later writes to update
1076      * the dirty bit.
1077      */
1078     if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) {
1079         prot &= ~PAGE_WRITE;
1080     }
1081     *ret_prot = prot;
1082 
1083     return TRANSLATE_SUCCESS;
1084 }
1085 
1086 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1087                                 MMUAccessType access_type, bool pmp_violation,
1088                                 bool first_stage, bool two_stage,
1089                                 bool two_stage_indirect)
1090 {
1091     CPUState *cs = env_cpu(env);
1092     int page_fault_exceptions, vm;
1093     uint64_t stap_mode;
1094 
1095     if (riscv_cpu_mxl(env) == MXL_RV32) {
1096         stap_mode = SATP32_MODE;
1097     } else {
1098         stap_mode = SATP64_MODE;
1099     }
1100 
1101     if (first_stage) {
1102         vm = get_field(env->satp, stap_mode);
1103     } else {
1104         vm = get_field(env->hgatp, stap_mode);
1105     }
1106 
1107     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1108 
1109     switch (access_type) {
1110     case MMU_INST_FETCH:
1111         if (env->virt_enabled && !first_stage) {
1112             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1113         } else {
1114             cs->exception_index = page_fault_exceptions ?
1115                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1116         }
1117         break;
1118     case MMU_DATA_LOAD:
1119         if (two_stage && !first_stage) {
1120             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1121         } else {
1122             cs->exception_index = page_fault_exceptions ?
1123                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1124         }
1125         break;
1126     case MMU_DATA_STORE:
1127         if (two_stage && !first_stage) {
1128             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1129         } else {
1130             cs->exception_index = page_fault_exceptions ?
1131                 RISCV_EXCP_STORE_PAGE_FAULT :
1132                 RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1133         }
1134         break;
1135     default:
1136         g_assert_not_reached();
1137     }
1138     env->badaddr = address;
1139     env->two_stage_lookup = two_stage;
1140     env->two_stage_indirect_lookup = two_stage_indirect;
1141 }
1142 
1143 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1144 {
1145     RISCVCPU *cpu = RISCV_CPU(cs);
1146     CPURISCVState *env = &cpu->env;
1147     hwaddr phys_addr;
1148     int prot;
1149     int mmu_idx = cpu_mmu_index(&cpu->env, false);
1150 
1151     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1152                              true, env->virt_enabled, true)) {
1153         return -1;
1154     }
1155 
1156     if (env->virt_enabled) {
1157         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1158                                  0, mmu_idx, false, true, true)) {
1159             return -1;
1160         }
1161     }
1162 
1163     return phys_addr & TARGET_PAGE_MASK;
1164 }
1165 
1166 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1167                                      vaddr addr, unsigned size,
1168                                      MMUAccessType access_type,
1169                                      int mmu_idx, MemTxAttrs attrs,
1170                                      MemTxResult response, uintptr_t retaddr)
1171 {
1172     RISCVCPU *cpu = RISCV_CPU(cs);
1173     CPURISCVState *env = &cpu->env;
1174 
1175     if (access_type == MMU_DATA_STORE) {
1176         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1177     } else if (access_type == MMU_DATA_LOAD) {
1178         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1179     } else {
1180         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1181     }
1182 
1183     env->badaddr = addr;
1184     env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1185     env->two_stage_indirect_lookup = false;
1186     cpu_loop_exit_restore(cs, retaddr);
1187 }
1188 
1189 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1190                                    MMUAccessType access_type, int mmu_idx,
1191                                    uintptr_t retaddr)
1192 {
1193     RISCVCPU *cpu = RISCV_CPU(cs);
1194     CPURISCVState *env = &cpu->env;
1195     switch (access_type) {
1196     case MMU_INST_FETCH:
1197         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1198         break;
1199     case MMU_DATA_LOAD:
1200         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1201         break;
1202     case MMU_DATA_STORE:
1203         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1204         break;
1205     default:
1206         g_assert_not_reached();
1207     }
1208     env->badaddr = addr;
1209     env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1210     env->two_stage_indirect_lookup = false;
1211     cpu_loop_exit_restore(cs, retaddr);
1212 }
1213 
1214 
1215 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1216 {
1217     enum riscv_pmu_event_idx pmu_event_type;
1218 
1219     switch (access_type) {
1220     case MMU_INST_FETCH:
1221         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1222         break;
1223     case MMU_DATA_LOAD:
1224         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1225         break;
1226     case MMU_DATA_STORE:
1227         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1228         break;
1229     default:
1230         return;
1231     }
1232 
1233     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1234 }
1235 
1236 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1237                         MMUAccessType access_type, int mmu_idx,
1238                         bool probe, uintptr_t retaddr)
1239 {
1240     RISCVCPU *cpu = RISCV_CPU(cs);
1241     CPURISCVState *env = &cpu->env;
1242     vaddr im_address;
1243     hwaddr pa = 0;
1244     int prot, prot2, prot_pmp;
1245     bool pmp_violation = false;
1246     bool first_stage_error = true;
1247     bool two_stage_lookup = mmuidx_2stage(mmu_idx);
1248     bool two_stage_indirect_error = false;
1249     int ret = TRANSLATE_FAIL;
1250     int mode = mmu_idx;
1251     /* default TLB page size */
1252     target_ulong tlb_size = TARGET_PAGE_SIZE;
1253 
1254     env->guest_phys_fault_addr = 0;
1255 
1256     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1257                   __func__, address, access_type, mmu_idx);
1258 
1259     pmu_tlb_fill_incr_ctr(cpu, access_type);
1260     if (two_stage_lookup) {
1261         /* Two stage lookup */
1262         ret = get_physical_address(env, &pa, &prot, address,
1263                                    &env->guest_phys_fault_addr, access_type,
1264                                    mmu_idx, true, true, false);
1265 
1266         /*
1267          * A G-stage exception may be triggered during two state lookup.
1268          * And the env->guest_phys_fault_addr has already been set in
1269          * get_physical_address().
1270          */
1271         if (ret == TRANSLATE_G_STAGE_FAIL) {
1272             first_stage_error = false;
1273             two_stage_indirect_error = true;
1274             access_type = MMU_DATA_LOAD;
1275         }
1276 
1277         qemu_log_mask(CPU_LOG_MMU,
1278                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1279                       HWADDR_FMT_plx " prot %d\n",
1280                       __func__, address, ret, pa, prot);
1281 
1282         if (ret == TRANSLATE_SUCCESS) {
1283             /* Second stage lookup */
1284             im_address = pa;
1285 
1286             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1287                                        access_type, MMUIdx_U, false, true,
1288                                        false);
1289 
1290             qemu_log_mask(CPU_LOG_MMU,
1291                           "%s 2nd-stage address=%" VADDR_PRIx
1292                           " ret %d physical "
1293                           HWADDR_FMT_plx " prot %d\n",
1294                           __func__, im_address, ret, pa, prot2);
1295 
1296             prot &= prot2;
1297 
1298             if (ret == TRANSLATE_SUCCESS) {
1299                 ret = get_physical_address_pmp(env, &prot_pmp, pa,
1300                                                size, access_type, mode);
1301                 tlb_size = pmp_get_tlb_size(env, pa);
1302 
1303                 qemu_log_mask(CPU_LOG_MMU,
1304                               "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1305                               " %d tlb_size " TARGET_FMT_lu "\n",
1306                               __func__, pa, ret, prot_pmp, tlb_size);
1307 
1308                 prot &= prot_pmp;
1309             }
1310 
1311             if (ret != TRANSLATE_SUCCESS) {
1312                 /*
1313                  * Guest physical address translation failed, this is a HS
1314                  * level exception
1315                  */
1316                 first_stage_error = false;
1317                 env->guest_phys_fault_addr = (im_address |
1318                                               (address &
1319                                                (TARGET_PAGE_SIZE - 1))) >> 2;
1320             }
1321         }
1322     } else {
1323         /* Single stage lookup */
1324         ret = get_physical_address(env, &pa, &prot, address, NULL,
1325                                    access_type, mmu_idx, true, false, false);
1326 
1327         qemu_log_mask(CPU_LOG_MMU,
1328                       "%s address=%" VADDR_PRIx " ret %d physical "
1329                       HWADDR_FMT_plx " prot %d\n",
1330                       __func__, address, ret, pa, prot);
1331 
1332         if (ret == TRANSLATE_SUCCESS) {
1333             ret = get_physical_address_pmp(env, &prot_pmp, pa,
1334                                            size, access_type, mode);
1335             tlb_size = pmp_get_tlb_size(env, pa);
1336 
1337             qemu_log_mask(CPU_LOG_MMU,
1338                           "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1339                           " %d tlb_size " TARGET_FMT_lu "\n",
1340                           __func__, pa, ret, prot_pmp, tlb_size);
1341 
1342             prot &= prot_pmp;
1343         }
1344     }
1345 
1346     if (ret == TRANSLATE_PMP_FAIL) {
1347         pmp_violation = true;
1348     }
1349 
1350     if (ret == TRANSLATE_SUCCESS) {
1351         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1352                      prot, mmu_idx, tlb_size);
1353         return true;
1354     } else if (probe) {
1355         return false;
1356     } else {
1357         raise_mmu_exception(env, address, access_type, pmp_violation,
1358                             first_stage_error, two_stage_lookup,
1359                             two_stage_indirect_error);
1360         cpu_loop_exit_restore(cs, retaddr);
1361     }
1362 
1363     return true;
1364 }
1365 
1366 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1367                                            target_ulong insn,
1368                                            target_ulong taddr)
1369 {
1370     target_ulong xinsn = 0;
1371     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1372 
1373     /*
1374      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1375      * be uncompressed. The Quadrant 1 of RVC instruction space need
1376      * not be transformed because these instructions won't generate
1377      * any load/store trap.
1378      */
1379 
1380     if ((insn & 0x3) != 0x3) {
1381         /* Transform 16bit instruction into 32bit instruction */
1382         switch (GET_C_OP(insn)) {
1383         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1384             switch (GET_C_FUNC(insn)) {
1385             case OPC_RISC_C_FUNC_FLD_LQ:
1386                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1387                     xinsn = OPC_RISC_FLD;
1388                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1389                     access_rs1 = GET_C_RS1S(insn);
1390                     access_imm = GET_C_LD_IMM(insn);
1391                     access_size = 8;
1392                 }
1393                 break;
1394             case OPC_RISC_C_FUNC_LW: /* C.LW */
1395                 xinsn = OPC_RISC_LW;
1396                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1397                 access_rs1 = GET_C_RS1S(insn);
1398                 access_imm = GET_C_LW_IMM(insn);
1399                 access_size = 4;
1400                 break;
1401             case OPC_RISC_C_FUNC_FLW_LD:
1402                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1403                     xinsn = OPC_RISC_FLW;
1404                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1405                     access_rs1 = GET_C_RS1S(insn);
1406                     access_imm = GET_C_LW_IMM(insn);
1407                     access_size = 4;
1408                 } else { /* C.LD (RV64/RV128) */
1409                     xinsn = OPC_RISC_LD;
1410                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1411                     access_rs1 = GET_C_RS1S(insn);
1412                     access_imm = GET_C_LD_IMM(insn);
1413                     access_size = 8;
1414                 }
1415                 break;
1416             case OPC_RISC_C_FUNC_FSD_SQ:
1417                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1418                     xinsn = OPC_RISC_FSD;
1419                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1420                     access_rs1 = GET_C_RS1S(insn);
1421                     access_imm = GET_C_SD_IMM(insn);
1422                     access_size = 8;
1423                 }
1424                 break;
1425             case OPC_RISC_C_FUNC_SW: /* C.SW */
1426                 xinsn = OPC_RISC_SW;
1427                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1428                 access_rs1 = GET_C_RS1S(insn);
1429                 access_imm = GET_C_SW_IMM(insn);
1430                 access_size = 4;
1431                 break;
1432             case OPC_RISC_C_FUNC_FSW_SD:
1433                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1434                     xinsn = OPC_RISC_FSW;
1435                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1436                     access_rs1 = GET_C_RS1S(insn);
1437                     access_imm = GET_C_SW_IMM(insn);
1438                     access_size = 4;
1439                 } else { /* C.SD (RV64/RV128) */
1440                     xinsn = OPC_RISC_SD;
1441                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1442                     access_rs1 = GET_C_RS1S(insn);
1443                     access_imm = GET_C_SD_IMM(insn);
1444                     access_size = 8;
1445                 }
1446                 break;
1447             default:
1448                 break;
1449             }
1450             break;
1451         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1452             switch (GET_C_FUNC(insn)) {
1453             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1454                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1455                     xinsn = OPC_RISC_FLD;
1456                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1457                     access_rs1 = 2;
1458                     access_imm = GET_C_LDSP_IMM(insn);
1459                     access_size = 8;
1460                 }
1461                 break;
1462             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1463                 xinsn = OPC_RISC_LW;
1464                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1465                 access_rs1 = 2;
1466                 access_imm = GET_C_LWSP_IMM(insn);
1467                 access_size = 4;
1468                 break;
1469             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1470                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1471                     xinsn = OPC_RISC_FLW;
1472                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1473                     access_rs1 = 2;
1474                     access_imm = GET_C_LWSP_IMM(insn);
1475                     access_size = 4;
1476                 } else { /* C.LDSP (RV64/RV128) */
1477                     xinsn = OPC_RISC_LD;
1478                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1479                     access_rs1 = 2;
1480                     access_imm = GET_C_LDSP_IMM(insn);
1481                     access_size = 8;
1482                 }
1483                 break;
1484             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1485                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1486                     xinsn = OPC_RISC_FSD;
1487                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1488                     access_rs1 = 2;
1489                     access_imm = GET_C_SDSP_IMM(insn);
1490                     access_size = 8;
1491                 }
1492                 break;
1493             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1494                 xinsn = OPC_RISC_SW;
1495                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1496                 access_rs1 = 2;
1497                 access_imm = GET_C_SWSP_IMM(insn);
1498                 access_size = 4;
1499                 break;
1500             case 7:
1501                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1502                     xinsn = OPC_RISC_FSW;
1503                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1504                     access_rs1 = 2;
1505                     access_imm = GET_C_SWSP_IMM(insn);
1506                     access_size = 4;
1507                 } else { /* C.SDSP (RV64/RV128) */
1508                     xinsn = OPC_RISC_SD;
1509                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1510                     access_rs1 = 2;
1511                     access_imm = GET_C_SDSP_IMM(insn);
1512                     access_size = 8;
1513                 }
1514                 break;
1515             default:
1516                 break;
1517             }
1518             break;
1519         default:
1520             break;
1521         }
1522 
1523         /*
1524          * Clear Bit1 of transformed instruction to indicate that
1525          * original insruction was a 16bit instruction
1526          */
1527         xinsn &= ~((target_ulong)0x2);
1528     } else {
1529         /* Transform 32bit (or wider) instructions */
1530         switch (MASK_OP_MAJOR(insn)) {
1531         case OPC_RISC_ATOMIC:
1532             xinsn = insn;
1533             access_rs1 = GET_RS1(insn);
1534             access_size = 1 << GET_FUNCT3(insn);
1535             break;
1536         case OPC_RISC_LOAD:
1537         case OPC_RISC_FP_LOAD:
1538             xinsn = SET_I_IMM(insn, 0);
1539             access_rs1 = GET_RS1(insn);
1540             access_imm = GET_IMM(insn);
1541             access_size = 1 << GET_FUNCT3(insn);
1542             break;
1543         case OPC_RISC_STORE:
1544         case OPC_RISC_FP_STORE:
1545             xinsn = SET_S_IMM(insn, 0);
1546             access_rs1 = GET_RS1(insn);
1547             access_imm = GET_STORE_IMM(insn);
1548             access_size = 1 << GET_FUNCT3(insn);
1549             break;
1550         case OPC_RISC_SYSTEM:
1551             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1552                 xinsn = insn;
1553                 access_rs1 = GET_RS1(insn);
1554                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1555                 access_size = 1 << access_size;
1556             }
1557             break;
1558         default:
1559             break;
1560         }
1561     }
1562 
1563     if (access_size) {
1564         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1565                                (access_size - 1));
1566     }
1567 
1568     return xinsn;
1569 }
1570 #endif /* !CONFIG_USER_ONLY */
1571 
1572 /*
1573  * Handle Traps
1574  *
1575  * Adapted from Spike's processor_t::take_trap.
1576  *
1577  */
1578 void riscv_cpu_do_interrupt(CPUState *cs)
1579 {
1580 #if !defined(CONFIG_USER_ONLY)
1581 
1582     RISCVCPU *cpu = RISCV_CPU(cs);
1583     CPURISCVState *env = &cpu->env;
1584     bool write_gva = false;
1585     uint64_t s;
1586 
1587     /*
1588      * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1589      * so we mask off the MSB and separate into trap type and cause.
1590      */
1591     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1592     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1593     uint64_t deleg = async ? env->mideleg : env->medeleg;
1594     target_ulong tval = 0;
1595     target_ulong tinst = 0;
1596     target_ulong htval = 0;
1597     target_ulong mtval2 = 0;
1598 
1599     if  (cause == RISCV_EXCP_SEMIHOST) {
1600         do_common_semihosting(cs);
1601         env->pc += 4;
1602         return;
1603     }
1604 
1605     if (!async) {
1606         /* set tval to badaddr for traps with address information */
1607         switch (cause) {
1608         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1609         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1610         case RISCV_EXCP_LOAD_ADDR_MIS:
1611         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1612         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1613         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1614         case RISCV_EXCP_LOAD_PAGE_FAULT:
1615         case RISCV_EXCP_STORE_PAGE_FAULT:
1616             write_gva = env->two_stage_lookup;
1617             tval = env->badaddr;
1618             if (env->two_stage_indirect_lookup) {
1619                 /*
1620                  * special pseudoinstruction for G-stage fault taken while
1621                  * doing VS-stage page table walk.
1622                  */
1623                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1624             } else {
1625                 /*
1626                  * The "Addr. Offset" field in transformed instruction is
1627                  * non-zero only for misaligned access.
1628                  */
1629                 tinst = riscv_transformed_insn(env, env->bins, tval);
1630             }
1631             break;
1632         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1633         case RISCV_EXCP_INST_ADDR_MIS:
1634         case RISCV_EXCP_INST_ACCESS_FAULT:
1635         case RISCV_EXCP_INST_PAGE_FAULT:
1636             write_gva = env->two_stage_lookup;
1637             tval = env->badaddr;
1638             if (env->two_stage_indirect_lookup) {
1639                 /*
1640                  * special pseudoinstruction for G-stage fault taken while
1641                  * doing VS-stage page table walk.
1642                  */
1643                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1644             }
1645             break;
1646         case RISCV_EXCP_ILLEGAL_INST:
1647         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1648             tval = env->bins;
1649             break;
1650         case RISCV_EXCP_BREAKPOINT:
1651             if (cs->watchpoint_hit) {
1652                 tval = cs->watchpoint_hit->hitaddr;
1653                 cs->watchpoint_hit = NULL;
1654             }
1655             break;
1656         default:
1657             break;
1658         }
1659         /* ecall is dispatched as one cause so translate based on mode */
1660         if (cause == RISCV_EXCP_U_ECALL) {
1661             assert(env->priv <= 3);
1662 
1663             if (env->priv == PRV_M) {
1664                 cause = RISCV_EXCP_M_ECALL;
1665             } else if (env->priv == PRV_S && env->virt_enabled) {
1666                 cause = RISCV_EXCP_VS_ECALL;
1667             } else if (env->priv == PRV_S && !env->virt_enabled) {
1668                 cause = RISCV_EXCP_S_ECALL;
1669             } else if (env->priv == PRV_U) {
1670                 cause = RISCV_EXCP_U_ECALL;
1671             }
1672         }
1673     }
1674 
1675     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1676                      riscv_cpu_get_trap_name(cause, async));
1677 
1678     qemu_log_mask(CPU_LOG_INT,
1679                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1680                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1681                   __func__, env->mhartid, async, cause, env->pc, tval,
1682                   riscv_cpu_get_trap_name(cause, async));
1683 
1684     if (env->priv <= PRV_S &&
1685             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1686         /* handle the trap in S-mode */
1687         if (riscv_has_ext(env, RVH)) {
1688             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1689 
1690             if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
1691                 /* Trap to VS mode */
1692                 /*
1693                  * See if we need to adjust cause. Yes if its VS mode interrupt
1694                  * no if hypervisor has delegated one of hs mode's interrupt
1695                  */
1696                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1697                     cause == IRQ_VS_EXT) {
1698                     cause = cause - 1;
1699                 }
1700                 write_gva = false;
1701             } else if (env->virt_enabled) {
1702                 /* Trap into HS mode, from virt */
1703                 riscv_cpu_swap_hypervisor_regs(env);
1704                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1705                                          env->priv);
1706                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1707 
1708                 htval = env->guest_phys_fault_addr;
1709 
1710                 riscv_cpu_set_virt_enabled(env, 0);
1711             } else {
1712                 /* Trap into HS mode */
1713                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1714                 htval = env->guest_phys_fault_addr;
1715             }
1716             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1717         }
1718 
1719         s = env->mstatus;
1720         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1721         s = set_field(s, MSTATUS_SPP, env->priv);
1722         s = set_field(s, MSTATUS_SIE, 0);
1723         env->mstatus = s;
1724         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1725         env->sepc = env->pc;
1726         env->stval = tval;
1727         env->htval = htval;
1728         env->htinst = tinst;
1729         env->pc = (env->stvec >> 2 << 2) +
1730                   ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1731         riscv_cpu_set_mode(env, PRV_S);
1732     } else {
1733         /* handle the trap in M-mode */
1734         if (riscv_has_ext(env, RVH)) {
1735             if (env->virt_enabled) {
1736                 riscv_cpu_swap_hypervisor_regs(env);
1737             }
1738             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1739                                      env->virt_enabled);
1740             if (env->virt_enabled && tval) {
1741                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1742             }
1743 
1744             mtval2 = env->guest_phys_fault_addr;
1745 
1746             /* Trapping to M mode, virt is disabled */
1747             riscv_cpu_set_virt_enabled(env, 0);
1748         }
1749 
1750         s = env->mstatus;
1751         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1752         s = set_field(s, MSTATUS_MPP, env->priv);
1753         s = set_field(s, MSTATUS_MIE, 0);
1754         env->mstatus = s;
1755         env->mcause = cause | ~(((target_ulong)-1) >> async);
1756         env->mepc = env->pc;
1757         env->mtval = tval;
1758         env->mtval2 = mtval2;
1759         env->mtinst = tinst;
1760         env->pc = (env->mtvec >> 2 << 2) +
1761                   ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1762         riscv_cpu_set_mode(env, PRV_M);
1763     }
1764 
1765     /*
1766      * NOTE: it is not necessary to yield load reservations here. It is only
1767      * necessary for an SC from "another hart" to cause a load reservation
1768      * to be yielded. Refer to the memory consistency model section of the
1769      * RISC-V ISA Specification.
1770      */
1771 
1772     env->two_stage_lookup = false;
1773     env->two_stage_indirect_lookup = false;
1774 #endif
1775     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1776 }
1777