1 /* 2 * RISC-V CPU helpers for qemu. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/main-loop.h" 23 #include "cpu.h" 24 #include "internals.h" 25 #include "pmu.h" 26 #include "exec/exec-all.h" 27 #include "instmap.h" 28 #include "tcg/tcg-op.h" 29 #include "trace.h" 30 #include "semihosting/common-semi.h" 31 #include "sysemu/cpu-timers.h" 32 #include "cpu_bits.h" 33 #include "debug.h" 34 #include "tcg/oversized-guest.h" 35 36 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch) 37 { 38 #ifdef CONFIG_USER_ONLY 39 return 0; 40 #else 41 bool virt = env->virt_enabled; 42 int mode = env->priv; 43 44 /* All priv -> mmu_idx mapping are here */ 45 if (!ifetch) { 46 uint64_t status = env->mstatus; 47 48 if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) { 49 mode = get_field(env->mstatus, MSTATUS_MPP); 50 virt = get_field(env->mstatus, MSTATUS_MPV) && 51 (mode != PRV_M); 52 if (virt) { 53 status = env->vsstatus; 54 } 55 } 56 if (mode == PRV_S && get_field(status, MSTATUS_SUM)) { 57 mode = MMUIdx_S_SUM; 58 } 59 } 60 61 return mode | (virt ? MMU_2STAGE_BIT : 0); 62 #endif 63 } 64 65 void cpu_get_tb_cpu_state(CPURISCVState *env, vaddr *pc, 66 uint64_t *cs_base, uint32_t *pflags) 67 { 68 CPUState *cs = env_cpu(env); 69 RISCVCPU *cpu = RISCV_CPU(cs); 70 RISCVExtStatus fs, vs; 71 uint32_t flags = 0; 72 73 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc; 74 *cs_base = 0; 75 76 if (cpu->cfg.ext_zve32f) { 77 /* 78 * If env->vl equals to VLMAX, we can use generic vector operation 79 * expanders (GVEC) to accerlate the vector operations. 80 * However, as LMUL could be a fractional number. The maximum 81 * vector size can be operated might be less than 8 bytes, 82 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true 83 * only when maxsz >= 8 bytes. 84 */ 85 uint32_t vlmax = vext_get_vlmax(cpu, env->vtype); 86 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW); 87 uint32_t maxsz = vlmax << sew; 88 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) && 89 (maxsz >= 8); 90 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill); 91 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew); 92 flags = FIELD_DP32(flags, TB_FLAGS, LMUL, 93 FIELD_EX64(env->vtype, VTYPE, VLMUL)); 94 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax); 95 flags = FIELD_DP32(flags, TB_FLAGS, VTA, 96 FIELD_EX64(env->vtype, VTYPE, VTA)); 97 flags = FIELD_DP32(flags, TB_FLAGS, VMA, 98 FIELD_EX64(env->vtype, VTYPE, VMA)); 99 flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0); 100 } else { 101 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1); 102 } 103 104 #ifdef CONFIG_USER_ONLY 105 fs = EXT_STATUS_DIRTY; 106 vs = EXT_STATUS_DIRTY; 107 #else 108 flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv); 109 110 flags |= cpu_mmu_index(env, 0); 111 fs = get_field(env->mstatus, MSTATUS_FS); 112 vs = get_field(env->mstatus, MSTATUS_VS); 113 114 if (env->virt_enabled) { 115 flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1); 116 /* 117 * Merge DISABLED and !DIRTY states using MIN. 118 * We will set both fields when dirtying. 119 */ 120 fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS)); 121 vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS)); 122 } 123 124 /* With Zfinx, floating point is enabled/disabled by Smstateen. */ 125 if (!riscv_has_ext(env, RVF)) { 126 fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE) 127 ? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED; 128 } 129 130 if (cpu->cfg.debug && !icount_enabled()) { 131 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled); 132 } 133 #endif 134 135 flags = FIELD_DP32(flags, TB_FLAGS, FS, fs); 136 flags = FIELD_DP32(flags, TB_FLAGS, VS, vs); 137 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl); 138 flags = FIELD_DP32(flags, TB_FLAGS, AXL, cpu_address_xl(env)); 139 if (env->cur_pmmask != 0) { 140 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1); 141 } 142 if (env->cur_pmbase != 0) { 143 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1); 144 } 145 146 *pflags = flags; 147 } 148 149 void riscv_cpu_update_mask(CPURISCVState *env) 150 { 151 target_ulong mask = 0, base = 0; 152 RISCVMXL xl = env->xl; 153 /* 154 * TODO: Current RVJ spec does not specify 155 * how the extension interacts with XLEN. 156 */ 157 #ifndef CONFIG_USER_ONLY 158 int mode = cpu_address_mode(env); 159 xl = cpu_get_xl(env, mode); 160 if (riscv_has_ext(env, RVJ)) { 161 switch (mode) { 162 case PRV_M: 163 if (env->mmte & M_PM_ENABLE) { 164 mask = env->mpmmask; 165 base = env->mpmbase; 166 } 167 break; 168 case PRV_S: 169 if (env->mmte & S_PM_ENABLE) { 170 mask = env->spmmask; 171 base = env->spmbase; 172 } 173 break; 174 case PRV_U: 175 if (env->mmte & U_PM_ENABLE) { 176 mask = env->upmmask; 177 base = env->upmbase; 178 } 179 break; 180 default: 181 g_assert_not_reached(); 182 } 183 } 184 #endif 185 if (xl == MXL_RV32) { 186 env->cur_pmmask = mask & UINT32_MAX; 187 env->cur_pmbase = base & UINT32_MAX; 188 } else { 189 env->cur_pmmask = mask; 190 env->cur_pmbase = base; 191 } 192 } 193 194 #ifndef CONFIG_USER_ONLY 195 196 /* 197 * The HS-mode is allowed to configure priority only for the 198 * following VS-mode local interrupts: 199 * 200 * 0 (Reserved interrupt, reads as zero) 201 * 1 Supervisor software interrupt 202 * 4 (Reserved interrupt, reads as zero) 203 * 5 Supervisor timer interrupt 204 * 8 (Reserved interrupt, reads as zero) 205 * 13 (Reserved interrupt) 206 * 14 " 207 * 15 " 208 * 16 " 209 * 17 " 210 * 18 " 211 * 19 " 212 * 20 " 213 * 21 " 214 * 22 " 215 * 23 " 216 */ 217 218 static const int hviprio_index2irq[] = { 219 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 }; 220 static const int hviprio_index2rdzero[] = { 221 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 222 223 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero) 224 { 225 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) { 226 return -EINVAL; 227 } 228 229 if (out_irq) { 230 *out_irq = hviprio_index2irq[index]; 231 } 232 233 if (out_rdzero) { 234 *out_rdzero = hviprio_index2rdzero[index]; 235 } 236 237 return 0; 238 } 239 240 /* 241 * Default priorities of local interrupts are defined in the 242 * RISC-V Advanced Interrupt Architecture specification. 243 * 244 * ---------------------------------------------------------------- 245 * Default | 246 * Priority | Major Interrupt Numbers 247 * ---------------------------------------------------------------- 248 * Highest | 47, 23, 46, 45, 22, 44, 249 * | 43, 21, 42, 41, 20, 40 250 * | 251 * | 11 (0b), 3 (03), 7 (07) 252 * | 9 (09), 1 (01), 5 (05) 253 * | 12 (0c) 254 * | 10 (0a), 2 (02), 6 (06) 255 * | 256 * | 39, 19, 38, 37, 18, 36, 257 * Lowest | 35, 17, 34, 33, 16, 32 258 * ---------------------------------------------------------------- 259 */ 260 static const uint8_t default_iprio[64] = { 261 /* Custom interrupts 48 to 63 */ 262 [63] = IPRIO_MMAXIPRIO, 263 [62] = IPRIO_MMAXIPRIO, 264 [61] = IPRIO_MMAXIPRIO, 265 [60] = IPRIO_MMAXIPRIO, 266 [59] = IPRIO_MMAXIPRIO, 267 [58] = IPRIO_MMAXIPRIO, 268 [57] = IPRIO_MMAXIPRIO, 269 [56] = IPRIO_MMAXIPRIO, 270 [55] = IPRIO_MMAXIPRIO, 271 [54] = IPRIO_MMAXIPRIO, 272 [53] = IPRIO_MMAXIPRIO, 273 [52] = IPRIO_MMAXIPRIO, 274 [51] = IPRIO_MMAXIPRIO, 275 [50] = IPRIO_MMAXIPRIO, 276 [49] = IPRIO_MMAXIPRIO, 277 [48] = IPRIO_MMAXIPRIO, 278 279 /* Custom interrupts 24 to 31 */ 280 [31] = IPRIO_MMAXIPRIO, 281 [30] = IPRIO_MMAXIPRIO, 282 [29] = IPRIO_MMAXIPRIO, 283 [28] = IPRIO_MMAXIPRIO, 284 [27] = IPRIO_MMAXIPRIO, 285 [26] = IPRIO_MMAXIPRIO, 286 [25] = IPRIO_MMAXIPRIO, 287 [24] = IPRIO_MMAXIPRIO, 288 289 [47] = IPRIO_DEFAULT_UPPER, 290 [23] = IPRIO_DEFAULT_UPPER + 1, 291 [46] = IPRIO_DEFAULT_UPPER + 2, 292 [45] = IPRIO_DEFAULT_UPPER + 3, 293 [22] = IPRIO_DEFAULT_UPPER + 4, 294 [44] = IPRIO_DEFAULT_UPPER + 5, 295 296 [43] = IPRIO_DEFAULT_UPPER + 6, 297 [21] = IPRIO_DEFAULT_UPPER + 7, 298 [42] = IPRIO_DEFAULT_UPPER + 8, 299 [41] = IPRIO_DEFAULT_UPPER + 9, 300 [20] = IPRIO_DEFAULT_UPPER + 10, 301 [40] = IPRIO_DEFAULT_UPPER + 11, 302 303 [11] = IPRIO_DEFAULT_M, 304 [3] = IPRIO_DEFAULT_M + 1, 305 [7] = IPRIO_DEFAULT_M + 2, 306 307 [9] = IPRIO_DEFAULT_S, 308 [1] = IPRIO_DEFAULT_S + 1, 309 [5] = IPRIO_DEFAULT_S + 2, 310 311 [12] = IPRIO_DEFAULT_SGEXT, 312 313 [10] = IPRIO_DEFAULT_VS, 314 [2] = IPRIO_DEFAULT_VS + 1, 315 [6] = IPRIO_DEFAULT_VS + 2, 316 317 [39] = IPRIO_DEFAULT_LOWER, 318 [19] = IPRIO_DEFAULT_LOWER + 1, 319 [38] = IPRIO_DEFAULT_LOWER + 2, 320 [37] = IPRIO_DEFAULT_LOWER + 3, 321 [18] = IPRIO_DEFAULT_LOWER + 4, 322 [36] = IPRIO_DEFAULT_LOWER + 5, 323 324 [35] = IPRIO_DEFAULT_LOWER + 6, 325 [17] = IPRIO_DEFAULT_LOWER + 7, 326 [34] = IPRIO_DEFAULT_LOWER + 8, 327 [33] = IPRIO_DEFAULT_LOWER + 9, 328 [16] = IPRIO_DEFAULT_LOWER + 10, 329 [32] = IPRIO_DEFAULT_LOWER + 11, 330 }; 331 332 uint8_t riscv_cpu_default_priority(int irq) 333 { 334 if (irq < 0 || irq > 63) { 335 return IPRIO_MMAXIPRIO; 336 } 337 338 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO; 339 }; 340 341 static int riscv_cpu_pending_to_irq(CPURISCVState *env, 342 int extirq, unsigned int extirq_def_prio, 343 uint64_t pending, uint8_t *iprio) 344 { 345 int irq, best_irq = RISCV_EXCP_NONE; 346 unsigned int prio, best_prio = UINT_MAX; 347 348 if (!pending) { 349 return RISCV_EXCP_NONE; 350 } 351 352 irq = ctz64(pending); 353 if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia : 354 riscv_cpu_cfg(env)->ext_ssaia)) { 355 return irq; 356 } 357 358 pending = pending >> irq; 359 while (pending) { 360 prio = iprio[irq]; 361 if (!prio) { 362 if (irq == extirq) { 363 prio = extirq_def_prio; 364 } else { 365 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ? 366 1 : IPRIO_MMAXIPRIO; 367 } 368 } 369 if ((pending & 0x1) && (prio <= best_prio)) { 370 best_irq = irq; 371 best_prio = prio; 372 } 373 irq++; 374 pending = pending >> 1; 375 } 376 377 return best_irq; 378 } 379 380 uint64_t riscv_cpu_all_pending(CPURISCVState *env) 381 { 382 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN); 383 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 384 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0; 385 386 return (env->mip | vsgein | vstip) & env->mie; 387 } 388 389 int riscv_cpu_mirq_pending(CPURISCVState *env) 390 { 391 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg & 392 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 393 394 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 395 irqs, env->miprio); 396 } 397 398 int riscv_cpu_sirq_pending(CPURISCVState *env) 399 { 400 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & 401 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 402 403 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 404 irqs, env->siprio); 405 } 406 407 int riscv_cpu_vsirq_pending(CPURISCVState *env) 408 { 409 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & 410 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 411 412 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 413 irqs >> 1, env->hviprio); 414 } 415 416 static int riscv_cpu_local_irq_pending(CPURISCVState *env) 417 { 418 int virq; 419 uint64_t irqs, pending, mie, hsie, vsie; 420 421 /* Determine interrupt enable state of all privilege modes */ 422 if (env->virt_enabled) { 423 mie = 1; 424 hsie = 1; 425 vsie = (env->priv < PRV_S) || 426 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 427 } else { 428 mie = (env->priv < PRV_M) || 429 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE)); 430 hsie = (env->priv < PRV_S) || 431 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 432 vsie = 0; 433 } 434 435 /* Determine all pending interrupts */ 436 pending = riscv_cpu_all_pending(env); 437 438 /* Check M-mode interrupts */ 439 irqs = pending & ~env->mideleg & -mie; 440 if (irqs) { 441 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 442 irqs, env->miprio); 443 } 444 445 /* Check HS-mode interrupts */ 446 irqs = pending & env->mideleg & ~env->hideleg & -hsie; 447 if (irqs) { 448 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 449 irqs, env->siprio); 450 } 451 452 /* Check VS-mode interrupts */ 453 irqs = pending & env->mideleg & env->hideleg & -vsie; 454 if (irqs) { 455 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 456 irqs >> 1, env->hviprio); 457 return (virq <= 0) ? virq : virq + 1; 458 } 459 460 /* Indicate no pending interrupt */ 461 return RISCV_EXCP_NONE; 462 } 463 464 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 465 { 466 if (interrupt_request & CPU_INTERRUPT_HARD) { 467 RISCVCPU *cpu = RISCV_CPU(cs); 468 CPURISCVState *env = &cpu->env; 469 int interruptno = riscv_cpu_local_irq_pending(env); 470 if (interruptno >= 0) { 471 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; 472 riscv_cpu_do_interrupt(cs); 473 return true; 474 } 475 } 476 return false; 477 } 478 479 /* Return true is floating point support is currently enabled */ 480 bool riscv_cpu_fp_enabled(CPURISCVState *env) 481 { 482 if (env->mstatus & MSTATUS_FS) { 483 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) { 484 return false; 485 } 486 return true; 487 } 488 489 return false; 490 } 491 492 /* Return true is vector support is currently enabled */ 493 bool riscv_cpu_vector_enabled(CPURISCVState *env) 494 { 495 if (env->mstatus & MSTATUS_VS) { 496 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) { 497 return false; 498 } 499 return true; 500 } 501 502 return false; 503 } 504 505 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) 506 { 507 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | 508 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE | 509 MSTATUS64_UXL | MSTATUS_VS; 510 511 if (riscv_has_ext(env, RVF)) { 512 mstatus_mask |= MSTATUS_FS; 513 } 514 bool current_virt = env->virt_enabled; 515 516 g_assert(riscv_has_ext(env, RVH)); 517 518 if (current_virt) { 519 /* Current V=1 and we are about to change to V=0 */ 520 env->vsstatus = env->mstatus & mstatus_mask; 521 env->mstatus &= ~mstatus_mask; 522 env->mstatus |= env->mstatus_hs; 523 524 env->vstvec = env->stvec; 525 env->stvec = env->stvec_hs; 526 527 env->vsscratch = env->sscratch; 528 env->sscratch = env->sscratch_hs; 529 530 env->vsepc = env->sepc; 531 env->sepc = env->sepc_hs; 532 533 env->vscause = env->scause; 534 env->scause = env->scause_hs; 535 536 env->vstval = env->stval; 537 env->stval = env->stval_hs; 538 539 env->vsatp = env->satp; 540 env->satp = env->satp_hs; 541 } else { 542 /* Current V=0 and we are about to change to V=1 */ 543 env->mstatus_hs = env->mstatus & mstatus_mask; 544 env->mstatus &= ~mstatus_mask; 545 env->mstatus |= env->vsstatus; 546 547 env->stvec_hs = env->stvec; 548 env->stvec = env->vstvec; 549 550 env->sscratch_hs = env->sscratch; 551 env->sscratch = env->vsscratch; 552 553 env->sepc_hs = env->sepc; 554 env->sepc = env->vsepc; 555 556 env->scause_hs = env->scause; 557 env->scause = env->vscause; 558 559 env->stval_hs = env->stval; 560 env->stval = env->vstval; 561 562 env->satp_hs = env->satp; 563 env->satp = env->vsatp; 564 } 565 } 566 567 target_ulong riscv_cpu_get_geilen(CPURISCVState *env) 568 { 569 if (!riscv_has_ext(env, RVH)) { 570 return 0; 571 } 572 573 return env->geilen; 574 } 575 576 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen) 577 { 578 if (!riscv_has_ext(env, RVH)) { 579 return; 580 } 581 582 if (geilen > (TARGET_LONG_BITS - 1)) { 583 return; 584 } 585 586 env->geilen = geilen; 587 } 588 589 /* This function can only be called to set virt when RVH is enabled */ 590 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable) 591 { 592 /* Flush the TLB on all virt mode changes. */ 593 if (env->virt_enabled != enable) { 594 tlb_flush(env_cpu(env)); 595 } 596 597 env->virt_enabled = enable; 598 599 if (enable) { 600 /* 601 * The guest external interrupts from an interrupt controller are 602 * delivered only when the Guest/VM is running (i.e. V=1). This means 603 * any guest external interrupt which is triggered while the Guest/VM 604 * is not running (i.e. V=0) will be missed on QEMU resulting in guest 605 * with sluggish response to serial console input and other I/O events. 606 * 607 * To solve this, we check and inject interrupt after setting V=1. 608 */ 609 riscv_cpu_update_mip(env, 0, 0); 610 } 611 } 612 613 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts) 614 { 615 CPURISCVState *env = &cpu->env; 616 if (env->miclaim & interrupts) { 617 return -1; 618 } else { 619 env->miclaim |= interrupts; 620 return 0; 621 } 622 } 623 624 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask, 625 uint64_t value) 626 { 627 CPUState *cs = env_cpu(env); 628 uint64_t gein, vsgein = 0, vstip = 0, old = env->mip; 629 630 if (env->virt_enabled) { 631 gein = get_field(env->hstatus, HSTATUS_VGEIN); 632 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 633 } 634 635 vstip = env->vstime_irq ? MIP_VSTIP : 0; 636 637 QEMU_IOTHREAD_LOCK_GUARD(); 638 639 env->mip = (env->mip & ~mask) | (value & mask); 640 641 if (env->mip | vsgein | vstip) { 642 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 643 } else { 644 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 645 } 646 647 return old; 648 } 649 650 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *), 651 void *arg) 652 { 653 env->rdtime_fn = fn; 654 env->rdtime_fn_arg = arg; 655 } 656 657 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv, 658 int (*rmw_fn)(void *arg, 659 target_ulong reg, 660 target_ulong *val, 661 target_ulong new_val, 662 target_ulong write_mask), 663 void *rmw_fn_arg) 664 { 665 if (priv <= PRV_M) { 666 env->aia_ireg_rmw_fn[priv] = rmw_fn; 667 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg; 668 } 669 } 670 671 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) 672 { 673 g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED); 674 675 if (icount_enabled() && newpriv != env->priv) { 676 riscv_itrigger_update_priv(env); 677 } 678 /* tlb_flush is unnecessary as mode is contained in mmu_idx */ 679 env->priv = newpriv; 680 env->xl = cpu_recompute_xl(env); 681 riscv_cpu_update_mask(env); 682 683 /* 684 * Clear the load reservation - otherwise a reservation placed in one 685 * context/process can be used by another, resulting in an SC succeeding 686 * incorrectly. Version 2.2 of the ISA specification explicitly requires 687 * this behaviour, while later revisions say that the kernel "should" use 688 * an SC instruction to force the yielding of a load reservation on a 689 * preemptive context switch. As a result, do both. 690 */ 691 env->load_res = -1; 692 } 693 694 /* 695 * get_physical_address_pmp - check PMP permission for this physical address 696 * 697 * Match the PMP region and check permission for this physical address and it's 698 * TLB page. Returns 0 if the permission checking was successful 699 * 700 * @env: CPURISCVState 701 * @prot: The returned protection attributes 702 * @addr: The physical address to be checked permission 703 * @access_type: The type of MMU access 704 * @mode: Indicates current privilege level. 705 */ 706 static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr, 707 int size, MMUAccessType access_type, 708 int mode) 709 { 710 pmp_priv_t pmp_priv; 711 bool pmp_has_privs; 712 713 if (!riscv_cpu_cfg(env)->pmp) { 714 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 715 return TRANSLATE_SUCCESS; 716 } 717 718 pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type, 719 &pmp_priv, mode); 720 if (!pmp_has_privs) { 721 *prot = 0; 722 return TRANSLATE_PMP_FAIL; 723 } 724 725 *prot = pmp_priv_to_page_prot(pmp_priv); 726 727 return TRANSLATE_SUCCESS; 728 } 729 730 /* 731 * get_physical_address - get the physical address for this virtual address 732 * 733 * Do a page table walk to obtain the physical address corresponding to a 734 * virtual address. Returns 0 if the translation was successful 735 * 736 * Adapted from Spike's mmu_t::translate and mmu_t::walk 737 * 738 * @env: CPURISCVState 739 * @physical: This will be set to the calculated physical address 740 * @prot: The returned protection attributes 741 * @addr: The virtual address or guest physical address to be translated 742 * @fault_pte_addr: If not NULL, this will be set to fault pte address 743 * when a error occurs on pte address translation. 744 * This will already be shifted to match htval. 745 * @access_type: The type of MMU access 746 * @mmu_idx: Indicates current privilege level 747 * @first_stage: Are we in first stage translation? 748 * Second stage is used for hypervisor guest translation 749 * @two_stage: Are we going to perform two stage translation 750 * @is_debug: Is this access from a debugger or the monitor? 751 */ 752 static int get_physical_address(CPURISCVState *env, hwaddr *physical, 753 int *ret_prot, vaddr addr, 754 target_ulong *fault_pte_addr, 755 int access_type, int mmu_idx, 756 bool first_stage, bool two_stage, 757 bool is_debug) 758 { 759 /* 760 * NOTE: the env->pc value visible here will not be 761 * correct, but the value visible to the exception handler 762 * (riscv_cpu_do_interrupt) is correct 763 */ 764 MemTxResult res; 765 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 766 int mode = mmuidx_priv(mmu_idx); 767 bool use_background = false; 768 hwaddr ppn; 769 int napot_bits = 0; 770 target_ulong napot_mask; 771 772 /* 773 * Check if we should use the background registers for the two 774 * stage translation. We don't need to check if we actually need 775 * two stage translation as that happened before this function 776 * was called. Background registers will be used if the guest has 777 * forced a two stage translation to be on (in HS or M mode). 778 */ 779 if (!env->virt_enabled && two_stage) { 780 use_background = true; 781 } 782 783 if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) { 784 *physical = addr; 785 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 786 return TRANSLATE_SUCCESS; 787 } 788 789 *ret_prot = 0; 790 791 hwaddr base; 792 int levels, ptidxbits, ptesize, vm, widened; 793 794 if (first_stage == true) { 795 if (use_background) { 796 if (riscv_cpu_mxl(env) == MXL_RV32) { 797 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT; 798 vm = get_field(env->vsatp, SATP32_MODE); 799 } else { 800 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT; 801 vm = get_field(env->vsatp, SATP64_MODE); 802 } 803 } else { 804 if (riscv_cpu_mxl(env) == MXL_RV32) { 805 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT; 806 vm = get_field(env->satp, SATP32_MODE); 807 } else { 808 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT; 809 vm = get_field(env->satp, SATP64_MODE); 810 } 811 } 812 widened = 0; 813 } else { 814 if (riscv_cpu_mxl(env) == MXL_RV32) { 815 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT; 816 vm = get_field(env->hgatp, SATP32_MODE); 817 } else { 818 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT; 819 vm = get_field(env->hgatp, SATP64_MODE); 820 } 821 widened = 2; 822 } 823 824 switch (vm) { 825 case VM_1_10_SV32: 826 levels = 2; ptidxbits = 10; ptesize = 4; break; 827 case VM_1_10_SV39: 828 levels = 3; ptidxbits = 9; ptesize = 8; break; 829 case VM_1_10_SV48: 830 levels = 4; ptidxbits = 9; ptesize = 8; break; 831 case VM_1_10_SV57: 832 levels = 5; ptidxbits = 9; ptesize = 8; break; 833 case VM_1_10_MBARE: 834 *physical = addr; 835 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 836 return TRANSLATE_SUCCESS; 837 default: 838 g_assert_not_reached(); 839 } 840 841 CPUState *cs = env_cpu(env); 842 int va_bits = PGSHIFT + levels * ptidxbits + widened; 843 844 if (first_stage == true) { 845 target_ulong mask, masked_msbs; 846 847 if (TARGET_LONG_BITS > (va_bits - 1)) { 848 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; 849 } else { 850 mask = 0; 851 } 852 masked_msbs = (addr >> (va_bits - 1)) & mask; 853 854 if (masked_msbs != 0 && masked_msbs != mask) { 855 return TRANSLATE_FAIL; 856 } 857 } else { 858 if (vm != VM_1_10_SV32 && addr >> va_bits != 0) { 859 return TRANSLATE_FAIL; 860 } 861 } 862 863 bool pbmte = env->menvcfg & MENVCFG_PBMTE; 864 bool adue = env->menvcfg & MENVCFG_ADUE; 865 866 if (first_stage && two_stage && env->virt_enabled) { 867 pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE); 868 adue = adue && (env->henvcfg & HENVCFG_ADUE); 869 } 870 871 int ptshift = (levels - 1) * ptidxbits; 872 target_ulong pte; 873 hwaddr pte_addr; 874 int i; 875 876 #if !TCG_OVERSIZED_GUEST 877 restart: 878 #endif 879 for (i = 0; i < levels; i++, ptshift -= ptidxbits) { 880 target_ulong idx; 881 if (i == 0) { 882 idx = (addr >> (PGSHIFT + ptshift)) & 883 ((1 << (ptidxbits + widened)) - 1); 884 } else { 885 idx = (addr >> (PGSHIFT + ptshift)) & 886 ((1 << ptidxbits) - 1); 887 } 888 889 /* check that physical address of PTE is legal */ 890 891 if (two_stage && first_stage) { 892 int vbase_prot; 893 hwaddr vbase; 894 895 /* Do the second stage translation on the base PTE address. */ 896 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, 897 base, NULL, MMU_DATA_LOAD, 898 MMUIdx_U, false, true, 899 is_debug); 900 901 if (vbase_ret != TRANSLATE_SUCCESS) { 902 if (fault_pte_addr) { 903 *fault_pte_addr = (base + idx * ptesize) >> 2; 904 } 905 return TRANSLATE_G_STAGE_FAIL; 906 } 907 908 pte_addr = vbase + idx * ptesize; 909 } else { 910 pte_addr = base + idx * ptesize; 911 } 912 913 int pmp_prot; 914 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr, 915 sizeof(target_ulong), 916 MMU_DATA_LOAD, PRV_S); 917 if (pmp_ret != TRANSLATE_SUCCESS) { 918 return TRANSLATE_PMP_FAIL; 919 } 920 921 if (riscv_cpu_mxl(env) == MXL_RV32) { 922 pte = address_space_ldl(cs->as, pte_addr, attrs, &res); 923 } else { 924 pte = address_space_ldq(cs->as, pte_addr, attrs, &res); 925 } 926 927 if (res != MEMTX_OK) { 928 return TRANSLATE_FAIL; 929 } 930 931 if (riscv_cpu_sxl(env) == MXL_RV32) { 932 ppn = pte >> PTE_PPN_SHIFT; 933 } else { 934 if (pte & PTE_RESERVED) { 935 return TRANSLATE_FAIL; 936 } 937 938 if (!pbmte && (pte & PTE_PBMT)) { 939 return TRANSLATE_FAIL; 940 } 941 942 if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) { 943 return TRANSLATE_FAIL; 944 } 945 946 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT; 947 } 948 949 if (!(pte & PTE_V)) { 950 /* Invalid PTE */ 951 return TRANSLATE_FAIL; 952 } 953 if (pte & (PTE_R | PTE_W | PTE_X)) { 954 goto leaf; 955 } 956 957 /* Inner PTE, continue walking */ 958 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) { 959 return TRANSLATE_FAIL; 960 } 961 base = ppn << PGSHIFT; 962 } 963 964 /* No leaf pte at any translation level. */ 965 return TRANSLATE_FAIL; 966 967 leaf: 968 if (ppn & ((1ULL << ptshift) - 1)) { 969 /* Misaligned PPN */ 970 return TRANSLATE_FAIL; 971 } 972 if (!pbmte && (pte & PTE_PBMT)) { 973 /* Reserved without Svpbmt. */ 974 return TRANSLATE_FAIL; 975 } 976 977 /* Check for reserved combinations of RWX flags. */ 978 switch (pte & (PTE_R | PTE_W | PTE_X)) { 979 case PTE_W: 980 case PTE_W | PTE_X: 981 return TRANSLATE_FAIL; 982 } 983 984 int prot = 0; 985 if (pte & PTE_R) { 986 prot |= PAGE_READ; 987 } 988 if (pte & PTE_W) { 989 prot |= PAGE_WRITE; 990 } 991 if (pte & PTE_X) { 992 bool mxr; 993 994 if (first_stage == true) { 995 mxr = get_field(env->mstatus, MSTATUS_MXR); 996 } else { 997 mxr = get_field(env->vsstatus, MSTATUS_MXR); 998 } 999 if (mxr) { 1000 prot |= PAGE_READ; 1001 } 1002 prot |= PAGE_EXEC; 1003 } 1004 1005 if (pte & PTE_U) { 1006 if (mode != PRV_U) { 1007 if (!mmuidx_sum(mmu_idx)) { 1008 return TRANSLATE_FAIL; 1009 } 1010 /* SUM allows only read+write, not execute. */ 1011 prot &= PAGE_READ | PAGE_WRITE; 1012 } 1013 } else if (mode != PRV_S) { 1014 /* Supervisor PTE flags when not S mode */ 1015 return TRANSLATE_FAIL; 1016 } 1017 1018 if (!((prot >> access_type) & 1)) { 1019 /* Access check failed */ 1020 return TRANSLATE_FAIL; 1021 } 1022 1023 /* If necessary, set accessed and dirty bits. */ 1024 target_ulong updated_pte = pte | PTE_A | 1025 (access_type == MMU_DATA_STORE ? PTE_D : 0); 1026 1027 /* Page table updates need to be atomic with MTTCG enabled */ 1028 if (updated_pte != pte && !is_debug) { 1029 if (!adue) { 1030 return TRANSLATE_FAIL; 1031 } 1032 1033 /* 1034 * - if accessed or dirty bits need updating, and the PTE is 1035 * in RAM, then we do so atomically with a compare and swap. 1036 * - if the PTE is in IO space or ROM, then it can't be updated 1037 * and we return TRANSLATE_FAIL. 1038 * - if the PTE changed by the time we went to update it, then 1039 * it is no longer valid and we must re-walk the page table. 1040 */ 1041 MemoryRegion *mr; 1042 hwaddr l = sizeof(target_ulong), addr1; 1043 mr = address_space_translate(cs->as, pte_addr, &addr1, &l, 1044 false, MEMTXATTRS_UNSPECIFIED); 1045 if (memory_region_is_ram(mr)) { 1046 target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1); 1047 #if TCG_OVERSIZED_GUEST 1048 /* 1049 * MTTCG is not enabled on oversized TCG guests so 1050 * page table updates do not need to be atomic 1051 */ 1052 *pte_pa = pte = updated_pte; 1053 #else 1054 target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte); 1055 if (old_pte != pte) { 1056 goto restart; 1057 } 1058 pte = updated_pte; 1059 #endif 1060 } else { 1061 /* 1062 * Misconfigured PTE in ROM (AD bits are not preset) or 1063 * PTE is in IO space and can't be updated atomically. 1064 */ 1065 return TRANSLATE_FAIL; 1066 } 1067 } 1068 1069 /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */ 1070 target_ulong vpn = addr >> PGSHIFT; 1071 1072 if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) { 1073 napot_bits = ctzl(ppn) + 1; 1074 if ((i != (levels - 1)) || (napot_bits != 4)) { 1075 return TRANSLATE_FAIL; 1076 } 1077 } 1078 1079 napot_mask = (1 << napot_bits) - 1; 1080 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) | 1081 (vpn & (((target_ulong)1 << ptshift) - 1)) 1082 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK); 1083 1084 /* 1085 * Remove write permission unless this is a store, or the page is 1086 * already dirty, so that we TLB miss on later writes to update 1087 * the dirty bit. 1088 */ 1089 if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) { 1090 prot &= ~PAGE_WRITE; 1091 } 1092 *ret_prot = prot; 1093 1094 return TRANSLATE_SUCCESS; 1095 } 1096 1097 static void raise_mmu_exception(CPURISCVState *env, target_ulong address, 1098 MMUAccessType access_type, bool pmp_violation, 1099 bool first_stage, bool two_stage, 1100 bool two_stage_indirect) 1101 { 1102 CPUState *cs = env_cpu(env); 1103 int page_fault_exceptions, vm; 1104 uint64_t stap_mode; 1105 1106 if (riscv_cpu_mxl(env) == MXL_RV32) { 1107 stap_mode = SATP32_MODE; 1108 } else { 1109 stap_mode = SATP64_MODE; 1110 } 1111 1112 if (first_stage) { 1113 vm = get_field(env->satp, stap_mode); 1114 } else { 1115 vm = get_field(env->hgatp, stap_mode); 1116 } 1117 1118 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation; 1119 1120 switch (access_type) { 1121 case MMU_INST_FETCH: 1122 if (env->virt_enabled && !first_stage) { 1123 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; 1124 } else { 1125 cs->exception_index = page_fault_exceptions ? 1126 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT; 1127 } 1128 break; 1129 case MMU_DATA_LOAD: 1130 if (two_stage && !first_stage) { 1131 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; 1132 } else { 1133 cs->exception_index = page_fault_exceptions ? 1134 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT; 1135 } 1136 break; 1137 case MMU_DATA_STORE: 1138 if (two_stage && !first_stage) { 1139 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; 1140 } else { 1141 cs->exception_index = page_fault_exceptions ? 1142 RISCV_EXCP_STORE_PAGE_FAULT : 1143 RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1144 } 1145 break; 1146 default: 1147 g_assert_not_reached(); 1148 } 1149 env->badaddr = address; 1150 env->two_stage_lookup = two_stage; 1151 env->two_stage_indirect_lookup = two_stage_indirect; 1152 } 1153 1154 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 1155 { 1156 RISCVCPU *cpu = RISCV_CPU(cs); 1157 CPURISCVState *env = &cpu->env; 1158 hwaddr phys_addr; 1159 int prot; 1160 int mmu_idx = cpu_mmu_index(&cpu->env, false); 1161 1162 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx, 1163 true, env->virt_enabled, true)) { 1164 return -1; 1165 } 1166 1167 if (env->virt_enabled) { 1168 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL, 1169 0, mmu_idx, false, true, true)) { 1170 return -1; 1171 } 1172 } 1173 1174 return phys_addr & TARGET_PAGE_MASK; 1175 } 1176 1177 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 1178 vaddr addr, unsigned size, 1179 MMUAccessType access_type, 1180 int mmu_idx, MemTxAttrs attrs, 1181 MemTxResult response, uintptr_t retaddr) 1182 { 1183 RISCVCPU *cpu = RISCV_CPU(cs); 1184 CPURISCVState *env = &cpu->env; 1185 1186 if (access_type == MMU_DATA_STORE) { 1187 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1188 } else if (access_type == MMU_DATA_LOAD) { 1189 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 1190 } else { 1191 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT; 1192 } 1193 1194 env->badaddr = addr; 1195 env->two_stage_lookup = mmuidx_2stage(mmu_idx); 1196 env->two_stage_indirect_lookup = false; 1197 cpu_loop_exit_restore(cs, retaddr); 1198 } 1199 1200 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 1201 MMUAccessType access_type, int mmu_idx, 1202 uintptr_t retaddr) 1203 { 1204 RISCVCPU *cpu = RISCV_CPU(cs); 1205 CPURISCVState *env = &cpu->env; 1206 switch (access_type) { 1207 case MMU_INST_FETCH: 1208 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; 1209 break; 1210 case MMU_DATA_LOAD: 1211 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; 1212 break; 1213 case MMU_DATA_STORE: 1214 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; 1215 break; 1216 default: 1217 g_assert_not_reached(); 1218 } 1219 env->badaddr = addr; 1220 env->two_stage_lookup = mmuidx_2stage(mmu_idx); 1221 env->two_stage_indirect_lookup = false; 1222 cpu_loop_exit_restore(cs, retaddr); 1223 } 1224 1225 1226 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type) 1227 { 1228 enum riscv_pmu_event_idx pmu_event_type; 1229 1230 switch (access_type) { 1231 case MMU_INST_FETCH: 1232 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS; 1233 break; 1234 case MMU_DATA_LOAD: 1235 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS; 1236 break; 1237 case MMU_DATA_STORE: 1238 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS; 1239 break; 1240 default: 1241 return; 1242 } 1243 1244 riscv_pmu_incr_ctr(cpu, pmu_event_type); 1245 } 1246 1247 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 1248 MMUAccessType access_type, int mmu_idx, 1249 bool probe, uintptr_t retaddr) 1250 { 1251 RISCVCPU *cpu = RISCV_CPU(cs); 1252 CPURISCVState *env = &cpu->env; 1253 vaddr im_address; 1254 hwaddr pa = 0; 1255 int prot, prot2, prot_pmp; 1256 bool pmp_violation = false; 1257 bool first_stage_error = true; 1258 bool two_stage_lookup = mmuidx_2stage(mmu_idx); 1259 bool two_stage_indirect_error = false; 1260 int ret = TRANSLATE_FAIL; 1261 int mode = mmu_idx; 1262 /* default TLB page size */ 1263 target_ulong tlb_size = TARGET_PAGE_SIZE; 1264 1265 env->guest_phys_fault_addr = 0; 1266 1267 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", 1268 __func__, address, access_type, mmu_idx); 1269 1270 pmu_tlb_fill_incr_ctr(cpu, access_type); 1271 if (two_stage_lookup) { 1272 /* Two stage lookup */ 1273 ret = get_physical_address(env, &pa, &prot, address, 1274 &env->guest_phys_fault_addr, access_type, 1275 mmu_idx, true, true, false); 1276 1277 /* 1278 * A G-stage exception may be triggered during two state lookup. 1279 * And the env->guest_phys_fault_addr has already been set in 1280 * get_physical_address(). 1281 */ 1282 if (ret == TRANSLATE_G_STAGE_FAIL) { 1283 first_stage_error = false; 1284 two_stage_indirect_error = true; 1285 } 1286 1287 qemu_log_mask(CPU_LOG_MMU, 1288 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " 1289 HWADDR_FMT_plx " prot %d\n", 1290 __func__, address, ret, pa, prot); 1291 1292 if (ret == TRANSLATE_SUCCESS) { 1293 /* Second stage lookup */ 1294 im_address = pa; 1295 1296 ret = get_physical_address(env, &pa, &prot2, im_address, NULL, 1297 access_type, MMUIdx_U, false, true, 1298 false); 1299 1300 qemu_log_mask(CPU_LOG_MMU, 1301 "%s 2nd-stage address=%" VADDR_PRIx 1302 " ret %d physical " 1303 HWADDR_FMT_plx " prot %d\n", 1304 __func__, im_address, ret, pa, prot2); 1305 1306 prot &= prot2; 1307 1308 if (ret == TRANSLATE_SUCCESS) { 1309 ret = get_physical_address_pmp(env, &prot_pmp, pa, 1310 size, access_type, mode); 1311 tlb_size = pmp_get_tlb_size(env, pa); 1312 1313 qemu_log_mask(CPU_LOG_MMU, 1314 "%s PMP address=" HWADDR_FMT_plx " ret %d prot" 1315 " %d tlb_size " TARGET_FMT_lu "\n", 1316 __func__, pa, ret, prot_pmp, tlb_size); 1317 1318 prot &= prot_pmp; 1319 } 1320 1321 if (ret != TRANSLATE_SUCCESS) { 1322 /* 1323 * Guest physical address translation failed, this is a HS 1324 * level exception 1325 */ 1326 first_stage_error = false; 1327 env->guest_phys_fault_addr = (im_address | 1328 (address & 1329 (TARGET_PAGE_SIZE - 1))) >> 2; 1330 } 1331 } 1332 } else { 1333 /* Single stage lookup */ 1334 ret = get_physical_address(env, &pa, &prot, address, NULL, 1335 access_type, mmu_idx, true, false, false); 1336 1337 qemu_log_mask(CPU_LOG_MMU, 1338 "%s address=%" VADDR_PRIx " ret %d physical " 1339 HWADDR_FMT_plx " prot %d\n", 1340 __func__, address, ret, pa, prot); 1341 1342 if (ret == TRANSLATE_SUCCESS) { 1343 ret = get_physical_address_pmp(env, &prot_pmp, pa, 1344 size, access_type, mode); 1345 tlb_size = pmp_get_tlb_size(env, pa); 1346 1347 qemu_log_mask(CPU_LOG_MMU, 1348 "%s PMP address=" HWADDR_FMT_plx " ret %d prot" 1349 " %d tlb_size " TARGET_FMT_lu "\n", 1350 __func__, pa, ret, prot_pmp, tlb_size); 1351 1352 prot &= prot_pmp; 1353 } 1354 } 1355 1356 if (ret == TRANSLATE_PMP_FAIL) { 1357 pmp_violation = true; 1358 } 1359 1360 if (ret == TRANSLATE_SUCCESS) { 1361 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), 1362 prot, mmu_idx, tlb_size); 1363 return true; 1364 } else if (probe) { 1365 return false; 1366 } else { 1367 raise_mmu_exception(env, address, access_type, pmp_violation, 1368 first_stage_error, two_stage_lookup, 1369 two_stage_indirect_error); 1370 cpu_loop_exit_restore(cs, retaddr); 1371 } 1372 1373 return true; 1374 } 1375 1376 static target_ulong riscv_transformed_insn(CPURISCVState *env, 1377 target_ulong insn, 1378 target_ulong taddr) 1379 { 1380 target_ulong xinsn = 0; 1381 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0; 1382 1383 /* 1384 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to 1385 * be uncompressed. The Quadrant 1 of RVC instruction space need 1386 * not be transformed because these instructions won't generate 1387 * any load/store trap. 1388 */ 1389 1390 if ((insn & 0x3) != 0x3) { 1391 /* Transform 16bit instruction into 32bit instruction */ 1392 switch (GET_C_OP(insn)) { 1393 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */ 1394 switch (GET_C_FUNC(insn)) { 1395 case OPC_RISC_C_FUNC_FLD_LQ: 1396 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */ 1397 xinsn = OPC_RISC_FLD; 1398 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1399 access_rs1 = GET_C_RS1S(insn); 1400 access_imm = GET_C_LD_IMM(insn); 1401 access_size = 8; 1402 } 1403 break; 1404 case OPC_RISC_C_FUNC_LW: /* C.LW */ 1405 xinsn = OPC_RISC_LW; 1406 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1407 access_rs1 = GET_C_RS1S(insn); 1408 access_imm = GET_C_LW_IMM(insn); 1409 access_size = 4; 1410 break; 1411 case OPC_RISC_C_FUNC_FLW_LD: 1412 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */ 1413 xinsn = OPC_RISC_FLW; 1414 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1415 access_rs1 = GET_C_RS1S(insn); 1416 access_imm = GET_C_LW_IMM(insn); 1417 access_size = 4; 1418 } else { /* C.LD (RV64/RV128) */ 1419 xinsn = OPC_RISC_LD; 1420 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1421 access_rs1 = GET_C_RS1S(insn); 1422 access_imm = GET_C_LD_IMM(insn); 1423 access_size = 8; 1424 } 1425 break; 1426 case OPC_RISC_C_FUNC_FSD_SQ: 1427 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */ 1428 xinsn = OPC_RISC_FSD; 1429 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1430 access_rs1 = GET_C_RS1S(insn); 1431 access_imm = GET_C_SD_IMM(insn); 1432 access_size = 8; 1433 } 1434 break; 1435 case OPC_RISC_C_FUNC_SW: /* C.SW */ 1436 xinsn = OPC_RISC_SW; 1437 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1438 access_rs1 = GET_C_RS1S(insn); 1439 access_imm = GET_C_SW_IMM(insn); 1440 access_size = 4; 1441 break; 1442 case OPC_RISC_C_FUNC_FSW_SD: 1443 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */ 1444 xinsn = OPC_RISC_FSW; 1445 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1446 access_rs1 = GET_C_RS1S(insn); 1447 access_imm = GET_C_SW_IMM(insn); 1448 access_size = 4; 1449 } else { /* C.SD (RV64/RV128) */ 1450 xinsn = OPC_RISC_SD; 1451 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1452 access_rs1 = GET_C_RS1S(insn); 1453 access_imm = GET_C_SD_IMM(insn); 1454 access_size = 8; 1455 } 1456 break; 1457 default: 1458 break; 1459 } 1460 break; 1461 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */ 1462 switch (GET_C_FUNC(insn)) { 1463 case OPC_RISC_C_FUNC_FLDSP_LQSP: 1464 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */ 1465 xinsn = OPC_RISC_FLD; 1466 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1467 access_rs1 = 2; 1468 access_imm = GET_C_LDSP_IMM(insn); 1469 access_size = 8; 1470 } 1471 break; 1472 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */ 1473 xinsn = OPC_RISC_LW; 1474 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1475 access_rs1 = 2; 1476 access_imm = GET_C_LWSP_IMM(insn); 1477 access_size = 4; 1478 break; 1479 case OPC_RISC_C_FUNC_FLWSP_LDSP: 1480 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */ 1481 xinsn = OPC_RISC_FLW; 1482 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1483 access_rs1 = 2; 1484 access_imm = GET_C_LWSP_IMM(insn); 1485 access_size = 4; 1486 } else { /* C.LDSP (RV64/RV128) */ 1487 xinsn = OPC_RISC_LD; 1488 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1489 access_rs1 = 2; 1490 access_imm = GET_C_LDSP_IMM(insn); 1491 access_size = 8; 1492 } 1493 break; 1494 case OPC_RISC_C_FUNC_FSDSP_SQSP: 1495 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */ 1496 xinsn = OPC_RISC_FSD; 1497 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1498 access_rs1 = 2; 1499 access_imm = GET_C_SDSP_IMM(insn); 1500 access_size = 8; 1501 } 1502 break; 1503 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */ 1504 xinsn = OPC_RISC_SW; 1505 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1506 access_rs1 = 2; 1507 access_imm = GET_C_SWSP_IMM(insn); 1508 access_size = 4; 1509 break; 1510 case 7: 1511 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */ 1512 xinsn = OPC_RISC_FSW; 1513 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1514 access_rs1 = 2; 1515 access_imm = GET_C_SWSP_IMM(insn); 1516 access_size = 4; 1517 } else { /* C.SDSP (RV64/RV128) */ 1518 xinsn = OPC_RISC_SD; 1519 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1520 access_rs1 = 2; 1521 access_imm = GET_C_SDSP_IMM(insn); 1522 access_size = 8; 1523 } 1524 break; 1525 default: 1526 break; 1527 } 1528 break; 1529 default: 1530 break; 1531 } 1532 1533 /* 1534 * Clear Bit1 of transformed instruction to indicate that 1535 * original insruction was a 16bit instruction 1536 */ 1537 xinsn &= ~((target_ulong)0x2); 1538 } else { 1539 /* Transform 32bit (or wider) instructions */ 1540 switch (MASK_OP_MAJOR(insn)) { 1541 case OPC_RISC_ATOMIC: 1542 xinsn = insn; 1543 access_rs1 = GET_RS1(insn); 1544 access_size = 1 << GET_FUNCT3(insn); 1545 break; 1546 case OPC_RISC_LOAD: 1547 case OPC_RISC_FP_LOAD: 1548 xinsn = SET_I_IMM(insn, 0); 1549 access_rs1 = GET_RS1(insn); 1550 access_imm = GET_IMM(insn); 1551 access_size = 1 << GET_FUNCT3(insn); 1552 break; 1553 case OPC_RISC_STORE: 1554 case OPC_RISC_FP_STORE: 1555 xinsn = SET_S_IMM(insn, 0); 1556 access_rs1 = GET_RS1(insn); 1557 access_imm = GET_STORE_IMM(insn); 1558 access_size = 1 << GET_FUNCT3(insn); 1559 break; 1560 case OPC_RISC_SYSTEM: 1561 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) { 1562 xinsn = insn; 1563 access_rs1 = GET_RS1(insn); 1564 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3); 1565 access_size = 1 << access_size; 1566 } 1567 break; 1568 default: 1569 break; 1570 } 1571 } 1572 1573 if (access_size) { 1574 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) & 1575 (access_size - 1)); 1576 } 1577 1578 return xinsn; 1579 } 1580 #endif /* !CONFIG_USER_ONLY */ 1581 1582 /* 1583 * Handle Traps 1584 * 1585 * Adapted from Spike's processor_t::take_trap. 1586 * 1587 */ 1588 void riscv_cpu_do_interrupt(CPUState *cs) 1589 { 1590 #if !defined(CONFIG_USER_ONLY) 1591 1592 RISCVCPU *cpu = RISCV_CPU(cs); 1593 CPURISCVState *env = &cpu->env; 1594 bool write_gva = false; 1595 uint64_t s; 1596 1597 /* 1598 * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide 1599 * so we mask off the MSB and separate into trap type and cause. 1600 */ 1601 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); 1602 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; 1603 uint64_t deleg = async ? env->mideleg : env->medeleg; 1604 target_ulong tval = 0; 1605 target_ulong tinst = 0; 1606 target_ulong htval = 0; 1607 target_ulong mtval2 = 0; 1608 1609 if (cause == RISCV_EXCP_SEMIHOST) { 1610 do_common_semihosting(cs); 1611 env->pc += 4; 1612 return; 1613 } 1614 1615 if (!async) { 1616 /* set tval to badaddr for traps with address information */ 1617 switch (cause) { 1618 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: 1619 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: 1620 case RISCV_EXCP_LOAD_ADDR_MIS: 1621 case RISCV_EXCP_STORE_AMO_ADDR_MIS: 1622 case RISCV_EXCP_LOAD_ACCESS_FAULT: 1623 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: 1624 case RISCV_EXCP_LOAD_PAGE_FAULT: 1625 case RISCV_EXCP_STORE_PAGE_FAULT: 1626 write_gva = env->two_stage_lookup; 1627 tval = env->badaddr; 1628 if (env->two_stage_indirect_lookup) { 1629 /* 1630 * special pseudoinstruction for G-stage fault taken while 1631 * doing VS-stage page table walk. 1632 */ 1633 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; 1634 } else { 1635 /* 1636 * The "Addr. Offset" field in transformed instruction is 1637 * non-zero only for misaligned access. 1638 */ 1639 tinst = riscv_transformed_insn(env, env->bins, tval); 1640 } 1641 break; 1642 case RISCV_EXCP_INST_GUEST_PAGE_FAULT: 1643 case RISCV_EXCP_INST_ADDR_MIS: 1644 case RISCV_EXCP_INST_ACCESS_FAULT: 1645 case RISCV_EXCP_INST_PAGE_FAULT: 1646 write_gva = env->two_stage_lookup; 1647 tval = env->badaddr; 1648 if (env->two_stage_indirect_lookup) { 1649 /* 1650 * special pseudoinstruction for G-stage fault taken while 1651 * doing VS-stage page table walk. 1652 */ 1653 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; 1654 } 1655 break; 1656 case RISCV_EXCP_ILLEGAL_INST: 1657 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT: 1658 tval = env->bins; 1659 break; 1660 case RISCV_EXCP_BREAKPOINT: 1661 if (cs->watchpoint_hit) { 1662 tval = cs->watchpoint_hit->hitaddr; 1663 cs->watchpoint_hit = NULL; 1664 } 1665 break; 1666 default: 1667 break; 1668 } 1669 /* ecall is dispatched as one cause so translate based on mode */ 1670 if (cause == RISCV_EXCP_U_ECALL) { 1671 assert(env->priv <= 3); 1672 1673 if (env->priv == PRV_M) { 1674 cause = RISCV_EXCP_M_ECALL; 1675 } else if (env->priv == PRV_S && env->virt_enabled) { 1676 cause = RISCV_EXCP_VS_ECALL; 1677 } else if (env->priv == PRV_S && !env->virt_enabled) { 1678 cause = RISCV_EXCP_S_ECALL; 1679 } else if (env->priv == PRV_U) { 1680 cause = RISCV_EXCP_U_ECALL; 1681 } 1682 } 1683 } 1684 1685 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, 1686 riscv_cpu_get_trap_name(cause, async)); 1687 1688 qemu_log_mask(CPU_LOG_INT, 1689 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", " 1690 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n", 1691 __func__, env->mhartid, async, cause, env->pc, tval, 1692 riscv_cpu_get_trap_name(cause, async)); 1693 1694 if (env->priv <= PRV_S && 1695 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) { 1696 /* handle the trap in S-mode */ 1697 if (riscv_has_ext(env, RVH)) { 1698 uint64_t hdeleg = async ? env->hideleg : env->hedeleg; 1699 1700 if (env->virt_enabled && ((hdeleg >> cause) & 1)) { 1701 /* Trap to VS mode */ 1702 /* 1703 * See if we need to adjust cause. Yes if its VS mode interrupt 1704 * no if hypervisor has delegated one of hs mode's interrupt 1705 */ 1706 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || 1707 cause == IRQ_VS_EXT) { 1708 cause = cause - 1; 1709 } 1710 write_gva = false; 1711 } else if (env->virt_enabled) { 1712 /* Trap into HS mode, from virt */ 1713 riscv_cpu_swap_hypervisor_regs(env); 1714 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, 1715 env->priv); 1716 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true); 1717 1718 htval = env->guest_phys_fault_addr; 1719 1720 riscv_cpu_set_virt_enabled(env, 0); 1721 } else { 1722 /* Trap into HS mode */ 1723 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false); 1724 htval = env->guest_phys_fault_addr; 1725 } 1726 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva); 1727 } 1728 1729 s = env->mstatus; 1730 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); 1731 s = set_field(s, MSTATUS_SPP, env->priv); 1732 s = set_field(s, MSTATUS_SIE, 0); 1733 env->mstatus = s; 1734 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); 1735 env->sepc = env->pc; 1736 env->stval = tval; 1737 env->htval = htval; 1738 env->htinst = tinst; 1739 env->pc = (env->stvec >> 2 << 2) + 1740 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); 1741 riscv_cpu_set_mode(env, PRV_S); 1742 } else { 1743 /* handle the trap in M-mode */ 1744 if (riscv_has_ext(env, RVH)) { 1745 if (env->virt_enabled) { 1746 riscv_cpu_swap_hypervisor_regs(env); 1747 } 1748 env->mstatus = set_field(env->mstatus, MSTATUS_MPV, 1749 env->virt_enabled); 1750 if (env->virt_enabled && tval) { 1751 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); 1752 } 1753 1754 mtval2 = env->guest_phys_fault_addr; 1755 1756 /* Trapping to M mode, virt is disabled */ 1757 riscv_cpu_set_virt_enabled(env, 0); 1758 } 1759 1760 s = env->mstatus; 1761 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); 1762 s = set_field(s, MSTATUS_MPP, env->priv); 1763 s = set_field(s, MSTATUS_MIE, 0); 1764 env->mstatus = s; 1765 env->mcause = cause | ~(((target_ulong)-1) >> async); 1766 env->mepc = env->pc; 1767 env->mtval = tval; 1768 env->mtval2 = mtval2; 1769 env->mtinst = tinst; 1770 env->pc = (env->mtvec >> 2 << 2) + 1771 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); 1772 riscv_cpu_set_mode(env, PRV_M); 1773 } 1774 1775 /* 1776 * NOTE: it is not necessary to yield load reservations here. It is only 1777 * necessary for an SC from "another hart" to cause a load reservation 1778 * to be yielded. Refer to the memory consistency model section of the 1779 * RISC-V ISA Specification. 1780 */ 1781 1782 env->two_stage_lookup = false; 1783 env->two_stage_indirect_lookup = false; 1784 #endif 1785 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */ 1786 } 1787