1 /* 2 * RISC-V CPU helpers for qemu. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/main-loop.h" 23 #include "cpu.h" 24 #include "internals.h" 25 #include "pmu.h" 26 #include "exec/exec-all.h" 27 #include "exec/page-protection.h" 28 #include "instmap.h" 29 #include "tcg/tcg-op.h" 30 #include "trace.h" 31 #include "semihosting/common-semi.h" 32 #include "sysemu/cpu-timers.h" 33 #include "cpu_bits.h" 34 #include "debug.h" 35 #include "tcg/oversized-guest.h" 36 37 int riscv_env_mmu_index(CPURISCVState *env, bool ifetch) 38 { 39 #ifdef CONFIG_USER_ONLY 40 return 0; 41 #else 42 bool virt = env->virt_enabled; 43 int mode = env->priv; 44 45 /* All priv -> mmu_idx mapping are here */ 46 if (!ifetch) { 47 uint64_t status = env->mstatus; 48 49 if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) { 50 mode = get_field(env->mstatus, MSTATUS_MPP); 51 virt = get_field(env->mstatus, MSTATUS_MPV) && 52 (mode != PRV_M); 53 if (virt) { 54 status = env->vsstatus; 55 } 56 } 57 if (mode == PRV_S && get_field(status, MSTATUS_SUM)) { 58 mode = MMUIdx_S_SUM; 59 } 60 } 61 62 return mode | (virt ? MMU_2STAGE_BIT : 0); 63 #endif 64 } 65 66 void cpu_get_tb_cpu_state(CPURISCVState *env, vaddr *pc, 67 uint64_t *cs_base, uint32_t *pflags) 68 { 69 RISCVCPU *cpu = env_archcpu(env); 70 RISCVExtStatus fs, vs; 71 uint32_t flags = 0; 72 73 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc; 74 *cs_base = 0; 75 76 if (cpu->cfg.ext_zve32x) { 77 /* 78 * If env->vl equals to VLMAX, we can use generic vector operation 79 * expanders (GVEC) to accerlate the vector operations. 80 * However, as LMUL could be a fractional number. The maximum 81 * vector size can be operated might be less than 8 bytes, 82 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true 83 * only when maxsz >= 8 bytes. 84 */ 85 86 /* lmul encoded as in DisasContext::lmul */ 87 int8_t lmul = sextract32(FIELD_EX64(env->vtype, VTYPE, VLMUL), 0, 3); 88 uint32_t vsew = FIELD_EX64(env->vtype, VTYPE, VSEW); 89 uint32_t vlmax = vext_get_vlmax(cpu->cfg.vlenb, vsew, lmul); 90 uint32_t maxsz = vlmax << vsew; 91 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) && 92 (maxsz >= 8); 93 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill); 94 flags = FIELD_DP32(flags, TB_FLAGS, SEW, vsew); 95 flags = FIELD_DP32(flags, TB_FLAGS, LMUL, 96 FIELD_EX64(env->vtype, VTYPE, VLMUL)); 97 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax); 98 flags = FIELD_DP32(flags, TB_FLAGS, VTA, 99 FIELD_EX64(env->vtype, VTYPE, VTA)); 100 flags = FIELD_DP32(flags, TB_FLAGS, VMA, 101 FIELD_EX64(env->vtype, VTYPE, VMA)); 102 flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0); 103 } else { 104 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1); 105 } 106 107 #ifdef CONFIG_USER_ONLY 108 fs = EXT_STATUS_DIRTY; 109 vs = EXT_STATUS_DIRTY; 110 #else 111 flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv); 112 113 flags |= riscv_env_mmu_index(env, 0); 114 fs = get_field(env->mstatus, MSTATUS_FS); 115 vs = get_field(env->mstatus, MSTATUS_VS); 116 117 if (env->virt_enabled) { 118 flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1); 119 /* 120 * Merge DISABLED and !DIRTY states using MIN. 121 * We will set both fields when dirtying. 122 */ 123 fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS)); 124 vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS)); 125 } 126 127 /* With Zfinx, floating point is enabled/disabled by Smstateen. */ 128 if (!riscv_has_ext(env, RVF)) { 129 fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE) 130 ? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED; 131 } 132 133 if (cpu->cfg.debug && !icount_enabled()) { 134 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled); 135 } 136 #endif 137 138 flags = FIELD_DP32(flags, TB_FLAGS, FS, fs); 139 flags = FIELD_DP32(flags, TB_FLAGS, VS, vs); 140 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl); 141 flags = FIELD_DP32(flags, TB_FLAGS, AXL, cpu_address_xl(env)); 142 if (env->cur_pmmask != 0) { 143 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1); 144 } 145 if (env->cur_pmbase != 0) { 146 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1); 147 } 148 149 *pflags = flags; 150 } 151 152 void riscv_cpu_update_mask(CPURISCVState *env) 153 { 154 target_ulong mask = 0, base = 0; 155 RISCVMXL xl = env->xl; 156 /* 157 * TODO: Current RVJ spec does not specify 158 * how the extension interacts with XLEN. 159 */ 160 #ifndef CONFIG_USER_ONLY 161 int mode = cpu_address_mode(env); 162 xl = cpu_get_xl(env, mode); 163 if (riscv_has_ext(env, RVJ)) { 164 switch (mode) { 165 case PRV_M: 166 if (env->mmte & M_PM_ENABLE) { 167 mask = env->mpmmask; 168 base = env->mpmbase; 169 } 170 break; 171 case PRV_S: 172 if (env->mmte & S_PM_ENABLE) { 173 mask = env->spmmask; 174 base = env->spmbase; 175 } 176 break; 177 case PRV_U: 178 if (env->mmte & U_PM_ENABLE) { 179 mask = env->upmmask; 180 base = env->upmbase; 181 } 182 break; 183 default: 184 g_assert_not_reached(); 185 } 186 } 187 #endif 188 if (xl == MXL_RV32) { 189 env->cur_pmmask = mask & UINT32_MAX; 190 env->cur_pmbase = base & UINT32_MAX; 191 } else { 192 env->cur_pmmask = mask; 193 env->cur_pmbase = base; 194 } 195 } 196 197 #ifndef CONFIG_USER_ONLY 198 199 /* 200 * The HS-mode is allowed to configure priority only for the 201 * following VS-mode local interrupts: 202 * 203 * 0 (Reserved interrupt, reads as zero) 204 * 1 Supervisor software interrupt 205 * 4 (Reserved interrupt, reads as zero) 206 * 5 Supervisor timer interrupt 207 * 8 (Reserved interrupt, reads as zero) 208 * 13 (Reserved interrupt) 209 * 14 " 210 * 15 " 211 * 16 " 212 * 17 " 213 * 18 " 214 * 19 " 215 * 20 " 216 * 21 " 217 * 22 " 218 * 23 " 219 */ 220 221 static const int hviprio_index2irq[] = { 222 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 }; 223 static const int hviprio_index2rdzero[] = { 224 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 225 226 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero) 227 { 228 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) { 229 return -EINVAL; 230 } 231 232 if (out_irq) { 233 *out_irq = hviprio_index2irq[index]; 234 } 235 236 if (out_rdzero) { 237 *out_rdzero = hviprio_index2rdzero[index]; 238 } 239 240 return 0; 241 } 242 243 /* 244 * Default priorities of local interrupts are defined in the 245 * RISC-V Advanced Interrupt Architecture specification. 246 * 247 * ---------------------------------------------------------------- 248 * Default | 249 * Priority | Major Interrupt Numbers 250 * ---------------------------------------------------------------- 251 * Highest | 47, 23, 46, 45, 22, 44, 252 * | 43, 21, 42, 41, 20, 40 253 * | 254 * | 11 (0b), 3 (03), 7 (07) 255 * | 9 (09), 1 (01), 5 (05) 256 * | 12 (0c) 257 * | 10 (0a), 2 (02), 6 (06) 258 * | 259 * | 39, 19, 38, 37, 18, 36, 260 * Lowest | 35, 17, 34, 33, 16, 32 261 * ---------------------------------------------------------------- 262 */ 263 static const uint8_t default_iprio[64] = { 264 /* Custom interrupts 48 to 63 */ 265 [63] = IPRIO_MMAXIPRIO, 266 [62] = IPRIO_MMAXIPRIO, 267 [61] = IPRIO_MMAXIPRIO, 268 [60] = IPRIO_MMAXIPRIO, 269 [59] = IPRIO_MMAXIPRIO, 270 [58] = IPRIO_MMAXIPRIO, 271 [57] = IPRIO_MMAXIPRIO, 272 [56] = IPRIO_MMAXIPRIO, 273 [55] = IPRIO_MMAXIPRIO, 274 [54] = IPRIO_MMAXIPRIO, 275 [53] = IPRIO_MMAXIPRIO, 276 [52] = IPRIO_MMAXIPRIO, 277 [51] = IPRIO_MMAXIPRIO, 278 [50] = IPRIO_MMAXIPRIO, 279 [49] = IPRIO_MMAXIPRIO, 280 [48] = IPRIO_MMAXIPRIO, 281 282 /* Custom interrupts 24 to 31 */ 283 [31] = IPRIO_MMAXIPRIO, 284 [30] = IPRIO_MMAXIPRIO, 285 [29] = IPRIO_MMAXIPRIO, 286 [28] = IPRIO_MMAXIPRIO, 287 [27] = IPRIO_MMAXIPRIO, 288 [26] = IPRIO_MMAXIPRIO, 289 [25] = IPRIO_MMAXIPRIO, 290 [24] = IPRIO_MMAXIPRIO, 291 292 [47] = IPRIO_DEFAULT_UPPER, 293 [23] = IPRIO_DEFAULT_UPPER + 1, 294 [46] = IPRIO_DEFAULT_UPPER + 2, 295 [45] = IPRIO_DEFAULT_UPPER + 3, 296 [22] = IPRIO_DEFAULT_UPPER + 4, 297 [44] = IPRIO_DEFAULT_UPPER + 5, 298 299 [43] = IPRIO_DEFAULT_UPPER + 6, 300 [21] = IPRIO_DEFAULT_UPPER + 7, 301 [42] = IPRIO_DEFAULT_UPPER + 8, 302 [41] = IPRIO_DEFAULT_UPPER + 9, 303 [20] = IPRIO_DEFAULT_UPPER + 10, 304 [40] = IPRIO_DEFAULT_UPPER + 11, 305 306 [11] = IPRIO_DEFAULT_M, 307 [3] = IPRIO_DEFAULT_M + 1, 308 [7] = IPRIO_DEFAULT_M + 2, 309 310 [9] = IPRIO_DEFAULT_S, 311 [1] = IPRIO_DEFAULT_S + 1, 312 [5] = IPRIO_DEFAULT_S + 2, 313 314 [12] = IPRIO_DEFAULT_SGEXT, 315 316 [10] = IPRIO_DEFAULT_VS, 317 [2] = IPRIO_DEFAULT_VS + 1, 318 [6] = IPRIO_DEFAULT_VS + 2, 319 320 [39] = IPRIO_DEFAULT_LOWER, 321 [19] = IPRIO_DEFAULT_LOWER + 1, 322 [38] = IPRIO_DEFAULT_LOWER + 2, 323 [37] = IPRIO_DEFAULT_LOWER + 3, 324 [18] = IPRIO_DEFAULT_LOWER + 4, 325 [36] = IPRIO_DEFAULT_LOWER + 5, 326 327 [35] = IPRIO_DEFAULT_LOWER + 6, 328 [17] = IPRIO_DEFAULT_LOWER + 7, 329 [34] = IPRIO_DEFAULT_LOWER + 8, 330 [33] = IPRIO_DEFAULT_LOWER + 9, 331 [16] = IPRIO_DEFAULT_LOWER + 10, 332 [32] = IPRIO_DEFAULT_LOWER + 11, 333 }; 334 335 uint8_t riscv_cpu_default_priority(int irq) 336 { 337 if (irq < 0 || irq > 63) { 338 return IPRIO_MMAXIPRIO; 339 } 340 341 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO; 342 }; 343 344 static int riscv_cpu_pending_to_irq(CPURISCVState *env, 345 int extirq, unsigned int extirq_def_prio, 346 uint64_t pending, uint8_t *iprio) 347 { 348 int irq, best_irq = RISCV_EXCP_NONE; 349 unsigned int prio, best_prio = UINT_MAX; 350 351 if (!pending) { 352 return RISCV_EXCP_NONE; 353 } 354 355 irq = ctz64(pending); 356 if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia : 357 riscv_cpu_cfg(env)->ext_ssaia)) { 358 return irq; 359 } 360 361 pending = pending >> irq; 362 while (pending) { 363 prio = iprio[irq]; 364 if (!prio) { 365 if (irq == extirq) { 366 prio = extirq_def_prio; 367 } else { 368 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ? 369 1 : IPRIO_MMAXIPRIO; 370 } 371 } 372 if ((pending & 0x1) && (prio <= best_prio)) { 373 best_irq = irq; 374 best_prio = prio; 375 } 376 irq++; 377 pending = pending >> 1; 378 } 379 380 return best_irq; 381 } 382 383 /* 384 * Doesn't report interrupts inserted using mvip from M-mode firmware or 385 * using hvip bits 13:63 from HS-mode. Those are returned in 386 * riscv_cpu_sirq_pending() and riscv_cpu_vsirq_pending(). 387 */ 388 uint64_t riscv_cpu_all_pending(CPURISCVState *env) 389 { 390 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN); 391 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 392 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0; 393 394 return (env->mip | vsgein | vstip) & env->mie; 395 } 396 397 int riscv_cpu_mirq_pending(CPURISCVState *env) 398 { 399 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg & 400 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 401 402 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 403 irqs, env->miprio); 404 } 405 406 int riscv_cpu_sirq_pending(CPURISCVState *env) 407 { 408 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & 409 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 410 uint64_t irqs_f = env->mvip & env->mvien & ~env->mideleg & env->sie; 411 412 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 413 irqs | irqs_f, env->siprio); 414 } 415 416 int riscv_cpu_vsirq_pending(CPURISCVState *env) 417 { 418 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & env->hideleg; 419 uint64_t irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie; 420 uint64_t vsbits; 421 422 /* Bring VS-level bits to correct position */ 423 vsbits = irqs & VS_MODE_INTERRUPTS; 424 irqs &= ~VS_MODE_INTERRUPTS; 425 irqs |= vsbits >> 1; 426 427 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 428 (irqs | irqs_f_vs), env->hviprio); 429 } 430 431 static int riscv_cpu_local_irq_pending(CPURISCVState *env) 432 { 433 uint64_t irqs, pending, mie, hsie, vsie, irqs_f, irqs_f_vs; 434 uint64_t vsbits, irq_delegated; 435 int virq; 436 437 /* Determine interrupt enable state of all privilege modes */ 438 if (env->virt_enabled) { 439 mie = 1; 440 hsie = 1; 441 vsie = (env->priv < PRV_S) || 442 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 443 } else { 444 mie = (env->priv < PRV_M) || 445 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE)); 446 hsie = (env->priv < PRV_S) || 447 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 448 vsie = 0; 449 } 450 451 /* Determine all pending interrupts */ 452 pending = riscv_cpu_all_pending(env); 453 454 /* Check M-mode interrupts */ 455 irqs = pending & ~env->mideleg & -mie; 456 if (irqs) { 457 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 458 irqs, env->miprio); 459 } 460 461 /* Check for virtual S-mode interrupts. */ 462 irqs_f = env->mvip & (env->mvien & ~env->mideleg) & env->sie; 463 464 /* Check HS-mode interrupts */ 465 irqs = ((pending & env->mideleg & ~env->hideleg) | irqs_f) & -hsie; 466 if (irqs) { 467 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 468 irqs, env->siprio); 469 } 470 471 /* Check for virtual VS-mode interrupts. */ 472 irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie; 473 474 /* Check VS-mode interrupts */ 475 irq_delegated = pending & env->mideleg & env->hideleg; 476 477 /* Bring VS-level bits to correct position */ 478 vsbits = irq_delegated & VS_MODE_INTERRUPTS; 479 irq_delegated &= ~VS_MODE_INTERRUPTS; 480 irq_delegated |= vsbits >> 1; 481 482 irqs = (irq_delegated | irqs_f_vs) & -vsie; 483 if (irqs) { 484 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 485 irqs, env->hviprio); 486 if (virq <= 0 || (virq > 12 && virq <= 63)) { 487 return virq; 488 } else { 489 return virq + 1; 490 } 491 } 492 493 /* Indicate no pending interrupt */ 494 return RISCV_EXCP_NONE; 495 } 496 497 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 498 { 499 if (interrupt_request & CPU_INTERRUPT_HARD) { 500 RISCVCPU *cpu = RISCV_CPU(cs); 501 CPURISCVState *env = &cpu->env; 502 int interruptno = riscv_cpu_local_irq_pending(env); 503 if (interruptno >= 0) { 504 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; 505 riscv_cpu_do_interrupt(cs); 506 return true; 507 } 508 } 509 return false; 510 } 511 512 /* Return true is floating point support is currently enabled */ 513 bool riscv_cpu_fp_enabled(CPURISCVState *env) 514 { 515 if (env->mstatus & MSTATUS_FS) { 516 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) { 517 return false; 518 } 519 return true; 520 } 521 522 return false; 523 } 524 525 /* Return true is vector support is currently enabled */ 526 bool riscv_cpu_vector_enabled(CPURISCVState *env) 527 { 528 if (env->mstatus & MSTATUS_VS) { 529 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) { 530 return false; 531 } 532 return true; 533 } 534 535 return false; 536 } 537 538 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) 539 { 540 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | 541 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE | 542 MSTATUS64_UXL | MSTATUS_VS; 543 544 if (riscv_has_ext(env, RVF)) { 545 mstatus_mask |= MSTATUS_FS; 546 } 547 bool current_virt = env->virt_enabled; 548 549 g_assert(riscv_has_ext(env, RVH)); 550 551 if (current_virt) { 552 /* Current V=1 and we are about to change to V=0 */ 553 env->vsstatus = env->mstatus & mstatus_mask; 554 env->mstatus &= ~mstatus_mask; 555 env->mstatus |= env->mstatus_hs; 556 557 env->vstvec = env->stvec; 558 env->stvec = env->stvec_hs; 559 560 env->vsscratch = env->sscratch; 561 env->sscratch = env->sscratch_hs; 562 563 env->vsepc = env->sepc; 564 env->sepc = env->sepc_hs; 565 566 env->vscause = env->scause; 567 env->scause = env->scause_hs; 568 569 env->vstval = env->stval; 570 env->stval = env->stval_hs; 571 572 env->vsatp = env->satp; 573 env->satp = env->satp_hs; 574 } else { 575 /* Current V=0 and we are about to change to V=1 */ 576 env->mstatus_hs = env->mstatus & mstatus_mask; 577 env->mstatus &= ~mstatus_mask; 578 env->mstatus |= env->vsstatus; 579 580 env->stvec_hs = env->stvec; 581 env->stvec = env->vstvec; 582 583 env->sscratch_hs = env->sscratch; 584 env->sscratch = env->vsscratch; 585 586 env->sepc_hs = env->sepc; 587 env->sepc = env->vsepc; 588 589 env->scause_hs = env->scause; 590 env->scause = env->vscause; 591 592 env->stval_hs = env->stval; 593 env->stval = env->vstval; 594 595 env->satp_hs = env->satp; 596 env->satp = env->vsatp; 597 } 598 } 599 600 target_ulong riscv_cpu_get_geilen(CPURISCVState *env) 601 { 602 if (!riscv_has_ext(env, RVH)) { 603 return 0; 604 } 605 606 return env->geilen; 607 } 608 609 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen) 610 { 611 if (!riscv_has_ext(env, RVH)) { 612 return; 613 } 614 615 if (geilen > (TARGET_LONG_BITS - 1)) { 616 return; 617 } 618 619 env->geilen = geilen; 620 } 621 622 /* This function can only be called to set virt when RVH is enabled */ 623 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable) 624 { 625 /* Flush the TLB on all virt mode changes. */ 626 if (env->virt_enabled != enable) { 627 tlb_flush(env_cpu(env)); 628 } 629 630 env->virt_enabled = enable; 631 632 if (enable) { 633 /* 634 * The guest external interrupts from an interrupt controller are 635 * delivered only when the Guest/VM is running (i.e. V=1). This means 636 * any guest external interrupt which is triggered while the Guest/VM 637 * is not running (i.e. V=0) will be missed on QEMU resulting in guest 638 * with sluggish response to serial console input and other I/O events. 639 * 640 * To solve this, we check and inject interrupt after setting V=1. 641 */ 642 riscv_cpu_update_mip(env, 0, 0); 643 } 644 } 645 646 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts) 647 { 648 CPURISCVState *env = &cpu->env; 649 if (env->miclaim & interrupts) { 650 return -1; 651 } else { 652 env->miclaim |= interrupts; 653 return 0; 654 } 655 } 656 657 void riscv_cpu_interrupt(CPURISCVState *env) 658 { 659 uint64_t gein, vsgein = 0, vstip = 0, irqf = 0; 660 CPUState *cs = env_cpu(env); 661 662 BQL_LOCK_GUARD(); 663 664 if (env->virt_enabled) { 665 gein = get_field(env->hstatus, HSTATUS_VGEIN); 666 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 667 irqf = env->hvien & env->hvip & env->vsie; 668 } else { 669 irqf = env->mvien & env->mvip & env->sie; 670 } 671 672 vstip = env->vstime_irq ? MIP_VSTIP : 0; 673 674 if (env->mip | vsgein | vstip | irqf) { 675 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 676 } else { 677 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 678 } 679 } 680 681 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask, uint64_t value) 682 { 683 uint64_t old = env->mip; 684 685 /* No need to update mip for VSTIP */ 686 mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask; 687 688 BQL_LOCK_GUARD(); 689 690 env->mip = (env->mip & ~mask) | (value & mask); 691 692 riscv_cpu_interrupt(env); 693 694 return old; 695 } 696 697 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *), 698 void *arg) 699 { 700 env->rdtime_fn = fn; 701 env->rdtime_fn_arg = arg; 702 } 703 704 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv, 705 int (*rmw_fn)(void *arg, 706 target_ulong reg, 707 target_ulong *val, 708 target_ulong new_val, 709 target_ulong write_mask), 710 void *rmw_fn_arg) 711 { 712 if (priv <= PRV_M) { 713 env->aia_ireg_rmw_fn[priv] = rmw_fn; 714 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg; 715 } 716 } 717 718 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) 719 { 720 g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED); 721 722 if (icount_enabled() && newpriv != env->priv) { 723 riscv_itrigger_update_priv(env); 724 } 725 /* tlb_flush is unnecessary as mode is contained in mmu_idx */ 726 env->priv = newpriv; 727 env->xl = cpu_recompute_xl(env); 728 riscv_cpu_update_mask(env); 729 730 /* 731 * Clear the load reservation - otherwise a reservation placed in one 732 * context/process can be used by another, resulting in an SC succeeding 733 * incorrectly. Version 2.2 of the ISA specification explicitly requires 734 * this behaviour, while later revisions say that the kernel "should" use 735 * an SC instruction to force the yielding of a load reservation on a 736 * preemptive context switch. As a result, do both. 737 */ 738 env->load_res = -1; 739 } 740 741 /* 742 * get_physical_address_pmp - check PMP permission for this physical address 743 * 744 * Match the PMP region and check permission for this physical address and it's 745 * TLB page. Returns 0 if the permission checking was successful 746 * 747 * @env: CPURISCVState 748 * @prot: The returned protection attributes 749 * @addr: The physical address to be checked permission 750 * @access_type: The type of MMU access 751 * @mode: Indicates current privilege level. 752 */ 753 static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr, 754 int size, MMUAccessType access_type, 755 int mode) 756 { 757 pmp_priv_t pmp_priv; 758 bool pmp_has_privs; 759 760 if (!riscv_cpu_cfg(env)->pmp) { 761 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 762 return TRANSLATE_SUCCESS; 763 } 764 765 pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type, 766 &pmp_priv, mode); 767 if (!pmp_has_privs) { 768 *prot = 0; 769 return TRANSLATE_PMP_FAIL; 770 } 771 772 *prot = pmp_priv_to_page_prot(pmp_priv); 773 774 return TRANSLATE_SUCCESS; 775 } 776 777 /* 778 * get_physical_address - get the physical address for this virtual address 779 * 780 * Do a page table walk to obtain the physical address corresponding to a 781 * virtual address. Returns 0 if the translation was successful 782 * 783 * Adapted from Spike's mmu_t::translate and mmu_t::walk 784 * 785 * @env: CPURISCVState 786 * @physical: This will be set to the calculated physical address 787 * @prot: The returned protection attributes 788 * @addr: The virtual address or guest physical address to be translated 789 * @fault_pte_addr: If not NULL, this will be set to fault pte address 790 * when a error occurs on pte address translation. 791 * This will already be shifted to match htval. 792 * @access_type: The type of MMU access 793 * @mmu_idx: Indicates current privilege level 794 * @first_stage: Are we in first stage translation? 795 * Second stage is used for hypervisor guest translation 796 * @two_stage: Are we going to perform two stage translation 797 * @is_debug: Is this access from a debugger or the monitor? 798 */ 799 static int get_physical_address(CPURISCVState *env, hwaddr *physical, 800 int *ret_prot, vaddr addr, 801 target_ulong *fault_pte_addr, 802 int access_type, int mmu_idx, 803 bool first_stage, bool two_stage, 804 bool is_debug) 805 { 806 /* 807 * NOTE: the env->pc value visible here will not be 808 * correct, but the value visible to the exception handler 809 * (riscv_cpu_do_interrupt) is correct 810 */ 811 MemTxResult res; 812 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 813 int mode = mmuidx_priv(mmu_idx); 814 bool use_background = false; 815 hwaddr ppn; 816 int napot_bits = 0; 817 target_ulong napot_mask; 818 819 /* 820 * Check if we should use the background registers for the two 821 * stage translation. We don't need to check if we actually need 822 * two stage translation as that happened before this function 823 * was called. Background registers will be used if the guest has 824 * forced a two stage translation to be on (in HS or M mode). 825 */ 826 if (!env->virt_enabled && two_stage) { 827 use_background = true; 828 } 829 830 if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) { 831 *physical = addr; 832 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 833 return TRANSLATE_SUCCESS; 834 } 835 836 *ret_prot = 0; 837 838 hwaddr base; 839 int levels, ptidxbits, ptesize, vm, widened; 840 841 if (first_stage == true) { 842 if (use_background) { 843 if (riscv_cpu_mxl(env) == MXL_RV32) { 844 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT; 845 vm = get_field(env->vsatp, SATP32_MODE); 846 } else { 847 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT; 848 vm = get_field(env->vsatp, SATP64_MODE); 849 } 850 } else { 851 if (riscv_cpu_mxl(env) == MXL_RV32) { 852 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT; 853 vm = get_field(env->satp, SATP32_MODE); 854 } else { 855 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT; 856 vm = get_field(env->satp, SATP64_MODE); 857 } 858 } 859 widened = 0; 860 } else { 861 if (riscv_cpu_mxl(env) == MXL_RV32) { 862 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT; 863 vm = get_field(env->hgatp, SATP32_MODE); 864 } else { 865 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT; 866 vm = get_field(env->hgatp, SATP64_MODE); 867 } 868 widened = 2; 869 } 870 871 switch (vm) { 872 case VM_1_10_SV32: 873 levels = 2; ptidxbits = 10; ptesize = 4; break; 874 case VM_1_10_SV39: 875 levels = 3; ptidxbits = 9; ptesize = 8; break; 876 case VM_1_10_SV48: 877 levels = 4; ptidxbits = 9; ptesize = 8; break; 878 case VM_1_10_SV57: 879 levels = 5; ptidxbits = 9; ptesize = 8; break; 880 case VM_1_10_MBARE: 881 *physical = addr; 882 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 883 return TRANSLATE_SUCCESS; 884 default: 885 g_assert_not_reached(); 886 } 887 888 CPUState *cs = env_cpu(env); 889 int va_bits = PGSHIFT + levels * ptidxbits + widened; 890 891 if (first_stage == true) { 892 target_ulong mask, masked_msbs; 893 894 if (TARGET_LONG_BITS > (va_bits - 1)) { 895 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; 896 } else { 897 mask = 0; 898 } 899 masked_msbs = (addr >> (va_bits - 1)) & mask; 900 901 if (masked_msbs != 0 && masked_msbs != mask) { 902 return TRANSLATE_FAIL; 903 } 904 } else { 905 if (vm != VM_1_10_SV32 && addr >> va_bits != 0) { 906 return TRANSLATE_FAIL; 907 } 908 } 909 910 bool pbmte = env->menvcfg & MENVCFG_PBMTE; 911 bool svade = riscv_cpu_cfg(env)->ext_svade; 912 bool svadu = riscv_cpu_cfg(env)->ext_svadu; 913 bool adue = svadu ? env->menvcfg & MENVCFG_ADUE : !svade; 914 915 if (first_stage && two_stage && env->virt_enabled) { 916 pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE); 917 adue = adue && (env->henvcfg & HENVCFG_ADUE); 918 } 919 920 int ptshift = (levels - 1) * ptidxbits; 921 target_ulong pte; 922 hwaddr pte_addr; 923 int i; 924 925 #if !TCG_OVERSIZED_GUEST 926 restart: 927 #endif 928 for (i = 0; i < levels; i++, ptshift -= ptidxbits) { 929 target_ulong idx; 930 if (i == 0) { 931 idx = (addr >> (PGSHIFT + ptshift)) & 932 ((1 << (ptidxbits + widened)) - 1); 933 } else { 934 idx = (addr >> (PGSHIFT + ptshift)) & 935 ((1 << ptidxbits) - 1); 936 } 937 938 /* check that physical address of PTE is legal */ 939 940 if (two_stage && first_stage) { 941 int vbase_prot; 942 hwaddr vbase; 943 944 /* Do the second stage translation on the base PTE address. */ 945 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, 946 base, NULL, MMU_DATA_LOAD, 947 MMUIdx_U, false, true, 948 is_debug); 949 950 if (vbase_ret != TRANSLATE_SUCCESS) { 951 if (fault_pte_addr) { 952 *fault_pte_addr = (base + idx * ptesize) >> 2; 953 } 954 return TRANSLATE_G_STAGE_FAIL; 955 } 956 957 pte_addr = vbase + idx * ptesize; 958 } else { 959 pte_addr = base + idx * ptesize; 960 } 961 962 int pmp_prot; 963 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr, 964 sizeof(target_ulong), 965 MMU_DATA_LOAD, PRV_S); 966 if (pmp_ret != TRANSLATE_SUCCESS) { 967 return TRANSLATE_PMP_FAIL; 968 } 969 970 if (riscv_cpu_mxl(env) == MXL_RV32) { 971 pte = address_space_ldl(cs->as, pte_addr, attrs, &res); 972 } else { 973 pte = address_space_ldq(cs->as, pte_addr, attrs, &res); 974 } 975 976 if (res != MEMTX_OK) { 977 return TRANSLATE_FAIL; 978 } 979 980 if (riscv_cpu_sxl(env) == MXL_RV32) { 981 ppn = pte >> PTE_PPN_SHIFT; 982 } else { 983 if (pte & PTE_RESERVED) { 984 return TRANSLATE_FAIL; 985 } 986 987 if (!pbmte && (pte & PTE_PBMT)) { 988 return TRANSLATE_FAIL; 989 } 990 991 if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) { 992 return TRANSLATE_FAIL; 993 } 994 995 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT; 996 } 997 998 if (!(pte & PTE_V)) { 999 /* Invalid PTE */ 1000 return TRANSLATE_FAIL; 1001 } 1002 if (pte & (PTE_R | PTE_W | PTE_X)) { 1003 goto leaf; 1004 } 1005 1006 /* Inner PTE, continue walking */ 1007 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) { 1008 return TRANSLATE_FAIL; 1009 } 1010 base = ppn << PGSHIFT; 1011 } 1012 1013 /* No leaf pte at any translation level. */ 1014 return TRANSLATE_FAIL; 1015 1016 leaf: 1017 if (ppn & ((1ULL << ptshift) - 1)) { 1018 /* Misaligned PPN */ 1019 return TRANSLATE_FAIL; 1020 } 1021 if (!pbmte && (pte & PTE_PBMT)) { 1022 /* Reserved without Svpbmt. */ 1023 return TRANSLATE_FAIL; 1024 } 1025 1026 /* Check for reserved combinations of RWX flags. */ 1027 switch (pte & (PTE_R | PTE_W | PTE_X)) { 1028 case PTE_W: 1029 case PTE_W | PTE_X: 1030 return TRANSLATE_FAIL; 1031 } 1032 1033 int prot = 0; 1034 if (pte & PTE_R) { 1035 prot |= PAGE_READ; 1036 } 1037 if (pte & PTE_W) { 1038 prot |= PAGE_WRITE; 1039 } 1040 if (pte & PTE_X) { 1041 bool mxr = false; 1042 1043 /* 1044 * Use mstatus for first stage or for the second stage without 1045 * virt_enabled (MPRV+MPV) 1046 */ 1047 if (first_stage || !env->virt_enabled) { 1048 mxr = get_field(env->mstatus, MSTATUS_MXR); 1049 } 1050 1051 /* MPRV+MPV case, check VSSTATUS */ 1052 if (first_stage && two_stage && !env->virt_enabled) { 1053 mxr |= get_field(env->vsstatus, MSTATUS_MXR); 1054 } 1055 1056 /* 1057 * Setting MXR at HS-level overrides both VS-stage and G-stage 1058 * execute-only permissions 1059 */ 1060 if (env->virt_enabled) { 1061 mxr |= get_field(env->mstatus_hs, MSTATUS_MXR); 1062 } 1063 1064 if (mxr) { 1065 prot |= PAGE_READ; 1066 } 1067 prot |= PAGE_EXEC; 1068 } 1069 1070 if (pte & PTE_U) { 1071 if (mode != PRV_U) { 1072 if (!mmuidx_sum(mmu_idx)) { 1073 return TRANSLATE_FAIL; 1074 } 1075 /* SUM allows only read+write, not execute. */ 1076 prot &= PAGE_READ | PAGE_WRITE; 1077 } 1078 } else if (mode != PRV_S) { 1079 /* Supervisor PTE flags when not S mode */ 1080 return TRANSLATE_FAIL; 1081 } 1082 1083 if (!((prot >> access_type) & 1)) { 1084 /* Access check failed */ 1085 return TRANSLATE_FAIL; 1086 } 1087 1088 target_ulong updated_pte = pte; 1089 1090 /* 1091 * If ADUE is enabled, set accessed and dirty bits. 1092 * Otherwise raise an exception if necessary. 1093 */ 1094 if (adue) { 1095 updated_pte |= PTE_A | (access_type == MMU_DATA_STORE ? PTE_D : 0); 1096 } else if (!(pte & PTE_A) || 1097 (access_type == MMU_DATA_STORE && !(pte & PTE_D))) { 1098 return TRANSLATE_FAIL; 1099 } 1100 1101 /* Page table updates need to be atomic with MTTCG enabled */ 1102 if (updated_pte != pte && !is_debug) { 1103 if (!adue) { 1104 return TRANSLATE_FAIL; 1105 } 1106 1107 /* 1108 * - if accessed or dirty bits need updating, and the PTE is 1109 * in RAM, then we do so atomically with a compare and swap. 1110 * - if the PTE is in IO space or ROM, then it can't be updated 1111 * and we return TRANSLATE_FAIL. 1112 * - if the PTE changed by the time we went to update it, then 1113 * it is no longer valid and we must re-walk the page table. 1114 */ 1115 MemoryRegion *mr; 1116 hwaddr l = sizeof(target_ulong), addr1; 1117 mr = address_space_translate(cs->as, pte_addr, &addr1, &l, 1118 false, MEMTXATTRS_UNSPECIFIED); 1119 if (memory_region_is_ram(mr)) { 1120 target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1); 1121 #if TCG_OVERSIZED_GUEST 1122 /* 1123 * MTTCG is not enabled on oversized TCG guests so 1124 * page table updates do not need to be atomic 1125 */ 1126 *pte_pa = pte = updated_pte; 1127 #else 1128 target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte); 1129 if (old_pte != pte) { 1130 goto restart; 1131 } 1132 pte = updated_pte; 1133 #endif 1134 } else { 1135 /* 1136 * Misconfigured PTE in ROM (AD bits are not preset) or 1137 * PTE is in IO space and can't be updated atomically. 1138 */ 1139 return TRANSLATE_FAIL; 1140 } 1141 } 1142 1143 /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */ 1144 target_ulong vpn = addr >> PGSHIFT; 1145 1146 if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) { 1147 napot_bits = ctzl(ppn) + 1; 1148 if ((i != (levels - 1)) || (napot_bits != 4)) { 1149 return TRANSLATE_FAIL; 1150 } 1151 } 1152 1153 napot_mask = (1 << napot_bits) - 1; 1154 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) | 1155 (vpn & (((target_ulong)1 << ptshift) - 1)) 1156 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK); 1157 1158 /* 1159 * Remove write permission unless this is a store, or the page is 1160 * already dirty, so that we TLB miss on later writes to update 1161 * the dirty bit. 1162 */ 1163 if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) { 1164 prot &= ~PAGE_WRITE; 1165 } 1166 *ret_prot = prot; 1167 1168 return TRANSLATE_SUCCESS; 1169 } 1170 1171 static void raise_mmu_exception(CPURISCVState *env, target_ulong address, 1172 MMUAccessType access_type, bool pmp_violation, 1173 bool first_stage, bool two_stage, 1174 bool two_stage_indirect) 1175 { 1176 CPUState *cs = env_cpu(env); 1177 1178 switch (access_type) { 1179 case MMU_INST_FETCH: 1180 if (pmp_violation) { 1181 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT; 1182 } else if (env->virt_enabled && !first_stage) { 1183 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; 1184 } else { 1185 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT; 1186 } 1187 break; 1188 case MMU_DATA_LOAD: 1189 if (pmp_violation) { 1190 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 1191 } else if (two_stage && !first_stage) { 1192 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; 1193 } else { 1194 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT; 1195 } 1196 break; 1197 case MMU_DATA_STORE: 1198 if (pmp_violation) { 1199 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1200 } else if (two_stage && !first_stage) { 1201 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; 1202 } else { 1203 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT; 1204 } 1205 break; 1206 default: 1207 g_assert_not_reached(); 1208 } 1209 env->badaddr = address; 1210 env->two_stage_lookup = two_stage; 1211 env->two_stage_indirect_lookup = two_stage_indirect; 1212 } 1213 1214 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 1215 { 1216 RISCVCPU *cpu = RISCV_CPU(cs); 1217 CPURISCVState *env = &cpu->env; 1218 hwaddr phys_addr; 1219 int prot; 1220 int mmu_idx = riscv_env_mmu_index(&cpu->env, false); 1221 1222 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx, 1223 true, env->virt_enabled, true)) { 1224 return -1; 1225 } 1226 1227 if (env->virt_enabled) { 1228 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL, 1229 0, MMUIdx_U, false, true, true)) { 1230 return -1; 1231 } 1232 } 1233 1234 return phys_addr & TARGET_PAGE_MASK; 1235 } 1236 1237 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 1238 vaddr addr, unsigned size, 1239 MMUAccessType access_type, 1240 int mmu_idx, MemTxAttrs attrs, 1241 MemTxResult response, uintptr_t retaddr) 1242 { 1243 RISCVCPU *cpu = RISCV_CPU(cs); 1244 CPURISCVState *env = &cpu->env; 1245 1246 if (access_type == MMU_DATA_STORE) { 1247 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1248 } else if (access_type == MMU_DATA_LOAD) { 1249 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 1250 } else { 1251 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT; 1252 } 1253 1254 env->badaddr = addr; 1255 env->two_stage_lookup = mmuidx_2stage(mmu_idx); 1256 env->two_stage_indirect_lookup = false; 1257 cpu_loop_exit_restore(cs, retaddr); 1258 } 1259 1260 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 1261 MMUAccessType access_type, int mmu_idx, 1262 uintptr_t retaddr) 1263 { 1264 RISCVCPU *cpu = RISCV_CPU(cs); 1265 CPURISCVState *env = &cpu->env; 1266 switch (access_type) { 1267 case MMU_INST_FETCH: 1268 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; 1269 break; 1270 case MMU_DATA_LOAD: 1271 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; 1272 break; 1273 case MMU_DATA_STORE: 1274 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; 1275 break; 1276 default: 1277 g_assert_not_reached(); 1278 } 1279 env->badaddr = addr; 1280 env->two_stage_lookup = mmuidx_2stage(mmu_idx); 1281 env->two_stage_indirect_lookup = false; 1282 cpu_loop_exit_restore(cs, retaddr); 1283 } 1284 1285 1286 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type) 1287 { 1288 enum riscv_pmu_event_idx pmu_event_type; 1289 1290 switch (access_type) { 1291 case MMU_INST_FETCH: 1292 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS; 1293 break; 1294 case MMU_DATA_LOAD: 1295 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS; 1296 break; 1297 case MMU_DATA_STORE: 1298 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS; 1299 break; 1300 default: 1301 return; 1302 } 1303 1304 riscv_pmu_incr_ctr(cpu, pmu_event_type); 1305 } 1306 1307 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 1308 MMUAccessType access_type, int mmu_idx, 1309 bool probe, uintptr_t retaddr) 1310 { 1311 RISCVCPU *cpu = RISCV_CPU(cs); 1312 CPURISCVState *env = &cpu->env; 1313 vaddr im_address; 1314 hwaddr pa = 0; 1315 int prot, prot2, prot_pmp; 1316 bool pmp_violation = false; 1317 bool first_stage_error = true; 1318 bool two_stage_lookup = mmuidx_2stage(mmu_idx); 1319 bool two_stage_indirect_error = false; 1320 int ret = TRANSLATE_FAIL; 1321 int mode = mmuidx_priv(mmu_idx); 1322 /* default TLB page size */ 1323 target_ulong tlb_size = TARGET_PAGE_SIZE; 1324 1325 env->guest_phys_fault_addr = 0; 1326 1327 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", 1328 __func__, address, access_type, mmu_idx); 1329 1330 pmu_tlb_fill_incr_ctr(cpu, access_type); 1331 if (two_stage_lookup) { 1332 /* Two stage lookup */ 1333 ret = get_physical_address(env, &pa, &prot, address, 1334 &env->guest_phys_fault_addr, access_type, 1335 mmu_idx, true, true, false); 1336 1337 /* 1338 * A G-stage exception may be triggered during two state lookup. 1339 * And the env->guest_phys_fault_addr has already been set in 1340 * get_physical_address(). 1341 */ 1342 if (ret == TRANSLATE_G_STAGE_FAIL) { 1343 first_stage_error = false; 1344 two_stage_indirect_error = true; 1345 } 1346 1347 qemu_log_mask(CPU_LOG_MMU, 1348 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " 1349 HWADDR_FMT_plx " prot %d\n", 1350 __func__, address, ret, pa, prot); 1351 1352 if (ret == TRANSLATE_SUCCESS) { 1353 /* Second stage lookup */ 1354 im_address = pa; 1355 1356 ret = get_physical_address(env, &pa, &prot2, im_address, NULL, 1357 access_type, MMUIdx_U, false, true, 1358 false); 1359 1360 qemu_log_mask(CPU_LOG_MMU, 1361 "%s 2nd-stage address=%" VADDR_PRIx 1362 " ret %d physical " 1363 HWADDR_FMT_plx " prot %d\n", 1364 __func__, im_address, ret, pa, prot2); 1365 1366 prot &= prot2; 1367 1368 if (ret == TRANSLATE_SUCCESS) { 1369 ret = get_physical_address_pmp(env, &prot_pmp, pa, 1370 size, access_type, mode); 1371 tlb_size = pmp_get_tlb_size(env, pa); 1372 1373 qemu_log_mask(CPU_LOG_MMU, 1374 "%s PMP address=" HWADDR_FMT_plx " ret %d prot" 1375 " %d tlb_size " TARGET_FMT_lu "\n", 1376 __func__, pa, ret, prot_pmp, tlb_size); 1377 1378 prot &= prot_pmp; 1379 } else { 1380 /* 1381 * Guest physical address translation failed, this is a HS 1382 * level exception 1383 */ 1384 first_stage_error = false; 1385 if (ret != TRANSLATE_PMP_FAIL) { 1386 env->guest_phys_fault_addr = (im_address | 1387 (address & 1388 (TARGET_PAGE_SIZE - 1))) >> 2; 1389 } 1390 } 1391 } 1392 } else { 1393 /* Single stage lookup */ 1394 ret = get_physical_address(env, &pa, &prot, address, NULL, 1395 access_type, mmu_idx, true, false, false); 1396 1397 qemu_log_mask(CPU_LOG_MMU, 1398 "%s address=%" VADDR_PRIx " ret %d physical " 1399 HWADDR_FMT_plx " prot %d\n", 1400 __func__, address, ret, pa, prot); 1401 1402 if (ret == TRANSLATE_SUCCESS) { 1403 ret = get_physical_address_pmp(env, &prot_pmp, pa, 1404 size, access_type, mode); 1405 tlb_size = pmp_get_tlb_size(env, pa); 1406 1407 qemu_log_mask(CPU_LOG_MMU, 1408 "%s PMP address=" HWADDR_FMT_plx " ret %d prot" 1409 " %d tlb_size " TARGET_FMT_lu "\n", 1410 __func__, pa, ret, prot_pmp, tlb_size); 1411 1412 prot &= prot_pmp; 1413 } 1414 } 1415 1416 if (ret == TRANSLATE_PMP_FAIL) { 1417 pmp_violation = true; 1418 } 1419 1420 if (ret == TRANSLATE_SUCCESS) { 1421 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), 1422 prot, mmu_idx, tlb_size); 1423 return true; 1424 } else if (probe) { 1425 return false; 1426 } else { 1427 raise_mmu_exception(env, address, access_type, pmp_violation, 1428 first_stage_error, two_stage_lookup, 1429 two_stage_indirect_error); 1430 cpu_loop_exit_restore(cs, retaddr); 1431 } 1432 1433 return true; 1434 } 1435 1436 static target_ulong riscv_transformed_insn(CPURISCVState *env, 1437 target_ulong insn, 1438 target_ulong taddr) 1439 { 1440 target_ulong xinsn = 0; 1441 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0; 1442 1443 /* 1444 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to 1445 * be uncompressed. The Quadrant 1 of RVC instruction space need 1446 * not be transformed because these instructions won't generate 1447 * any load/store trap. 1448 */ 1449 1450 if ((insn & 0x3) != 0x3) { 1451 /* Transform 16bit instruction into 32bit instruction */ 1452 switch (GET_C_OP(insn)) { 1453 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */ 1454 switch (GET_C_FUNC(insn)) { 1455 case OPC_RISC_C_FUNC_FLD_LQ: 1456 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */ 1457 xinsn = OPC_RISC_FLD; 1458 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1459 access_rs1 = GET_C_RS1S(insn); 1460 access_imm = GET_C_LD_IMM(insn); 1461 access_size = 8; 1462 } 1463 break; 1464 case OPC_RISC_C_FUNC_LW: /* C.LW */ 1465 xinsn = OPC_RISC_LW; 1466 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1467 access_rs1 = GET_C_RS1S(insn); 1468 access_imm = GET_C_LW_IMM(insn); 1469 access_size = 4; 1470 break; 1471 case OPC_RISC_C_FUNC_FLW_LD: 1472 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */ 1473 xinsn = OPC_RISC_FLW; 1474 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1475 access_rs1 = GET_C_RS1S(insn); 1476 access_imm = GET_C_LW_IMM(insn); 1477 access_size = 4; 1478 } else { /* C.LD (RV64/RV128) */ 1479 xinsn = OPC_RISC_LD; 1480 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1481 access_rs1 = GET_C_RS1S(insn); 1482 access_imm = GET_C_LD_IMM(insn); 1483 access_size = 8; 1484 } 1485 break; 1486 case OPC_RISC_C_FUNC_FSD_SQ: 1487 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */ 1488 xinsn = OPC_RISC_FSD; 1489 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1490 access_rs1 = GET_C_RS1S(insn); 1491 access_imm = GET_C_SD_IMM(insn); 1492 access_size = 8; 1493 } 1494 break; 1495 case OPC_RISC_C_FUNC_SW: /* C.SW */ 1496 xinsn = OPC_RISC_SW; 1497 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1498 access_rs1 = GET_C_RS1S(insn); 1499 access_imm = GET_C_SW_IMM(insn); 1500 access_size = 4; 1501 break; 1502 case OPC_RISC_C_FUNC_FSW_SD: 1503 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */ 1504 xinsn = OPC_RISC_FSW; 1505 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1506 access_rs1 = GET_C_RS1S(insn); 1507 access_imm = GET_C_SW_IMM(insn); 1508 access_size = 4; 1509 } else { /* C.SD (RV64/RV128) */ 1510 xinsn = OPC_RISC_SD; 1511 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1512 access_rs1 = GET_C_RS1S(insn); 1513 access_imm = GET_C_SD_IMM(insn); 1514 access_size = 8; 1515 } 1516 break; 1517 default: 1518 break; 1519 } 1520 break; 1521 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */ 1522 switch (GET_C_FUNC(insn)) { 1523 case OPC_RISC_C_FUNC_FLDSP_LQSP: 1524 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */ 1525 xinsn = OPC_RISC_FLD; 1526 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1527 access_rs1 = 2; 1528 access_imm = GET_C_LDSP_IMM(insn); 1529 access_size = 8; 1530 } 1531 break; 1532 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */ 1533 xinsn = OPC_RISC_LW; 1534 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1535 access_rs1 = 2; 1536 access_imm = GET_C_LWSP_IMM(insn); 1537 access_size = 4; 1538 break; 1539 case OPC_RISC_C_FUNC_FLWSP_LDSP: 1540 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */ 1541 xinsn = OPC_RISC_FLW; 1542 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1543 access_rs1 = 2; 1544 access_imm = GET_C_LWSP_IMM(insn); 1545 access_size = 4; 1546 } else { /* C.LDSP (RV64/RV128) */ 1547 xinsn = OPC_RISC_LD; 1548 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1549 access_rs1 = 2; 1550 access_imm = GET_C_LDSP_IMM(insn); 1551 access_size = 8; 1552 } 1553 break; 1554 case OPC_RISC_C_FUNC_FSDSP_SQSP: 1555 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */ 1556 xinsn = OPC_RISC_FSD; 1557 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1558 access_rs1 = 2; 1559 access_imm = GET_C_SDSP_IMM(insn); 1560 access_size = 8; 1561 } 1562 break; 1563 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */ 1564 xinsn = OPC_RISC_SW; 1565 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1566 access_rs1 = 2; 1567 access_imm = GET_C_SWSP_IMM(insn); 1568 access_size = 4; 1569 break; 1570 case 7: 1571 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */ 1572 xinsn = OPC_RISC_FSW; 1573 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1574 access_rs1 = 2; 1575 access_imm = GET_C_SWSP_IMM(insn); 1576 access_size = 4; 1577 } else { /* C.SDSP (RV64/RV128) */ 1578 xinsn = OPC_RISC_SD; 1579 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1580 access_rs1 = 2; 1581 access_imm = GET_C_SDSP_IMM(insn); 1582 access_size = 8; 1583 } 1584 break; 1585 default: 1586 break; 1587 } 1588 break; 1589 default: 1590 break; 1591 } 1592 1593 /* 1594 * Clear Bit1 of transformed instruction to indicate that 1595 * original insruction was a 16bit instruction 1596 */ 1597 xinsn &= ~((target_ulong)0x2); 1598 } else { 1599 /* Transform 32bit (or wider) instructions */ 1600 switch (MASK_OP_MAJOR(insn)) { 1601 case OPC_RISC_ATOMIC: 1602 xinsn = insn; 1603 access_rs1 = GET_RS1(insn); 1604 access_size = 1 << GET_FUNCT3(insn); 1605 break; 1606 case OPC_RISC_LOAD: 1607 case OPC_RISC_FP_LOAD: 1608 xinsn = SET_I_IMM(insn, 0); 1609 access_rs1 = GET_RS1(insn); 1610 access_imm = GET_IMM(insn); 1611 access_size = 1 << GET_FUNCT3(insn); 1612 break; 1613 case OPC_RISC_STORE: 1614 case OPC_RISC_FP_STORE: 1615 xinsn = SET_S_IMM(insn, 0); 1616 access_rs1 = GET_RS1(insn); 1617 access_imm = GET_STORE_IMM(insn); 1618 access_size = 1 << GET_FUNCT3(insn); 1619 break; 1620 case OPC_RISC_SYSTEM: 1621 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) { 1622 xinsn = insn; 1623 access_rs1 = GET_RS1(insn); 1624 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3); 1625 access_size = 1 << access_size; 1626 } 1627 break; 1628 default: 1629 break; 1630 } 1631 } 1632 1633 if (access_size) { 1634 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) & 1635 (access_size - 1)); 1636 } 1637 1638 return xinsn; 1639 } 1640 1641 /* 1642 * Handle Traps 1643 * 1644 * Adapted from Spike's processor_t::take_trap. 1645 * 1646 */ 1647 void riscv_cpu_do_interrupt(CPUState *cs) 1648 { 1649 RISCVCPU *cpu = RISCV_CPU(cs); 1650 CPURISCVState *env = &cpu->env; 1651 bool write_gva = false; 1652 uint64_t s; 1653 1654 /* 1655 * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide 1656 * so we mask off the MSB and separate into trap type and cause. 1657 */ 1658 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); 1659 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; 1660 uint64_t deleg = async ? env->mideleg : env->medeleg; 1661 bool s_injected = env->mvip & (1 << cause) & env->mvien && 1662 !(env->mip & (1 << cause)); 1663 bool vs_injected = env->hvip & (1 << cause) & env->hvien && 1664 !(env->mip & (1 << cause)); 1665 target_ulong tval = 0; 1666 target_ulong tinst = 0; 1667 target_ulong htval = 0; 1668 target_ulong mtval2 = 0; 1669 1670 if (!async) { 1671 /* set tval to badaddr for traps with address information */ 1672 switch (cause) { 1673 case RISCV_EXCP_SEMIHOST: 1674 do_common_semihosting(cs); 1675 env->pc += 4; 1676 return; 1677 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: 1678 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: 1679 case RISCV_EXCP_LOAD_ADDR_MIS: 1680 case RISCV_EXCP_STORE_AMO_ADDR_MIS: 1681 case RISCV_EXCP_LOAD_ACCESS_FAULT: 1682 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: 1683 case RISCV_EXCP_LOAD_PAGE_FAULT: 1684 case RISCV_EXCP_STORE_PAGE_FAULT: 1685 write_gva = env->two_stage_lookup; 1686 tval = env->badaddr; 1687 if (env->two_stage_indirect_lookup) { 1688 /* 1689 * special pseudoinstruction for G-stage fault taken while 1690 * doing VS-stage page table walk. 1691 */ 1692 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; 1693 } else { 1694 /* 1695 * The "Addr. Offset" field in transformed instruction is 1696 * non-zero only for misaligned access. 1697 */ 1698 tinst = riscv_transformed_insn(env, env->bins, tval); 1699 } 1700 break; 1701 case RISCV_EXCP_INST_GUEST_PAGE_FAULT: 1702 case RISCV_EXCP_INST_ADDR_MIS: 1703 case RISCV_EXCP_INST_ACCESS_FAULT: 1704 case RISCV_EXCP_INST_PAGE_FAULT: 1705 write_gva = env->two_stage_lookup; 1706 tval = env->badaddr; 1707 if (env->two_stage_indirect_lookup) { 1708 /* 1709 * special pseudoinstruction for G-stage fault taken while 1710 * doing VS-stage page table walk. 1711 */ 1712 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; 1713 } 1714 break; 1715 case RISCV_EXCP_ILLEGAL_INST: 1716 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT: 1717 tval = env->bins; 1718 break; 1719 case RISCV_EXCP_BREAKPOINT: 1720 tval = env->badaddr; 1721 if (cs->watchpoint_hit) { 1722 tval = cs->watchpoint_hit->hitaddr; 1723 cs->watchpoint_hit = NULL; 1724 } 1725 break; 1726 default: 1727 break; 1728 } 1729 /* ecall is dispatched as one cause so translate based on mode */ 1730 if (cause == RISCV_EXCP_U_ECALL) { 1731 assert(env->priv <= 3); 1732 1733 if (env->priv == PRV_M) { 1734 cause = RISCV_EXCP_M_ECALL; 1735 } else if (env->priv == PRV_S && env->virt_enabled) { 1736 cause = RISCV_EXCP_VS_ECALL; 1737 } else if (env->priv == PRV_S && !env->virt_enabled) { 1738 cause = RISCV_EXCP_S_ECALL; 1739 } else if (env->priv == PRV_U) { 1740 cause = RISCV_EXCP_U_ECALL; 1741 } 1742 } 1743 } 1744 1745 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, 1746 riscv_cpu_get_trap_name(cause, async)); 1747 1748 qemu_log_mask(CPU_LOG_INT, 1749 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", " 1750 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n", 1751 __func__, env->mhartid, async, cause, env->pc, tval, 1752 riscv_cpu_get_trap_name(cause, async)); 1753 1754 if (env->priv <= PRV_S && cause < 64 && 1755 (((deleg >> cause) & 1) || s_injected || vs_injected)) { 1756 /* handle the trap in S-mode */ 1757 if (riscv_has_ext(env, RVH)) { 1758 uint64_t hdeleg = async ? env->hideleg : env->hedeleg; 1759 1760 if (env->virt_enabled && 1761 (((hdeleg >> cause) & 1) || vs_injected)) { 1762 /* Trap to VS mode */ 1763 /* 1764 * See if we need to adjust cause. Yes if its VS mode interrupt 1765 * no if hypervisor has delegated one of hs mode's interrupt 1766 */ 1767 if (async && (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || 1768 cause == IRQ_VS_EXT)) { 1769 cause = cause - 1; 1770 } 1771 write_gva = false; 1772 } else if (env->virt_enabled) { 1773 /* Trap into HS mode, from virt */ 1774 riscv_cpu_swap_hypervisor_regs(env); 1775 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, 1776 env->priv); 1777 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true); 1778 1779 htval = env->guest_phys_fault_addr; 1780 1781 riscv_cpu_set_virt_enabled(env, 0); 1782 } else { 1783 /* Trap into HS mode */ 1784 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false); 1785 htval = env->guest_phys_fault_addr; 1786 } 1787 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva); 1788 } 1789 1790 s = env->mstatus; 1791 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); 1792 s = set_field(s, MSTATUS_SPP, env->priv); 1793 s = set_field(s, MSTATUS_SIE, 0); 1794 env->mstatus = s; 1795 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); 1796 env->sepc = env->pc; 1797 env->stval = tval; 1798 env->htval = htval; 1799 env->htinst = tinst; 1800 env->pc = (env->stvec >> 2 << 2) + 1801 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); 1802 riscv_cpu_set_mode(env, PRV_S); 1803 } else { 1804 /* handle the trap in M-mode */ 1805 if (riscv_has_ext(env, RVH)) { 1806 if (env->virt_enabled) { 1807 riscv_cpu_swap_hypervisor_regs(env); 1808 } 1809 env->mstatus = set_field(env->mstatus, MSTATUS_MPV, 1810 env->virt_enabled); 1811 if (env->virt_enabled && tval) { 1812 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); 1813 } 1814 1815 mtval2 = env->guest_phys_fault_addr; 1816 1817 /* Trapping to M mode, virt is disabled */ 1818 riscv_cpu_set_virt_enabled(env, 0); 1819 } 1820 1821 s = env->mstatus; 1822 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); 1823 s = set_field(s, MSTATUS_MPP, env->priv); 1824 s = set_field(s, MSTATUS_MIE, 0); 1825 env->mstatus = s; 1826 env->mcause = cause | ~(((target_ulong)-1) >> async); 1827 env->mepc = env->pc; 1828 env->mtval = tval; 1829 env->mtval2 = mtval2; 1830 env->mtinst = tinst; 1831 env->pc = (env->mtvec >> 2 << 2) + 1832 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); 1833 riscv_cpu_set_mode(env, PRV_M); 1834 } 1835 1836 /* 1837 * NOTE: it is not necessary to yield load reservations here. It is only 1838 * necessary for an SC from "another hart" to cause a load reservation 1839 * to be yielded. Refer to the memory consistency model section of the 1840 * RISC-V ISA Specification. 1841 */ 1842 1843 env->two_stage_lookup = false; 1844 env->two_stage_indirect_lookup = false; 1845 } 1846 1847 #endif /* !CONFIG_USER_ONLY */ 1848