1 /* 2 * RISC-V CPU helpers for qemu. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/main-loop.h" 23 #include "cpu.h" 24 #include "pmu.h" 25 #include "exec/exec-all.h" 26 #include "instmap.h" 27 #include "tcg/tcg-op.h" 28 #include "trace.h" 29 #include "semihosting/common-semi.h" 30 #include "cpu_bits.h" 31 32 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch) 33 { 34 #ifdef CONFIG_USER_ONLY 35 return 0; 36 #else 37 return env->priv; 38 #endif 39 } 40 41 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc, 42 target_ulong *cs_base, uint32_t *pflags) 43 { 44 CPUState *cs = env_cpu(env); 45 RISCVCPU *cpu = RISCV_CPU(cs); 46 47 uint32_t flags = 0; 48 49 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc; 50 *cs_base = 0; 51 52 if (riscv_has_ext(env, RVV) || cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 53 /* 54 * If env->vl equals to VLMAX, we can use generic vector operation 55 * expanders (GVEC) to accerlate the vector operations. 56 * However, as LMUL could be a fractional number. The maximum 57 * vector size can be operated might be less than 8 bytes, 58 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true 59 * only when maxsz >= 8 bytes. 60 */ 61 uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype); 62 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW); 63 uint32_t maxsz = vlmax << sew; 64 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) && 65 (maxsz >= 8); 66 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill); 67 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew); 68 flags = FIELD_DP32(flags, TB_FLAGS, LMUL, 69 FIELD_EX64(env->vtype, VTYPE, VLMUL)); 70 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax); 71 flags = FIELD_DP32(flags, TB_FLAGS, VTA, 72 FIELD_EX64(env->vtype, VTYPE, VTA)); 73 flags = FIELD_DP32(flags, TB_FLAGS, VMA, 74 FIELD_EX64(env->vtype, VTYPE, VMA)); 75 } else { 76 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1); 77 } 78 79 #ifdef CONFIG_USER_ONLY 80 flags |= TB_FLAGS_MSTATUS_FS; 81 flags |= TB_FLAGS_MSTATUS_VS; 82 #else 83 flags |= cpu_mmu_index(env, 0); 84 if (riscv_cpu_fp_enabled(env)) { 85 flags |= env->mstatus & MSTATUS_FS; 86 } 87 88 if (riscv_cpu_vector_enabled(env)) { 89 flags |= env->mstatus & MSTATUS_VS; 90 } 91 92 if (riscv_has_ext(env, RVH)) { 93 if (env->priv == PRV_M || 94 (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) || 95 (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) && 96 get_field(env->hstatus, HSTATUS_HU))) { 97 flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1); 98 } 99 100 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS, 101 get_field(env->mstatus_hs, MSTATUS_FS)); 102 103 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS, 104 get_field(env->mstatus_hs, MSTATUS_VS)); 105 } 106 #endif 107 108 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl); 109 if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) { 110 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1); 111 } 112 if (env->cur_pmbase != 0) { 113 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1); 114 } 115 116 *pflags = flags; 117 } 118 119 void riscv_cpu_update_mask(CPURISCVState *env) 120 { 121 target_ulong mask = -1, base = 0; 122 /* 123 * TODO: Current RVJ spec does not specify 124 * how the extension interacts with XLEN. 125 */ 126 #ifndef CONFIG_USER_ONLY 127 if (riscv_has_ext(env, RVJ)) { 128 switch (env->priv) { 129 case PRV_M: 130 if (env->mmte & M_PM_ENABLE) { 131 mask = env->mpmmask; 132 base = env->mpmbase; 133 } 134 break; 135 case PRV_S: 136 if (env->mmte & S_PM_ENABLE) { 137 mask = env->spmmask; 138 base = env->spmbase; 139 } 140 break; 141 case PRV_U: 142 if (env->mmte & U_PM_ENABLE) { 143 mask = env->upmmask; 144 base = env->upmbase; 145 } 146 break; 147 default: 148 g_assert_not_reached(); 149 } 150 } 151 #endif 152 if (env->xl == MXL_RV32) { 153 env->cur_pmmask = mask & UINT32_MAX; 154 env->cur_pmbase = base & UINT32_MAX; 155 } else { 156 env->cur_pmmask = mask; 157 env->cur_pmbase = base; 158 } 159 } 160 161 #ifndef CONFIG_USER_ONLY 162 163 /* 164 * The HS-mode is allowed to configure priority only for the 165 * following VS-mode local interrupts: 166 * 167 * 0 (Reserved interrupt, reads as zero) 168 * 1 Supervisor software interrupt 169 * 4 (Reserved interrupt, reads as zero) 170 * 5 Supervisor timer interrupt 171 * 8 (Reserved interrupt, reads as zero) 172 * 13 (Reserved interrupt) 173 * 14 " 174 * 15 " 175 * 16 " 176 * 17 " 177 * 18 " 178 * 19 " 179 * 20 " 180 * 21 " 181 * 22 " 182 * 23 " 183 */ 184 185 static const int hviprio_index2irq[] = { 186 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 }; 187 static const int hviprio_index2rdzero[] = { 188 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 189 190 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero) 191 { 192 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) { 193 return -EINVAL; 194 } 195 196 if (out_irq) { 197 *out_irq = hviprio_index2irq[index]; 198 } 199 200 if (out_rdzero) { 201 *out_rdzero = hviprio_index2rdzero[index]; 202 } 203 204 return 0; 205 } 206 207 /* 208 * Default priorities of local interrupts are defined in the 209 * RISC-V Advanced Interrupt Architecture specification. 210 * 211 * ---------------------------------------------------------------- 212 * Default | 213 * Priority | Major Interrupt Numbers 214 * ---------------------------------------------------------------- 215 * Highest | 47, 23, 46, 45, 22, 44, 216 * | 43, 21, 42, 41, 20, 40 217 * | 218 * | 11 (0b), 3 (03), 7 (07) 219 * | 9 (09), 1 (01), 5 (05) 220 * | 12 (0c) 221 * | 10 (0a), 2 (02), 6 (06) 222 * | 223 * | 39, 19, 38, 37, 18, 36, 224 * Lowest | 35, 17, 34, 33, 16, 32 225 * ---------------------------------------------------------------- 226 */ 227 static const uint8_t default_iprio[64] = { 228 /* Custom interrupts 48 to 63 */ 229 [63] = IPRIO_MMAXIPRIO, 230 [62] = IPRIO_MMAXIPRIO, 231 [61] = IPRIO_MMAXIPRIO, 232 [60] = IPRIO_MMAXIPRIO, 233 [59] = IPRIO_MMAXIPRIO, 234 [58] = IPRIO_MMAXIPRIO, 235 [57] = IPRIO_MMAXIPRIO, 236 [56] = IPRIO_MMAXIPRIO, 237 [55] = IPRIO_MMAXIPRIO, 238 [54] = IPRIO_MMAXIPRIO, 239 [53] = IPRIO_MMAXIPRIO, 240 [52] = IPRIO_MMAXIPRIO, 241 [51] = IPRIO_MMAXIPRIO, 242 [50] = IPRIO_MMAXIPRIO, 243 [49] = IPRIO_MMAXIPRIO, 244 [48] = IPRIO_MMAXIPRIO, 245 246 /* Custom interrupts 24 to 31 */ 247 [31] = IPRIO_MMAXIPRIO, 248 [30] = IPRIO_MMAXIPRIO, 249 [29] = IPRIO_MMAXIPRIO, 250 [28] = IPRIO_MMAXIPRIO, 251 [27] = IPRIO_MMAXIPRIO, 252 [26] = IPRIO_MMAXIPRIO, 253 [25] = IPRIO_MMAXIPRIO, 254 [24] = IPRIO_MMAXIPRIO, 255 256 [47] = IPRIO_DEFAULT_UPPER, 257 [23] = IPRIO_DEFAULT_UPPER + 1, 258 [46] = IPRIO_DEFAULT_UPPER + 2, 259 [45] = IPRIO_DEFAULT_UPPER + 3, 260 [22] = IPRIO_DEFAULT_UPPER + 4, 261 [44] = IPRIO_DEFAULT_UPPER + 5, 262 263 [43] = IPRIO_DEFAULT_UPPER + 6, 264 [21] = IPRIO_DEFAULT_UPPER + 7, 265 [42] = IPRIO_DEFAULT_UPPER + 8, 266 [41] = IPRIO_DEFAULT_UPPER + 9, 267 [20] = IPRIO_DEFAULT_UPPER + 10, 268 [40] = IPRIO_DEFAULT_UPPER + 11, 269 270 [11] = IPRIO_DEFAULT_M, 271 [3] = IPRIO_DEFAULT_M + 1, 272 [7] = IPRIO_DEFAULT_M + 2, 273 274 [9] = IPRIO_DEFAULT_S, 275 [1] = IPRIO_DEFAULT_S + 1, 276 [5] = IPRIO_DEFAULT_S + 2, 277 278 [12] = IPRIO_DEFAULT_SGEXT, 279 280 [10] = IPRIO_DEFAULT_VS, 281 [2] = IPRIO_DEFAULT_VS + 1, 282 [6] = IPRIO_DEFAULT_VS + 2, 283 284 [39] = IPRIO_DEFAULT_LOWER, 285 [19] = IPRIO_DEFAULT_LOWER + 1, 286 [38] = IPRIO_DEFAULT_LOWER + 2, 287 [37] = IPRIO_DEFAULT_LOWER + 3, 288 [18] = IPRIO_DEFAULT_LOWER + 4, 289 [36] = IPRIO_DEFAULT_LOWER + 5, 290 291 [35] = IPRIO_DEFAULT_LOWER + 6, 292 [17] = IPRIO_DEFAULT_LOWER + 7, 293 [34] = IPRIO_DEFAULT_LOWER + 8, 294 [33] = IPRIO_DEFAULT_LOWER + 9, 295 [16] = IPRIO_DEFAULT_LOWER + 10, 296 [32] = IPRIO_DEFAULT_LOWER + 11, 297 }; 298 299 uint8_t riscv_cpu_default_priority(int irq) 300 { 301 if (irq < 0 || irq > 63) { 302 return IPRIO_MMAXIPRIO; 303 } 304 305 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO; 306 }; 307 308 static int riscv_cpu_pending_to_irq(CPURISCVState *env, 309 int extirq, unsigned int extirq_def_prio, 310 uint64_t pending, uint8_t *iprio) 311 { 312 RISCVCPU *cpu = env_archcpu(env); 313 int irq, best_irq = RISCV_EXCP_NONE; 314 unsigned int prio, best_prio = UINT_MAX; 315 316 if (!pending) { 317 return RISCV_EXCP_NONE; 318 } 319 320 irq = ctz64(pending); 321 if (!((extirq == IRQ_M_EXT) ? cpu->cfg.ext_smaia : cpu->cfg.ext_ssaia)) { 322 return irq; 323 } 324 325 pending = pending >> irq; 326 while (pending) { 327 prio = iprio[irq]; 328 if (!prio) { 329 if (irq == extirq) { 330 prio = extirq_def_prio; 331 } else { 332 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ? 333 1 : IPRIO_MMAXIPRIO; 334 } 335 } 336 if ((pending & 0x1) && (prio <= best_prio)) { 337 best_irq = irq; 338 best_prio = prio; 339 } 340 irq++; 341 pending = pending >> 1; 342 } 343 344 return best_irq; 345 } 346 347 uint64_t riscv_cpu_all_pending(CPURISCVState *env) 348 { 349 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN); 350 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 351 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0; 352 353 return (env->mip | vsgein | vstip) & env->mie; 354 } 355 356 int riscv_cpu_mirq_pending(CPURISCVState *env) 357 { 358 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg & 359 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 360 361 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 362 irqs, env->miprio); 363 } 364 365 int riscv_cpu_sirq_pending(CPURISCVState *env) 366 { 367 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & 368 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 369 370 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 371 irqs, env->siprio); 372 } 373 374 int riscv_cpu_vsirq_pending(CPURISCVState *env) 375 { 376 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & 377 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 378 379 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 380 irqs >> 1, env->hviprio); 381 } 382 383 static int riscv_cpu_local_irq_pending(CPURISCVState *env) 384 { 385 int virq; 386 uint64_t irqs, pending, mie, hsie, vsie; 387 388 /* Determine interrupt enable state of all privilege modes */ 389 if (riscv_cpu_virt_enabled(env)) { 390 mie = 1; 391 hsie = 1; 392 vsie = (env->priv < PRV_S) || 393 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 394 } else { 395 mie = (env->priv < PRV_M) || 396 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE)); 397 hsie = (env->priv < PRV_S) || 398 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 399 vsie = 0; 400 } 401 402 /* Determine all pending interrupts */ 403 pending = riscv_cpu_all_pending(env); 404 405 /* Check M-mode interrupts */ 406 irqs = pending & ~env->mideleg & -mie; 407 if (irqs) { 408 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 409 irqs, env->miprio); 410 } 411 412 /* Check HS-mode interrupts */ 413 irqs = pending & env->mideleg & ~env->hideleg & -hsie; 414 if (irqs) { 415 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 416 irqs, env->siprio); 417 } 418 419 /* Check VS-mode interrupts */ 420 irqs = pending & env->mideleg & env->hideleg & -vsie; 421 if (irqs) { 422 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 423 irqs >> 1, env->hviprio); 424 return (virq <= 0) ? virq : virq + 1; 425 } 426 427 /* Indicate no pending interrupt */ 428 return RISCV_EXCP_NONE; 429 } 430 431 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 432 { 433 if (interrupt_request & CPU_INTERRUPT_HARD) { 434 RISCVCPU *cpu = RISCV_CPU(cs); 435 CPURISCVState *env = &cpu->env; 436 int interruptno = riscv_cpu_local_irq_pending(env); 437 if (interruptno >= 0) { 438 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; 439 riscv_cpu_do_interrupt(cs); 440 return true; 441 } 442 } 443 return false; 444 } 445 446 /* Return true is floating point support is currently enabled */ 447 bool riscv_cpu_fp_enabled(CPURISCVState *env) 448 { 449 if (env->mstatus & MSTATUS_FS) { 450 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) { 451 return false; 452 } 453 return true; 454 } 455 456 return false; 457 } 458 459 /* Return true is vector support is currently enabled */ 460 bool riscv_cpu_vector_enabled(CPURISCVState *env) 461 { 462 if (env->mstatus & MSTATUS_VS) { 463 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) { 464 return false; 465 } 466 return true; 467 } 468 469 return false; 470 } 471 472 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) 473 { 474 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | 475 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE | 476 MSTATUS64_UXL | MSTATUS_VS; 477 478 if (riscv_has_ext(env, RVF)) { 479 mstatus_mask |= MSTATUS_FS; 480 } 481 bool current_virt = riscv_cpu_virt_enabled(env); 482 483 g_assert(riscv_has_ext(env, RVH)); 484 485 if (current_virt) { 486 /* Current V=1 and we are about to change to V=0 */ 487 env->vsstatus = env->mstatus & mstatus_mask; 488 env->mstatus &= ~mstatus_mask; 489 env->mstatus |= env->mstatus_hs; 490 491 env->vstvec = env->stvec; 492 env->stvec = env->stvec_hs; 493 494 env->vsscratch = env->sscratch; 495 env->sscratch = env->sscratch_hs; 496 497 env->vsepc = env->sepc; 498 env->sepc = env->sepc_hs; 499 500 env->vscause = env->scause; 501 env->scause = env->scause_hs; 502 503 env->vstval = env->stval; 504 env->stval = env->stval_hs; 505 506 env->vsatp = env->satp; 507 env->satp = env->satp_hs; 508 } else { 509 /* Current V=0 and we are about to change to V=1 */ 510 env->mstatus_hs = env->mstatus & mstatus_mask; 511 env->mstatus &= ~mstatus_mask; 512 env->mstatus |= env->vsstatus; 513 514 env->stvec_hs = env->stvec; 515 env->stvec = env->vstvec; 516 517 env->sscratch_hs = env->sscratch; 518 env->sscratch = env->vsscratch; 519 520 env->sepc_hs = env->sepc; 521 env->sepc = env->vsepc; 522 523 env->scause_hs = env->scause; 524 env->scause = env->vscause; 525 526 env->stval_hs = env->stval; 527 env->stval = env->vstval; 528 529 env->satp_hs = env->satp; 530 env->satp = env->vsatp; 531 } 532 } 533 534 target_ulong riscv_cpu_get_geilen(CPURISCVState *env) 535 { 536 if (!riscv_has_ext(env, RVH)) { 537 return 0; 538 } 539 540 return env->geilen; 541 } 542 543 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen) 544 { 545 if (!riscv_has_ext(env, RVH)) { 546 return; 547 } 548 549 if (geilen > (TARGET_LONG_BITS - 1)) { 550 return; 551 } 552 553 env->geilen = geilen; 554 } 555 556 bool riscv_cpu_virt_enabled(CPURISCVState *env) 557 { 558 if (!riscv_has_ext(env, RVH)) { 559 return false; 560 } 561 562 return get_field(env->virt, VIRT_ONOFF); 563 } 564 565 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable) 566 { 567 if (!riscv_has_ext(env, RVH)) { 568 return; 569 } 570 571 /* Flush the TLB on all virt mode changes. */ 572 if (get_field(env->virt, VIRT_ONOFF) != enable) { 573 tlb_flush(env_cpu(env)); 574 } 575 576 env->virt = set_field(env->virt, VIRT_ONOFF, enable); 577 578 if (enable) { 579 /* 580 * The guest external interrupts from an interrupt controller are 581 * delivered only when the Guest/VM is running (i.e. V=1). This means 582 * any guest external interrupt which is triggered while the Guest/VM 583 * is not running (i.e. V=0) will be missed on QEMU resulting in guest 584 * with sluggish response to serial console input and other I/O events. 585 * 586 * To solve this, we check and inject interrupt after setting V=1. 587 */ 588 riscv_cpu_update_mip(env_archcpu(env), 0, 0); 589 } 590 } 591 592 bool riscv_cpu_two_stage_lookup(int mmu_idx) 593 { 594 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK; 595 } 596 597 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts) 598 { 599 CPURISCVState *env = &cpu->env; 600 if (env->miclaim & interrupts) { 601 return -1; 602 } else { 603 env->miclaim |= interrupts; 604 return 0; 605 } 606 } 607 608 uint64_t riscv_cpu_update_mip(RISCVCPU *cpu, uint64_t mask, uint64_t value) 609 { 610 CPURISCVState *env = &cpu->env; 611 CPUState *cs = CPU(cpu); 612 uint64_t gein, vsgein = 0, vstip = 0, old = env->mip; 613 614 if (riscv_cpu_virt_enabled(env)) { 615 gein = get_field(env->hstatus, HSTATUS_VGEIN); 616 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 617 } 618 619 /* No need to update mip for VSTIP */ 620 mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask; 621 vstip = env->vstime_irq ? MIP_VSTIP : 0; 622 623 QEMU_IOTHREAD_LOCK_GUARD(); 624 625 env->mip = (env->mip & ~mask) | (value & mask); 626 627 if (env->mip | vsgein | vstip) { 628 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 629 } else { 630 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 631 } 632 633 return old; 634 } 635 636 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *), 637 void *arg) 638 { 639 env->rdtime_fn = fn; 640 env->rdtime_fn_arg = arg; 641 } 642 643 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv, 644 int (*rmw_fn)(void *arg, 645 target_ulong reg, 646 target_ulong *val, 647 target_ulong new_val, 648 target_ulong write_mask), 649 void *rmw_fn_arg) 650 { 651 if (priv <= PRV_M) { 652 env->aia_ireg_rmw_fn[priv] = rmw_fn; 653 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg; 654 } 655 } 656 657 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) 658 { 659 if (newpriv > PRV_M) { 660 g_assert_not_reached(); 661 } 662 if (newpriv == PRV_H) { 663 newpriv = PRV_U; 664 } 665 /* tlb_flush is unnecessary as mode is contained in mmu_idx */ 666 env->priv = newpriv; 667 env->xl = cpu_recompute_xl(env); 668 riscv_cpu_update_mask(env); 669 670 /* 671 * Clear the load reservation - otherwise a reservation placed in one 672 * context/process can be used by another, resulting in an SC succeeding 673 * incorrectly. Version 2.2 of the ISA specification explicitly requires 674 * this behaviour, while later revisions say that the kernel "should" use 675 * an SC instruction to force the yielding of a load reservation on a 676 * preemptive context switch. As a result, do both. 677 */ 678 env->load_res = -1; 679 } 680 681 /* 682 * get_physical_address_pmp - check PMP permission for this physical address 683 * 684 * Match the PMP region and check permission for this physical address and it's 685 * TLB page. Returns 0 if the permission checking was successful 686 * 687 * @env: CPURISCVState 688 * @prot: The returned protection attributes 689 * @tlb_size: TLB page size containing addr. It could be modified after PMP 690 * permission checking. NULL if not set TLB page for addr. 691 * @addr: The physical address to be checked permission 692 * @access_type: The type of MMU access 693 * @mode: Indicates current privilege level. 694 */ 695 static int get_physical_address_pmp(CPURISCVState *env, int *prot, 696 target_ulong *tlb_size, hwaddr addr, 697 int size, MMUAccessType access_type, 698 int mode) 699 { 700 pmp_priv_t pmp_priv; 701 target_ulong tlb_size_pmp = 0; 702 703 if (!riscv_feature(env, RISCV_FEATURE_PMP)) { 704 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 705 return TRANSLATE_SUCCESS; 706 } 707 708 if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv, 709 mode)) { 710 *prot = 0; 711 return TRANSLATE_PMP_FAIL; 712 } 713 714 *prot = pmp_priv_to_page_prot(pmp_priv); 715 if (tlb_size != NULL) { 716 if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) { 717 *tlb_size = tlb_size_pmp; 718 } 719 } 720 721 return TRANSLATE_SUCCESS; 722 } 723 724 /* get_physical_address - get the physical address for this virtual address 725 * 726 * Do a page table walk to obtain the physical address corresponding to a 727 * virtual address. Returns 0 if the translation was successful 728 * 729 * Adapted from Spike's mmu_t::translate and mmu_t::walk 730 * 731 * @env: CPURISCVState 732 * @physical: This will be set to the calculated physical address 733 * @prot: The returned protection attributes 734 * @addr: The virtual address to be translated 735 * @fault_pte_addr: If not NULL, this will be set to fault pte address 736 * when a error occurs on pte address translation. 737 * This will already be shifted to match htval. 738 * @access_type: The type of MMU access 739 * @mmu_idx: Indicates current privilege level 740 * @first_stage: Are we in first stage translation? 741 * Second stage is used for hypervisor guest translation 742 * @two_stage: Are we going to perform two stage translation 743 * @is_debug: Is this access from a debugger or the monitor? 744 */ 745 static int get_physical_address(CPURISCVState *env, hwaddr *physical, 746 int *prot, target_ulong addr, 747 target_ulong *fault_pte_addr, 748 int access_type, int mmu_idx, 749 bool first_stage, bool two_stage, 750 bool is_debug) 751 { 752 /* NOTE: the env->pc value visible here will not be 753 * correct, but the value visible to the exception handler 754 * (riscv_cpu_do_interrupt) is correct */ 755 MemTxResult res; 756 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 757 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK; 758 bool use_background = false; 759 hwaddr ppn; 760 RISCVCPU *cpu = env_archcpu(env); 761 int napot_bits = 0; 762 target_ulong napot_mask; 763 764 /* 765 * Check if we should use the background registers for the two 766 * stage translation. We don't need to check if we actually need 767 * two stage translation as that happened before this function 768 * was called. Background registers will be used if the guest has 769 * forced a two stage translation to be on (in HS or M mode). 770 */ 771 if (!riscv_cpu_virt_enabled(env) && two_stage) { 772 use_background = true; 773 } 774 775 /* MPRV does not affect the virtual-machine load/store 776 instructions, HLV, HLVX, and HSV. */ 777 if (riscv_cpu_two_stage_lookup(mmu_idx)) { 778 mode = get_field(env->hstatus, HSTATUS_SPVP); 779 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) { 780 if (get_field(env->mstatus, MSTATUS_MPRV)) { 781 mode = get_field(env->mstatus, MSTATUS_MPP); 782 } 783 } 784 785 if (first_stage == false) { 786 /* We are in stage 2 translation, this is similar to stage 1. */ 787 /* Stage 2 is always taken as U-mode */ 788 mode = PRV_U; 789 } 790 791 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) { 792 *physical = addr; 793 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 794 return TRANSLATE_SUCCESS; 795 } 796 797 *prot = 0; 798 799 hwaddr base; 800 int levels, ptidxbits, ptesize, vm, sum, mxr, widened; 801 802 if (first_stage == true) { 803 mxr = get_field(env->mstatus, MSTATUS_MXR); 804 } else { 805 mxr = get_field(env->vsstatus, MSTATUS_MXR); 806 } 807 808 if (first_stage == true) { 809 if (use_background) { 810 if (riscv_cpu_mxl(env) == MXL_RV32) { 811 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT; 812 vm = get_field(env->vsatp, SATP32_MODE); 813 } else { 814 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT; 815 vm = get_field(env->vsatp, SATP64_MODE); 816 } 817 } else { 818 if (riscv_cpu_mxl(env) == MXL_RV32) { 819 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT; 820 vm = get_field(env->satp, SATP32_MODE); 821 } else { 822 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT; 823 vm = get_field(env->satp, SATP64_MODE); 824 } 825 } 826 widened = 0; 827 } else { 828 if (riscv_cpu_mxl(env) == MXL_RV32) { 829 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT; 830 vm = get_field(env->hgatp, SATP32_MODE); 831 } else { 832 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT; 833 vm = get_field(env->hgatp, SATP64_MODE); 834 } 835 widened = 2; 836 } 837 /* status.SUM will be ignored if execute on background */ 838 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug; 839 switch (vm) { 840 case VM_1_10_SV32: 841 levels = 2; ptidxbits = 10; ptesize = 4; break; 842 case VM_1_10_SV39: 843 levels = 3; ptidxbits = 9; ptesize = 8; break; 844 case VM_1_10_SV48: 845 levels = 4; ptidxbits = 9; ptesize = 8; break; 846 case VM_1_10_SV57: 847 levels = 5; ptidxbits = 9; ptesize = 8; break; 848 case VM_1_10_MBARE: 849 *physical = addr; 850 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 851 return TRANSLATE_SUCCESS; 852 default: 853 g_assert_not_reached(); 854 } 855 856 CPUState *cs = env_cpu(env); 857 int va_bits = PGSHIFT + levels * ptidxbits + widened; 858 target_ulong mask, masked_msbs; 859 860 if (TARGET_LONG_BITS > (va_bits - 1)) { 861 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; 862 } else { 863 mask = 0; 864 } 865 masked_msbs = (addr >> (va_bits - 1)) & mask; 866 867 if (masked_msbs != 0 && masked_msbs != mask) { 868 return TRANSLATE_FAIL; 869 } 870 871 int ptshift = (levels - 1) * ptidxbits; 872 int i; 873 874 #if !TCG_OVERSIZED_GUEST 875 restart: 876 #endif 877 for (i = 0; i < levels; i++, ptshift -= ptidxbits) { 878 target_ulong idx; 879 if (i == 0) { 880 idx = (addr >> (PGSHIFT + ptshift)) & 881 ((1 << (ptidxbits + widened)) - 1); 882 } else { 883 idx = (addr >> (PGSHIFT + ptshift)) & 884 ((1 << ptidxbits) - 1); 885 } 886 887 /* check that physical address of PTE is legal */ 888 hwaddr pte_addr; 889 890 if (two_stage && first_stage) { 891 int vbase_prot; 892 hwaddr vbase; 893 894 /* Do the second stage translation on the base PTE address. */ 895 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, 896 base, NULL, MMU_DATA_LOAD, 897 mmu_idx, false, true, 898 is_debug); 899 900 if (vbase_ret != TRANSLATE_SUCCESS) { 901 if (fault_pte_addr) { 902 *fault_pte_addr = (base + idx * ptesize) >> 2; 903 } 904 return TRANSLATE_G_STAGE_FAIL; 905 } 906 907 pte_addr = vbase + idx * ptesize; 908 } else { 909 pte_addr = base + idx * ptesize; 910 } 911 912 int pmp_prot; 913 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr, 914 sizeof(target_ulong), 915 MMU_DATA_LOAD, PRV_S); 916 if (pmp_ret != TRANSLATE_SUCCESS) { 917 return TRANSLATE_PMP_FAIL; 918 } 919 920 target_ulong pte; 921 if (riscv_cpu_mxl(env) == MXL_RV32) { 922 pte = address_space_ldl(cs->as, pte_addr, attrs, &res); 923 } else { 924 pte = address_space_ldq(cs->as, pte_addr, attrs, &res); 925 } 926 927 if (res != MEMTX_OK) { 928 return TRANSLATE_FAIL; 929 } 930 931 if (riscv_cpu_sxl(env) == MXL_RV32) { 932 ppn = pte >> PTE_PPN_SHIFT; 933 } else if (cpu->cfg.ext_svpbmt || cpu->cfg.ext_svnapot) { 934 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT; 935 } else { 936 ppn = pte >> PTE_PPN_SHIFT; 937 if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) { 938 return TRANSLATE_FAIL; 939 } 940 } 941 942 if (!(pte & PTE_V)) { 943 /* Invalid PTE */ 944 return TRANSLATE_FAIL; 945 } else if (!cpu->cfg.ext_svpbmt && (pte & PTE_PBMT)) { 946 return TRANSLATE_FAIL; 947 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) { 948 /* Inner PTE, continue walking */ 949 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) { 950 return TRANSLATE_FAIL; 951 } 952 base = ppn << PGSHIFT; 953 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) { 954 /* Reserved leaf PTE flags: PTE_W */ 955 return TRANSLATE_FAIL; 956 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) { 957 /* Reserved leaf PTE flags: PTE_W + PTE_X */ 958 return TRANSLATE_FAIL; 959 } else if ((pte & PTE_U) && ((mode != PRV_U) && 960 (!sum || access_type == MMU_INST_FETCH))) { 961 /* User PTE flags when not U mode and mstatus.SUM is not set, 962 or the access type is an instruction fetch */ 963 return TRANSLATE_FAIL; 964 } else if (!(pte & PTE_U) && (mode != PRV_S)) { 965 /* Supervisor PTE flags when not S mode */ 966 return TRANSLATE_FAIL; 967 } else if (ppn & ((1ULL << ptshift) - 1)) { 968 /* Misaligned PPN */ 969 return TRANSLATE_FAIL; 970 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) || 971 ((pte & PTE_X) && mxr))) { 972 /* Read access check failed */ 973 return TRANSLATE_FAIL; 974 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) { 975 /* Write access check failed */ 976 return TRANSLATE_FAIL; 977 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) { 978 /* Fetch access check failed */ 979 return TRANSLATE_FAIL; 980 } else { 981 /* if necessary, set accessed and dirty bits. */ 982 target_ulong updated_pte = pte | PTE_A | 983 (access_type == MMU_DATA_STORE ? PTE_D : 0); 984 985 /* Page table updates need to be atomic with MTTCG enabled */ 986 if (updated_pte != pte) { 987 /* 988 * - if accessed or dirty bits need updating, and the PTE is 989 * in RAM, then we do so atomically with a compare and swap. 990 * - if the PTE is in IO space or ROM, then it can't be updated 991 * and we return TRANSLATE_FAIL. 992 * - if the PTE changed by the time we went to update it, then 993 * it is no longer valid and we must re-walk the page table. 994 */ 995 MemoryRegion *mr; 996 hwaddr l = sizeof(target_ulong), addr1; 997 mr = address_space_translate(cs->as, pte_addr, 998 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED); 999 if (memory_region_is_ram(mr)) { 1000 target_ulong *pte_pa = 1001 qemu_map_ram_ptr(mr->ram_block, addr1); 1002 #if TCG_OVERSIZED_GUEST 1003 /* MTTCG is not enabled on oversized TCG guests so 1004 * page table updates do not need to be atomic */ 1005 *pte_pa = pte = updated_pte; 1006 #else 1007 target_ulong old_pte = 1008 qatomic_cmpxchg(pte_pa, pte, updated_pte); 1009 if (old_pte != pte) { 1010 goto restart; 1011 } else { 1012 pte = updated_pte; 1013 } 1014 #endif 1015 } else { 1016 /* misconfigured PTE in ROM (AD bits are not preset) or 1017 * PTE is in IO space and can't be updated atomically */ 1018 return TRANSLATE_FAIL; 1019 } 1020 } 1021 1022 /* for superpage mappings, make a fake leaf PTE for the TLB's 1023 benefit. */ 1024 target_ulong vpn = addr >> PGSHIFT; 1025 1026 if (cpu->cfg.ext_svnapot && (pte & PTE_N)) { 1027 napot_bits = ctzl(ppn) + 1; 1028 if ((i != (levels - 1)) || (napot_bits != 4)) { 1029 return TRANSLATE_FAIL; 1030 } 1031 } 1032 1033 napot_mask = (1 << napot_bits) - 1; 1034 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) | 1035 (vpn & (((target_ulong)1 << ptshift) - 1)) 1036 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK); 1037 1038 /* set permissions on the TLB entry */ 1039 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) { 1040 *prot |= PAGE_READ; 1041 } 1042 if ((pte & PTE_X)) { 1043 *prot |= PAGE_EXEC; 1044 } 1045 /* add write permission on stores or if the page is already dirty, 1046 so that we TLB miss on later writes to update the dirty bit */ 1047 if ((pte & PTE_W) && 1048 (access_type == MMU_DATA_STORE || (pte & PTE_D))) { 1049 *prot |= PAGE_WRITE; 1050 } 1051 return TRANSLATE_SUCCESS; 1052 } 1053 } 1054 return TRANSLATE_FAIL; 1055 } 1056 1057 static void raise_mmu_exception(CPURISCVState *env, target_ulong address, 1058 MMUAccessType access_type, bool pmp_violation, 1059 bool first_stage, bool two_stage, 1060 bool two_stage_indirect) 1061 { 1062 CPUState *cs = env_cpu(env); 1063 int page_fault_exceptions, vm; 1064 uint64_t stap_mode; 1065 1066 if (riscv_cpu_mxl(env) == MXL_RV32) { 1067 stap_mode = SATP32_MODE; 1068 } else { 1069 stap_mode = SATP64_MODE; 1070 } 1071 1072 if (first_stage) { 1073 vm = get_field(env->satp, stap_mode); 1074 } else { 1075 vm = get_field(env->hgatp, stap_mode); 1076 } 1077 1078 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation; 1079 1080 switch (access_type) { 1081 case MMU_INST_FETCH: 1082 if (riscv_cpu_virt_enabled(env) && !first_stage) { 1083 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; 1084 } else { 1085 cs->exception_index = page_fault_exceptions ? 1086 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT; 1087 } 1088 break; 1089 case MMU_DATA_LOAD: 1090 if (two_stage && !first_stage) { 1091 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; 1092 } else { 1093 cs->exception_index = page_fault_exceptions ? 1094 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT; 1095 } 1096 break; 1097 case MMU_DATA_STORE: 1098 if (two_stage && !first_stage) { 1099 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; 1100 } else { 1101 cs->exception_index = page_fault_exceptions ? 1102 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1103 } 1104 break; 1105 default: 1106 g_assert_not_reached(); 1107 } 1108 env->badaddr = address; 1109 env->two_stage_lookup = two_stage; 1110 env->two_stage_indirect_lookup = two_stage_indirect; 1111 } 1112 1113 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 1114 { 1115 RISCVCPU *cpu = RISCV_CPU(cs); 1116 CPURISCVState *env = &cpu->env; 1117 hwaddr phys_addr; 1118 int prot; 1119 int mmu_idx = cpu_mmu_index(&cpu->env, false); 1120 1121 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx, 1122 true, riscv_cpu_virt_enabled(env), true)) { 1123 return -1; 1124 } 1125 1126 if (riscv_cpu_virt_enabled(env)) { 1127 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL, 1128 0, mmu_idx, false, true, true)) { 1129 return -1; 1130 } 1131 } 1132 1133 return phys_addr & TARGET_PAGE_MASK; 1134 } 1135 1136 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 1137 vaddr addr, unsigned size, 1138 MMUAccessType access_type, 1139 int mmu_idx, MemTxAttrs attrs, 1140 MemTxResult response, uintptr_t retaddr) 1141 { 1142 RISCVCPU *cpu = RISCV_CPU(cs); 1143 CPURISCVState *env = &cpu->env; 1144 1145 if (access_type == MMU_DATA_STORE) { 1146 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1147 } else if (access_type == MMU_DATA_LOAD) { 1148 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 1149 } else { 1150 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT; 1151 } 1152 1153 env->badaddr = addr; 1154 env->two_stage_lookup = riscv_cpu_virt_enabled(env) || 1155 riscv_cpu_two_stage_lookup(mmu_idx); 1156 env->two_stage_indirect_lookup = false; 1157 cpu_loop_exit_restore(cs, retaddr); 1158 } 1159 1160 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 1161 MMUAccessType access_type, int mmu_idx, 1162 uintptr_t retaddr) 1163 { 1164 RISCVCPU *cpu = RISCV_CPU(cs); 1165 CPURISCVState *env = &cpu->env; 1166 switch (access_type) { 1167 case MMU_INST_FETCH: 1168 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; 1169 break; 1170 case MMU_DATA_LOAD: 1171 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; 1172 break; 1173 case MMU_DATA_STORE: 1174 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; 1175 break; 1176 default: 1177 g_assert_not_reached(); 1178 } 1179 env->badaddr = addr; 1180 env->two_stage_lookup = riscv_cpu_virt_enabled(env) || 1181 riscv_cpu_two_stage_lookup(mmu_idx); 1182 env->two_stage_indirect_lookup = false; 1183 cpu_loop_exit_restore(cs, retaddr); 1184 } 1185 1186 1187 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type) 1188 { 1189 enum riscv_pmu_event_idx pmu_event_type; 1190 1191 switch (access_type) { 1192 case MMU_INST_FETCH: 1193 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS; 1194 break; 1195 case MMU_DATA_LOAD: 1196 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS; 1197 break; 1198 case MMU_DATA_STORE: 1199 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS; 1200 break; 1201 default: 1202 return; 1203 } 1204 1205 riscv_pmu_incr_ctr(cpu, pmu_event_type); 1206 } 1207 1208 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 1209 MMUAccessType access_type, int mmu_idx, 1210 bool probe, uintptr_t retaddr) 1211 { 1212 RISCVCPU *cpu = RISCV_CPU(cs); 1213 CPURISCVState *env = &cpu->env; 1214 vaddr im_address; 1215 hwaddr pa = 0; 1216 int prot, prot2, prot_pmp; 1217 bool pmp_violation = false; 1218 bool first_stage_error = true; 1219 bool two_stage_lookup = false; 1220 bool two_stage_indirect_error = false; 1221 int ret = TRANSLATE_FAIL; 1222 int mode = mmu_idx; 1223 /* default TLB page size */ 1224 target_ulong tlb_size = TARGET_PAGE_SIZE; 1225 1226 env->guest_phys_fault_addr = 0; 1227 1228 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", 1229 __func__, address, access_type, mmu_idx); 1230 1231 /* MPRV does not affect the virtual-machine load/store 1232 instructions, HLV, HLVX, and HSV. */ 1233 if (riscv_cpu_two_stage_lookup(mmu_idx)) { 1234 mode = get_field(env->hstatus, HSTATUS_SPVP); 1235 } else if (mode == PRV_M && access_type != MMU_INST_FETCH && 1236 get_field(env->mstatus, MSTATUS_MPRV)) { 1237 mode = get_field(env->mstatus, MSTATUS_MPP); 1238 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) { 1239 two_stage_lookup = true; 1240 } 1241 } 1242 1243 if (riscv_cpu_virt_enabled(env) || 1244 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) && 1245 access_type != MMU_INST_FETCH)) { 1246 /* Two stage lookup */ 1247 ret = get_physical_address(env, &pa, &prot, address, 1248 &env->guest_phys_fault_addr, access_type, 1249 mmu_idx, true, true, false); 1250 1251 /* 1252 * A G-stage exception may be triggered during two state lookup. 1253 * And the env->guest_phys_fault_addr has already been set in 1254 * get_physical_address(). 1255 */ 1256 if (ret == TRANSLATE_G_STAGE_FAIL) { 1257 first_stage_error = false; 1258 two_stage_indirect_error = true; 1259 access_type = MMU_DATA_LOAD; 1260 } 1261 1262 qemu_log_mask(CPU_LOG_MMU, 1263 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " 1264 TARGET_FMT_plx " prot %d\n", 1265 __func__, address, ret, pa, prot); 1266 1267 if (ret == TRANSLATE_SUCCESS) { 1268 /* Second stage lookup */ 1269 im_address = pa; 1270 1271 ret = get_physical_address(env, &pa, &prot2, im_address, NULL, 1272 access_type, mmu_idx, false, true, 1273 false); 1274 1275 qemu_log_mask(CPU_LOG_MMU, 1276 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical " 1277 TARGET_FMT_plx " prot %d\n", 1278 __func__, im_address, ret, pa, prot2); 1279 1280 prot &= prot2; 1281 1282 if (ret == TRANSLATE_SUCCESS) { 1283 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, 1284 size, access_type, mode); 1285 1286 qemu_log_mask(CPU_LOG_MMU, 1287 "%s PMP address=" TARGET_FMT_plx " ret %d prot" 1288 " %d tlb_size " TARGET_FMT_lu "\n", 1289 __func__, pa, ret, prot_pmp, tlb_size); 1290 1291 prot &= prot_pmp; 1292 } 1293 1294 if (ret != TRANSLATE_SUCCESS) { 1295 /* 1296 * Guest physical address translation failed, this is a HS 1297 * level exception 1298 */ 1299 first_stage_error = false; 1300 env->guest_phys_fault_addr = (im_address | 1301 (address & 1302 (TARGET_PAGE_SIZE - 1))) >> 2; 1303 } 1304 } 1305 } else { 1306 pmu_tlb_fill_incr_ctr(cpu, access_type); 1307 /* Single stage lookup */ 1308 ret = get_physical_address(env, &pa, &prot, address, NULL, 1309 access_type, mmu_idx, true, false, false); 1310 1311 qemu_log_mask(CPU_LOG_MMU, 1312 "%s address=%" VADDR_PRIx " ret %d physical " 1313 TARGET_FMT_plx " prot %d\n", 1314 __func__, address, ret, pa, prot); 1315 1316 if (ret == TRANSLATE_SUCCESS) { 1317 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, 1318 size, access_type, mode); 1319 1320 qemu_log_mask(CPU_LOG_MMU, 1321 "%s PMP address=" TARGET_FMT_plx " ret %d prot" 1322 " %d tlb_size " TARGET_FMT_lu "\n", 1323 __func__, pa, ret, prot_pmp, tlb_size); 1324 1325 prot &= prot_pmp; 1326 } 1327 } 1328 1329 if (ret == TRANSLATE_PMP_FAIL) { 1330 pmp_violation = true; 1331 } 1332 1333 if (ret == TRANSLATE_SUCCESS) { 1334 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), 1335 prot, mmu_idx, tlb_size); 1336 return true; 1337 } else if (probe) { 1338 return false; 1339 } else { 1340 raise_mmu_exception(env, address, access_type, pmp_violation, 1341 first_stage_error, 1342 riscv_cpu_virt_enabled(env) || 1343 riscv_cpu_two_stage_lookup(mmu_idx), 1344 two_stage_indirect_error); 1345 cpu_loop_exit_restore(cs, retaddr); 1346 } 1347 1348 return true; 1349 } 1350 1351 static target_ulong riscv_transformed_insn(CPURISCVState *env, 1352 target_ulong insn, 1353 target_ulong taddr) 1354 { 1355 target_ulong xinsn = 0; 1356 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0; 1357 1358 /* 1359 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to 1360 * be uncompressed. The Quadrant 1 of RVC instruction space need 1361 * not be transformed because these instructions won't generate 1362 * any load/store trap. 1363 */ 1364 1365 if ((insn & 0x3) != 0x3) { 1366 /* Transform 16bit instruction into 32bit instruction */ 1367 switch (GET_C_OP(insn)) { 1368 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */ 1369 switch (GET_C_FUNC(insn)) { 1370 case OPC_RISC_C_FUNC_FLD_LQ: 1371 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */ 1372 xinsn = OPC_RISC_FLD; 1373 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1374 access_rs1 = GET_C_RS1S(insn); 1375 access_imm = GET_C_LD_IMM(insn); 1376 access_size = 8; 1377 } 1378 break; 1379 case OPC_RISC_C_FUNC_LW: /* C.LW */ 1380 xinsn = OPC_RISC_LW; 1381 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1382 access_rs1 = GET_C_RS1S(insn); 1383 access_imm = GET_C_LW_IMM(insn); 1384 access_size = 4; 1385 break; 1386 case OPC_RISC_C_FUNC_FLW_LD: 1387 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */ 1388 xinsn = OPC_RISC_FLW; 1389 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1390 access_rs1 = GET_C_RS1S(insn); 1391 access_imm = GET_C_LW_IMM(insn); 1392 access_size = 4; 1393 } else { /* C.LD (RV64/RV128) */ 1394 xinsn = OPC_RISC_LD; 1395 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1396 access_rs1 = GET_C_RS1S(insn); 1397 access_imm = GET_C_LD_IMM(insn); 1398 access_size = 8; 1399 } 1400 break; 1401 case OPC_RISC_C_FUNC_FSD_SQ: 1402 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */ 1403 xinsn = OPC_RISC_FSD; 1404 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1405 access_rs1 = GET_C_RS1S(insn); 1406 access_imm = GET_C_SD_IMM(insn); 1407 access_size = 8; 1408 } 1409 break; 1410 case OPC_RISC_C_FUNC_SW: /* C.SW */ 1411 xinsn = OPC_RISC_SW; 1412 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1413 access_rs1 = GET_C_RS1S(insn); 1414 access_imm = GET_C_SW_IMM(insn); 1415 access_size = 4; 1416 break; 1417 case OPC_RISC_C_FUNC_FSW_SD: 1418 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */ 1419 xinsn = OPC_RISC_FSW; 1420 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1421 access_rs1 = GET_C_RS1S(insn); 1422 access_imm = GET_C_SW_IMM(insn); 1423 access_size = 4; 1424 } else { /* C.SD (RV64/RV128) */ 1425 xinsn = OPC_RISC_SD; 1426 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1427 access_rs1 = GET_C_RS1S(insn); 1428 access_imm = GET_C_SD_IMM(insn); 1429 access_size = 8; 1430 } 1431 break; 1432 default: 1433 break; 1434 } 1435 break; 1436 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */ 1437 switch (GET_C_FUNC(insn)) { 1438 case OPC_RISC_C_FUNC_FLDSP_LQSP: 1439 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */ 1440 xinsn = OPC_RISC_FLD; 1441 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1442 access_rs1 = 2; 1443 access_imm = GET_C_LDSP_IMM(insn); 1444 access_size = 8; 1445 } 1446 break; 1447 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */ 1448 xinsn = OPC_RISC_LW; 1449 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1450 access_rs1 = 2; 1451 access_imm = GET_C_LWSP_IMM(insn); 1452 access_size = 4; 1453 break; 1454 case OPC_RISC_C_FUNC_FLWSP_LDSP: 1455 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */ 1456 xinsn = OPC_RISC_FLW; 1457 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1458 access_rs1 = 2; 1459 access_imm = GET_C_LWSP_IMM(insn); 1460 access_size = 4; 1461 } else { /* C.LDSP (RV64/RV128) */ 1462 xinsn = OPC_RISC_LD; 1463 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1464 access_rs1 = 2; 1465 access_imm = GET_C_LDSP_IMM(insn); 1466 access_size = 8; 1467 } 1468 break; 1469 case OPC_RISC_C_FUNC_FSDSP_SQSP: 1470 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */ 1471 xinsn = OPC_RISC_FSD; 1472 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1473 access_rs1 = 2; 1474 access_imm = GET_C_SDSP_IMM(insn); 1475 access_size = 8; 1476 } 1477 break; 1478 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */ 1479 xinsn = OPC_RISC_SW; 1480 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1481 access_rs1 = 2; 1482 access_imm = GET_C_SWSP_IMM(insn); 1483 access_size = 4; 1484 break; 1485 case 7: 1486 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */ 1487 xinsn = OPC_RISC_FSW; 1488 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1489 access_rs1 = 2; 1490 access_imm = GET_C_SWSP_IMM(insn); 1491 access_size = 4; 1492 } else { /* C.SDSP (RV64/RV128) */ 1493 xinsn = OPC_RISC_SD; 1494 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1495 access_rs1 = 2; 1496 access_imm = GET_C_SDSP_IMM(insn); 1497 access_size = 8; 1498 } 1499 break; 1500 default: 1501 break; 1502 } 1503 break; 1504 default: 1505 break; 1506 } 1507 1508 /* 1509 * Clear Bit1 of transformed instruction to indicate that 1510 * original insruction was a 16bit instruction 1511 */ 1512 xinsn &= ~((target_ulong)0x2); 1513 } else { 1514 /* Transform 32bit (or wider) instructions */ 1515 switch (MASK_OP_MAJOR(insn)) { 1516 case OPC_RISC_ATOMIC: 1517 xinsn = insn; 1518 access_rs1 = GET_RS1(insn); 1519 access_size = 1 << GET_FUNCT3(insn); 1520 break; 1521 case OPC_RISC_LOAD: 1522 case OPC_RISC_FP_LOAD: 1523 xinsn = SET_I_IMM(insn, 0); 1524 access_rs1 = GET_RS1(insn); 1525 access_imm = GET_IMM(insn); 1526 access_size = 1 << GET_FUNCT3(insn); 1527 break; 1528 case OPC_RISC_STORE: 1529 case OPC_RISC_FP_STORE: 1530 xinsn = SET_S_IMM(insn, 0); 1531 access_rs1 = GET_RS1(insn); 1532 access_imm = GET_STORE_IMM(insn); 1533 access_size = 1 << GET_FUNCT3(insn); 1534 break; 1535 case OPC_RISC_SYSTEM: 1536 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) { 1537 xinsn = insn; 1538 access_rs1 = GET_RS1(insn); 1539 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3); 1540 access_size = 1 << access_size; 1541 } 1542 break; 1543 default: 1544 break; 1545 } 1546 } 1547 1548 if (access_size) { 1549 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) & 1550 (access_size - 1)); 1551 } 1552 1553 return xinsn; 1554 } 1555 #endif /* !CONFIG_USER_ONLY */ 1556 1557 /* 1558 * Handle Traps 1559 * 1560 * Adapted from Spike's processor_t::take_trap. 1561 * 1562 */ 1563 void riscv_cpu_do_interrupt(CPUState *cs) 1564 { 1565 #if !defined(CONFIG_USER_ONLY) 1566 1567 RISCVCPU *cpu = RISCV_CPU(cs); 1568 CPURISCVState *env = &cpu->env; 1569 bool write_gva = false; 1570 uint64_t s; 1571 1572 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide 1573 * so we mask off the MSB and separate into trap type and cause. 1574 */ 1575 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); 1576 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; 1577 uint64_t deleg = async ? env->mideleg : env->medeleg; 1578 target_ulong tval = 0; 1579 target_ulong tinst = 0; 1580 target_ulong htval = 0; 1581 target_ulong mtval2 = 0; 1582 1583 if (cause == RISCV_EXCP_SEMIHOST) { 1584 do_common_semihosting(cs); 1585 env->pc += 4; 1586 return; 1587 } 1588 1589 if (!async) { 1590 /* set tval to badaddr for traps with address information */ 1591 switch (cause) { 1592 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: 1593 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: 1594 case RISCV_EXCP_LOAD_ADDR_MIS: 1595 case RISCV_EXCP_STORE_AMO_ADDR_MIS: 1596 case RISCV_EXCP_LOAD_ACCESS_FAULT: 1597 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: 1598 case RISCV_EXCP_LOAD_PAGE_FAULT: 1599 case RISCV_EXCP_STORE_PAGE_FAULT: 1600 write_gva = env->two_stage_lookup; 1601 tval = env->badaddr; 1602 if (env->two_stage_indirect_lookup) { 1603 /* 1604 * special pseudoinstruction for G-stage fault taken while 1605 * doing VS-stage page table walk. 1606 */ 1607 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; 1608 } else { 1609 /* 1610 * The "Addr. Offset" field in transformed instruction is 1611 * non-zero only for misaligned access. 1612 */ 1613 tinst = riscv_transformed_insn(env, env->bins, tval); 1614 } 1615 break; 1616 case RISCV_EXCP_INST_GUEST_PAGE_FAULT: 1617 case RISCV_EXCP_INST_ADDR_MIS: 1618 case RISCV_EXCP_INST_ACCESS_FAULT: 1619 case RISCV_EXCP_INST_PAGE_FAULT: 1620 write_gva = env->two_stage_lookup; 1621 tval = env->badaddr; 1622 if (env->two_stage_indirect_lookup) { 1623 /* 1624 * special pseudoinstruction for G-stage fault taken while 1625 * doing VS-stage page table walk. 1626 */ 1627 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; 1628 } 1629 break; 1630 case RISCV_EXCP_ILLEGAL_INST: 1631 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT: 1632 tval = env->bins; 1633 break; 1634 default: 1635 break; 1636 } 1637 /* ecall is dispatched as one cause so translate based on mode */ 1638 if (cause == RISCV_EXCP_U_ECALL) { 1639 assert(env->priv <= 3); 1640 1641 if (env->priv == PRV_M) { 1642 cause = RISCV_EXCP_M_ECALL; 1643 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) { 1644 cause = RISCV_EXCP_VS_ECALL; 1645 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) { 1646 cause = RISCV_EXCP_S_ECALL; 1647 } else if (env->priv == PRV_U) { 1648 cause = RISCV_EXCP_U_ECALL; 1649 } 1650 } 1651 } 1652 1653 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, 1654 riscv_cpu_get_trap_name(cause, async)); 1655 1656 qemu_log_mask(CPU_LOG_INT, 1657 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", " 1658 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n", 1659 __func__, env->mhartid, async, cause, env->pc, tval, 1660 riscv_cpu_get_trap_name(cause, async)); 1661 1662 if (env->priv <= PRV_S && 1663 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) { 1664 /* handle the trap in S-mode */ 1665 if (riscv_has_ext(env, RVH)) { 1666 uint64_t hdeleg = async ? env->hideleg : env->hedeleg; 1667 1668 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) { 1669 /* Trap to VS mode */ 1670 /* 1671 * See if we need to adjust cause. Yes if its VS mode interrupt 1672 * no if hypervisor has delegated one of hs mode's interrupt 1673 */ 1674 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || 1675 cause == IRQ_VS_EXT) { 1676 cause = cause - 1; 1677 } 1678 write_gva = false; 1679 } else if (riscv_cpu_virt_enabled(env)) { 1680 /* Trap into HS mode, from virt */ 1681 riscv_cpu_swap_hypervisor_regs(env); 1682 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, 1683 env->priv); 1684 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, 1685 riscv_cpu_virt_enabled(env)); 1686 1687 1688 htval = env->guest_phys_fault_addr; 1689 1690 riscv_cpu_set_virt_enabled(env, 0); 1691 } else { 1692 /* Trap into HS mode */ 1693 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false); 1694 htval = env->guest_phys_fault_addr; 1695 } 1696 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva); 1697 } 1698 1699 s = env->mstatus; 1700 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); 1701 s = set_field(s, MSTATUS_SPP, env->priv); 1702 s = set_field(s, MSTATUS_SIE, 0); 1703 env->mstatus = s; 1704 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); 1705 env->sepc = env->pc; 1706 env->stval = tval; 1707 env->htval = htval; 1708 env->htinst = tinst; 1709 env->pc = (env->stvec >> 2 << 2) + 1710 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); 1711 riscv_cpu_set_mode(env, PRV_S); 1712 } else { 1713 /* handle the trap in M-mode */ 1714 if (riscv_has_ext(env, RVH)) { 1715 if (riscv_cpu_virt_enabled(env)) { 1716 riscv_cpu_swap_hypervisor_regs(env); 1717 } 1718 env->mstatus = set_field(env->mstatus, MSTATUS_MPV, 1719 riscv_cpu_virt_enabled(env)); 1720 if (riscv_cpu_virt_enabled(env) && tval) { 1721 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); 1722 } 1723 1724 mtval2 = env->guest_phys_fault_addr; 1725 1726 /* Trapping to M mode, virt is disabled */ 1727 riscv_cpu_set_virt_enabled(env, 0); 1728 } 1729 1730 s = env->mstatus; 1731 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); 1732 s = set_field(s, MSTATUS_MPP, env->priv); 1733 s = set_field(s, MSTATUS_MIE, 0); 1734 env->mstatus = s; 1735 env->mcause = cause | ~(((target_ulong)-1) >> async); 1736 env->mepc = env->pc; 1737 env->mtval = tval; 1738 env->mtval2 = mtval2; 1739 env->mtinst = tinst; 1740 env->pc = (env->mtvec >> 2 << 2) + 1741 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); 1742 riscv_cpu_set_mode(env, PRV_M); 1743 } 1744 1745 /* NOTE: it is not necessary to yield load reservations here. It is only 1746 * necessary for an SC from "another hart" to cause a load reservation 1747 * to be yielded. Refer to the memory consistency model section of the 1748 * RISC-V ISA Specification. 1749 */ 1750 1751 env->two_stage_lookup = false; 1752 env->two_stage_indirect_lookup = false; 1753 #endif 1754 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */ 1755 } 1756