xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision 93e0932b)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "pmu.h"
25 #include "exec/exec-all.h"
26 #include "instmap.h"
27 #include "tcg/tcg-op.h"
28 #include "trace.h"
29 #include "semihosting/common-semi.h"
30 #include "sysemu/cpu-timers.h"
31 #include "cpu_bits.h"
32 #include "debug.h"
33 
34 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
35 {
36 #ifdef CONFIG_USER_ONLY
37     return 0;
38 #else
39     return env->priv;
40 #endif
41 }
42 
43 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
44                           target_ulong *cs_base, uint32_t *pflags)
45 {
46     CPUState *cs = env_cpu(env);
47     RISCVCPU *cpu = RISCV_CPU(cs);
48 
49     uint32_t flags = 0;
50 
51     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
52     *cs_base = 0;
53 
54     if (riscv_has_ext(env, RVV) || cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) {
55         /*
56          * If env->vl equals to VLMAX, we can use generic vector operation
57          * expanders (GVEC) to accerlate the vector operations.
58          * However, as LMUL could be a fractional number. The maximum
59          * vector size can be operated might be less than 8 bytes,
60          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
61          * only when maxsz >= 8 bytes.
62          */
63         uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype);
64         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
65         uint32_t maxsz = vlmax << sew;
66         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
67                            (maxsz >= 8);
68         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
69         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
70         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
71                     FIELD_EX64(env->vtype, VTYPE, VLMUL));
72         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
73         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
74                     FIELD_EX64(env->vtype, VTYPE, VTA));
75         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
76                     FIELD_EX64(env->vtype, VTYPE, VMA));
77     } else {
78         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
79     }
80 
81 #ifdef CONFIG_USER_ONLY
82     flags |= TB_FLAGS_MSTATUS_FS;
83     flags |= TB_FLAGS_MSTATUS_VS;
84 #else
85     flags |= cpu_mmu_index(env, 0);
86     if (riscv_cpu_fp_enabled(env)) {
87         flags |= env->mstatus & MSTATUS_FS;
88     }
89 
90     if (riscv_cpu_vector_enabled(env)) {
91         flags |= env->mstatus & MSTATUS_VS;
92     }
93 
94     if (riscv_has_ext(env, RVH)) {
95         if (env->priv == PRV_M ||
96             (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
97             (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
98                 get_field(env->hstatus, HSTATUS_HU))) {
99             flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
100         }
101 
102         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
103                            get_field(env->mstatus_hs, MSTATUS_FS));
104 
105         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS,
106                            get_field(env->mstatus_hs, MSTATUS_VS));
107     }
108     if (riscv_feature(env, RISCV_FEATURE_DEBUG) && !icount_enabled()) {
109         flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
110     }
111 #endif
112 
113     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
114     if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
115         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
116     }
117     if (env->cur_pmbase != 0) {
118         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
119     }
120 
121     *pflags = flags;
122 }
123 
124 void riscv_cpu_update_mask(CPURISCVState *env)
125 {
126     target_ulong mask = -1, base = 0;
127     /*
128      * TODO: Current RVJ spec does not specify
129      * how the extension interacts with XLEN.
130      */
131 #ifndef CONFIG_USER_ONLY
132     if (riscv_has_ext(env, RVJ)) {
133         switch (env->priv) {
134         case PRV_M:
135             if (env->mmte & M_PM_ENABLE) {
136                 mask = env->mpmmask;
137                 base = env->mpmbase;
138             }
139             break;
140         case PRV_S:
141             if (env->mmte & S_PM_ENABLE) {
142                 mask = env->spmmask;
143                 base = env->spmbase;
144             }
145             break;
146         case PRV_U:
147             if (env->mmte & U_PM_ENABLE) {
148                 mask = env->upmmask;
149                 base = env->upmbase;
150             }
151             break;
152         default:
153             g_assert_not_reached();
154         }
155     }
156 #endif
157     if (env->xl == MXL_RV32) {
158         env->cur_pmmask = mask & UINT32_MAX;
159         env->cur_pmbase = base & UINT32_MAX;
160     } else {
161         env->cur_pmmask = mask;
162         env->cur_pmbase = base;
163     }
164 }
165 
166 #ifndef CONFIG_USER_ONLY
167 
168 /*
169  * The HS-mode is allowed to configure priority only for the
170  * following VS-mode local interrupts:
171  *
172  * 0  (Reserved interrupt, reads as zero)
173  * 1  Supervisor software interrupt
174  * 4  (Reserved interrupt, reads as zero)
175  * 5  Supervisor timer interrupt
176  * 8  (Reserved interrupt, reads as zero)
177  * 13 (Reserved interrupt)
178  * 14 "
179  * 15 "
180  * 16 "
181  * 17 "
182  * 18 "
183  * 19 "
184  * 20 "
185  * 21 "
186  * 22 "
187  * 23 "
188  */
189 
190 static const int hviprio_index2irq[] = {
191     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
192 static const int hviprio_index2rdzero[] = {
193     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
194 
195 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
196 {
197     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
198         return -EINVAL;
199     }
200 
201     if (out_irq) {
202         *out_irq = hviprio_index2irq[index];
203     }
204 
205     if (out_rdzero) {
206         *out_rdzero = hviprio_index2rdzero[index];
207     }
208 
209     return 0;
210 }
211 
212 /*
213  * Default priorities of local interrupts are defined in the
214  * RISC-V Advanced Interrupt Architecture specification.
215  *
216  * ----------------------------------------------------------------
217  *  Default  |
218  *  Priority | Major Interrupt Numbers
219  * ----------------------------------------------------------------
220  *  Highest  | 47, 23, 46, 45, 22, 44,
221  *           | 43, 21, 42, 41, 20, 40
222  *           |
223  *           | 11 (0b),  3 (03),  7 (07)
224  *           |  9 (09),  1 (01),  5 (05)
225  *           | 12 (0c)
226  *           | 10 (0a),  2 (02),  6 (06)
227  *           |
228  *           | 39, 19, 38, 37, 18, 36,
229  *  Lowest   | 35, 17, 34, 33, 16, 32
230  * ----------------------------------------------------------------
231  */
232 static const uint8_t default_iprio[64] = {
233  /* Custom interrupts 48 to 63 */
234  [63] = IPRIO_MMAXIPRIO,
235  [62] = IPRIO_MMAXIPRIO,
236  [61] = IPRIO_MMAXIPRIO,
237  [60] = IPRIO_MMAXIPRIO,
238  [59] = IPRIO_MMAXIPRIO,
239  [58] = IPRIO_MMAXIPRIO,
240  [57] = IPRIO_MMAXIPRIO,
241  [56] = IPRIO_MMAXIPRIO,
242  [55] = IPRIO_MMAXIPRIO,
243  [54] = IPRIO_MMAXIPRIO,
244  [53] = IPRIO_MMAXIPRIO,
245  [52] = IPRIO_MMAXIPRIO,
246  [51] = IPRIO_MMAXIPRIO,
247  [50] = IPRIO_MMAXIPRIO,
248  [49] = IPRIO_MMAXIPRIO,
249  [48] = IPRIO_MMAXIPRIO,
250 
251  /* Custom interrupts 24 to 31 */
252  [31] = IPRIO_MMAXIPRIO,
253  [30] = IPRIO_MMAXIPRIO,
254  [29] = IPRIO_MMAXIPRIO,
255  [28] = IPRIO_MMAXIPRIO,
256  [27] = IPRIO_MMAXIPRIO,
257  [26] = IPRIO_MMAXIPRIO,
258  [25] = IPRIO_MMAXIPRIO,
259  [24] = IPRIO_MMAXIPRIO,
260 
261  [47] = IPRIO_DEFAULT_UPPER,
262  [23] = IPRIO_DEFAULT_UPPER + 1,
263  [46] = IPRIO_DEFAULT_UPPER + 2,
264  [45] = IPRIO_DEFAULT_UPPER + 3,
265  [22] = IPRIO_DEFAULT_UPPER + 4,
266  [44] = IPRIO_DEFAULT_UPPER + 5,
267 
268  [43] = IPRIO_DEFAULT_UPPER + 6,
269  [21] = IPRIO_DEFAULT_UPPER + 7,
270  [42] = IPRIO_DEFAULT_UPPER + 8,
271  [41] = IPRIO_DEFAULT_UPPER + 9,
272  [20] = IPRIO_DEFAULT_UPPER + 10,
273  [40] = IPRIO_DEFAULT_UPPER + 11,
274 
275  [11] = IPRIO_DEFAULT_M,
276  [3]  = IPRIO_DEFAULT_M + 1,
277  [7]  = IPRIO_DEFAULT_M + 2,
278 
279  [9]  = IPRIO_DEFAULT_S,
280  [1]  = IPRIO_DEFAULT_S + 1,
281  [5]  = IPRIO_DEFAULT_S + 2,
282 
283  [12] = IPRIO_DEFAULT_SGEXT,
284 
285  [10] = IPRIO_DEFAULT_VS,
286  [2]  = IPRIO_DEFAULT_VS + 1,
287  [6]  = IPRIO_DEFAULT_VS + 2,
288 
289  [39] = IPRIO_DEFAULT_LOWER,
290  [19] = IPRIO_DEFAULT_LOWER + 1,
291  [38] = IPRIO_DEFAULT_LOWER + 2,
292  [37] = IPRIO_DEFAULT_LOWER + 3,
293  [18] = IPRIO_DEFAULT_LOWER + 4,
294  [36] = IPRIO_DEFAULT_LOWER + 5,
295 
296  [35] = IPRIO_DEFAULT_LOWER + 6,
297  [17] = IPRIO_DEFAULT_LOWER + 7,
298  [34] = IPRIO_DEFAULT_LOWER + 8,
299  [33] = IPRIO_DEFAULT_LOWER + 9,
300  [16] = IPRIO_DEFAULT_LOWER + 10,
301  [32] = IPRIO_DEFAULT_LOWER + 11,
302 };
303 
304 uint8_t riscv_cpu_default_priority(int irq)
305 {
306     if (irq < 0 || irq > 63) {
307         return IPRIO_MMAXIPRIO;
308     }
309 
310     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
311 };
312 
313 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
314                                     int extirq, unsigned int extirq_def_prio,
315                                     uint64_t pending, uint8_t *iprio)
316 {
317     RISCVCPU *cpu = env_archcpu(env);
318     int irq, best_irq = RISCV_EXCP_NONE;
319     unsigned int prio, best_prio = UINT_MAX;
320 
321     if (!pending) {
322         return RISCV_EXCP_NONE;
323     }
324 
325     irq = ctz64(pending);
326     if (!((extirq == IRQ_M_EXT) ? cpu->cfg.ext_smaia : cpu->cfg.ext_ssaia)) {
327         return irq;
328     }
329 
330     pending = pending >> irq;
331     while (pending) {
332         prio = iprio[irq];
333         if (!prio) {
334             if (irq == extirq) {
335                 prio = extirq_def_prio;
336             } else {
337                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
338                        1 : IPRIO_MMAXIPRIO;
339             }
340         }
341         if ((pending & 0x1) && (prio <= best_prio)) {
342             best_irq = irq;
343             best_prio = prio;
344         }
345         irq++;
346         pending = pending >> 1;
347     }
348 
349     return best_irq;
350 }
351 
352 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
353 {
354     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
355     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
356     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
357 
358     return (env->mip | vsgein | vstip) & env->mie;
359 }
360 
361 int riscv_cpu_mirq_pending(CPURISCVState *env)
362 {
363     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
364                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
365 
366     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
367                                     irqs, env->miprio);
368 }
369 
370 int riscv_cpu_sirq_pending(CPURISCVState *env)
371 {
372     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
373                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
374 
375     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
376                                     irqs, env->siprio);
377 }
378 
379 int riscv_cpu_vsirq_pending(CPURISCVState *env)
380 {
381     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
382                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
383 
384     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
385                                     irqs >> 1, env->hviprio);
386 }
387 
388 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
389 {
390     int virq;
391     uint64_t irqs, pending, mie, hsie, vsie;
392 
393     /* Determine interrupt enable state of all privilege modes */
394     if (riscv_cpu_virt_enabled(env)) {
395         mie = 1;
396         hsie = 1;
397         vsie = (env->priv < PRV_S) ||
398                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
399     } else {
400         mie = (env->priv < PRV_M) ||
401               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
402         hsie = (env->priv < PRV_S) ||
403                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
404         vsie = 0;
405     }
406 
407     /* Determine all pending interrupts */
408     pending = riscv_cpu_all_pending(env);
409 
410     /* Check M-mode interrupts */
411     irqs = pending & ~env->mideleg & -mie;
412     if (irqs) {
413         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
414                                         irqs, env->miprio);
415     }
416 
417     /* Check HS-mode interrupts */
418     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
419     if (irqs) {
420         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
421                                         irqs, env->siprio);
422     }
423 
424     /* Check VS-mode interrupts */
425     irqs = pending & env->mideleg & env->hideleg & -vsie;
426     if (irqs) {
427         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
428                                         irqs >> 1, env->hviprio);
429         return (virq <= 0) ? virq : virq + 1;
430     }
431 
432     /* Indicate no pending interrupt */
433     return RISCV_EXCP_NONE;
434 }
435 
436 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
437 {
438     if (interrupt_request & CPU_INTERRUPT_HARD) {
439         RISCVCPU *cpu = RISCV_CPU(cs);
440         CPURISCVState *env = &cpu->env;
441         int interruptno = riscv_cpu_local_irq_pending(env);
442         if (interruptno >= 0) {
443             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
444             riscv_cpu_do_interrupt(cs);
445             return true;
446         }
447     }
448     return false;
449 }
450 
451 /* Return true is floating point support is currently enabled */
452 bool riscv_cpu_fp_enabled(CPURISCVState *env)
453 {
454     if (env->mstatus & MSTATUS_FS) {
455         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
456             return false;
457         }
458         return true;
459     }
460 
461     return false;
462 }
463 
464 /* Return true is vector support is currently enabled */
465 bool riscv_cpu_vector_enabled(CPURISCVState *env)
466 {
467     if (env->mstatus & MSTATUS_VS) {
468         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) {
469             return false;
470         }
471         return true;
472     }
473 
474     return false;
475 }
476 
477 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
478 {
479     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
480                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
481                             MSTATUS64_UXL | MSTATUS_VS;
482 
483     if (riscv_has_ext(env, RVF)) {
484         mstatus_mask |= MSTATUS_FS;
485     }
486     bool current_virt = riscv_cpu_virt_enabled(env);
487 
488     g_assert(riscv_has_ext(env, RVH));
489 
490     if (current_virt) {
491         /* Current V=1 and we are about to change to V=0 */
492         env->vsstatus = env->mstatus & mstatus_mask;
493         env->mstatus &= ~mstatus_mask;
494         env->mstatus |= env->mstatus_hs;
495 
496         env->vstvec = env->stvec;
497         env->stvec = env->stvec_hs;
498 
499         env->vsscratch = env->sscratch;
500         env->sscratch = env->sscratch_hs;
501 
502         env->vsepc = env->sepc;
503         env->sepc = env->sepc_hs;
504 
505         env->vscause = env->scause;
506         env->scause = env->scause_hs;
507 
508         env->vstval = env->stval;
509         env->stval = env->stval_hs;
510 
511         env->vsatp = env->satp;
512         env->satp = env->satp_hs;
513     } else {
514         /* Current V=0 and we are about to change to V=1 */
515         env->mstatus_hs = env->mstatus & mstatus_mask;
516         env->mstatus &= ~mstatus_mask;
517         env->mstatus |= env->vsstatus;
518 
519         env->stvec_hs = env->stvec;
520         env->stvec = env->vstvec;
521 
522         env->sscratch_hs = env->sscratch;
523         env->sscratch = env->vsscratch;
524 
525         env->sepc_hs = env->sepc;
526         env->sepc = env->vsepc;
527 
528         env->scause_hs = env->scause;
529         env->scause = env->vscause;
530 
531         env->stval_hs = env->stval;
532         env->stval = env->vstval;
533 
534         env->satp_hs = env->satp;
535         env->satp = env->vsatp;
536     }
537 }
538 
539 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
540 {
541     if (!riscv_has_ext(env, RVH)) {
542         return 0;
543     }
544 
545     return env->geilen;
546 }
547 
548 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
549 {
550     if (!riscv_has_ext(env, RVH)) {
551         return;
552     }
553 
554     if (geilen > (TARGET_LONG_BITS - 1)) {
555         return;
556     }
557 
558     env->geilen = geilen;
559 }
560 
561 bool riscv_cpu_virt_enabled(CPURISCVState *env)
562 {
563     if (!riscv_has_ext(env, RVH)) {
564         return false;
565     }
566 
567     return get_field(env->virt, VIRT_ONOFF);
568 }
569 
570 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
571 {
572     if (!riscv_has_ext(env, RVH)) {
573         return;
574     }
575 
576     /* Flush the TLB on all virt mode changes. */
577     if (get_field(env->virt, VIRT_ONOFF) != enable) {
578         tlb_flush(env_cpu(env));
579     }
580 
581     env->virt = set_field(env->virt, VIRT_ONOFF, enable);
582 
583     if (enable) {
584         /*
585          * The guest external interrupts from an interrupt controller are
586          * delivered only when the Guest/VM is running (i.e. V=1). This means
587          * any guest external interrupt which is triggered while the Guest/VM
588          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
589          * with sluggish response to serial console input and other I/O events.
590          *
591          * To solve this, we check and inject interrupt after setting V=1.
592          */
593         riscv_cpu_update_mip(env_archcpu(env), 0, 0);
594     }
595 }
596 
597 bool riscv_cpu_two_stage_lookup(int mmu_idx)
598 {
599     return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
600 }
601 
602 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
603 {
604     CPURISCVState *env = &cpu->env;
605     if (env->miclaim & interrupts) {
606         return -1;
607     } else {
608         env->miclaim |= interrupts;
609         return 0;
610     }
611 }
612 
613 uint64_t riscv_cpu_update_mip(RISCVCPU *cpu, uint64_t mask, uint64_t value)
614 {
615     CPURISCVState *env = &cpu->env;
616     CPUState *cs = CPU(cpu);
617     uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
618 
619     if (riscv_cpu_virt_enabled(env)) {
620         gein = get_field(env->hstatus, HSTATUS_VGEIN);
621         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
622     }
623 
624     vstip = env->vstime_irq ? MIP_VSTIP : 0;
625 
626     QEMU_IOTHREAD_LOCK_GUARD();
627 
628     env->mip = (env->mip & ~mask) | (value & mask);
629 
630     if (env->mip | vsgein | vstip) {
631         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
632     } else {
633         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
634     }
635 
636     return old;
637 }
638 
639 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
640                              void *arg)
641 {
642     env->rdtime_fn = fn;
643     env->rdtime_fn_arg = arg;
644 }
645 
646 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
647                                    int (*rmw_fn)(void *arg,
648                                                  target_ulong reg,
649                                                  target_ulong *val,
650                                                  target_ulong new_val,
651                                                  target_ulong write_mask),
652                                    void *rmw_fn_arg)
653 {
654     if (priv <= PRV_M) {
655         env->aia_ireg_rmw_fn[priv] = rmw_fn;
656         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
657     }
658 }
659 
660 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
661 {
662     if (newpriv > PRV_M) {
663         g_assert_not_reached();
664     }
665     if (newpriv == PRV_H) {
666         newpriv = PRV_U;
667     }
668     if (icount_enabled() && newpriv != env->priv) {
669         riscv_itrigger_update_priv(env);
670     }
671     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
672     env->priv = newpriv;
673     env->xl = cpu_recompute_xl(env);
674     riscv_cpu_update_mask(env);
675 
676     /*
677      * Clear the load reservation - otherwise a reservation placed in one
678      * context/process can be used by another, resulting in an SC succeeding
679      * incorrectly. Version 2.2 of the ISA specification explicitly requires
680      * this behaviour, while later revisions say that the kernel "should" use
681      * an SC instruction to force the yielding of a load reservation on a
682      * preemptive context switch. As a result, do both.
683      */
684     env->load_res = -1;
685 }
686 
687 /*
688  * get_physical_address_pmp - check PMP permission for this physical address
689  *
690  * Match the PMP region and check permission for this physical address and it's
691  * TLB page. Returns 0 if the permission checking was successful
692  *
693  * @env: CPURISCVState
694  * @prot: The returned protection attributes
695  * @tlb_size: TLB page size containing addr. It could be modified after PMP
696  *            permission checking. NULL if not set TLB page for addr.
697  * @addr: The physical address to be checked permission
698  * @access_type: The type of MMU access
699  * @mode: Indicates current privilege level.
700  */
701 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
702                                     target_ulong *tlb_size, hwaddr addr,
703                                     int size, MMUAccessType access_type,
704                                     int mode)
705 {
706     pmp_priv_t pmp_priv;
707     int pmp_index = -1;
708 
709     if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
710         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
711         return TRANSLATE_SUCCESS;
712     }
713 
714     pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
715                                    &pmp_priv, mode);
716     if (pmp_index < 0) {
717         *prot = 0;
718         return TRANSLATE_PMP_FAIL;
719     }
720 
721     *prot = pmp_priv_to_page_prot(pmp_priv);
722     if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
723         target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
724         target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
725 
726         *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
727     }
728 
729     return TRANSLATE_SUCCESS;
730 }
731 
732 /* get_physical_address - get the physical address for this virtual address
733  *
734  * Do a page table walk to obtain the physical address corresponding to a
735  * virtual address. Returns 0 if the translation was successful
736  *
737  * Adapted from Spike's mmu_t::translate and mmu_t::walk
738  *
739  * @env: CPURISCVState
740  * @physical: This will be set to the calculated physical address
741  * @prot: The returned protection attributes
742  * @addr: The virtual address to be translated
743  * @fault_pte_addr: If not NULL, this will be set to fault pte address
744  *                  when a error occurs on pte address translation.
745  *                  This will already be shifted to match htval.
746  * @access_type: The type of MMU access
747  * @mmu_idx: Indicates current privilege level
748  * @first_stage: Are we in first stage translation?
749  *               Second stage is used for hypervisor guest translation
750  * @two_stage: Are we going to perform two stage translation
751  * @is_debug: Is this access from a debugger or the monitor?
752  */
753 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
754                                 int *prot, target_ulong addr,
755                                 target_ulong *fault_pte_addr,
756                                 int access_type, int mmu_idx,
757                                 bool first_stage, bool two_stage,
758                                 bool is_debug)
759 {
760     /* NOTE: the env->pc value visible here will not be
761      * correct, but the value visible to the exception handler
762      * (riscv_cpu_do_interrupt) is correct */
763     MemTxResult res;
764     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
765     int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
766     bool use_background = false;
767     hwaddr ppn;
768     RISCVCPU *cpu = env_archcpu(env);
769     int napot_bits = 0;
770     target_ulong napot_mask;
771 
772     /*
773      * Check if we should use the background registers for the two
774      * stage translation. We don't need to check if we actually need
775      * two stage translation as that happened before this function
776      * was called. Background registers will be used if the guest has
777      * forced a two stage translation to be on (in HS or M mode).
778      */
779     if (!riscv_cpu_virt_enabled(env) && two_stage) {
780         use_background = true;
781     }
782 
783     /* MPRV does not affect the virtual-machine load/store
784        instructions, HLV, HLVX, and HSV. */
785     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
786         mode = get_field(env->hstatus, HSTATUS_SPVP);
787     } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
788         if (get_field(env->mstatus, MSTATUS_MPRV)) {
789             mode = get_field(env->mstatus, MSTATUS_MPP);
790         }
791     }
792 
793     if (first_stage == false) {
794         /* We are in stage 2 translation, this is similar to stage 1. */
795         /* Stage 2 is always taken as U-mode */
796         mode = PRV_U;
797     }
798 
799     if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
800         *physical = addr;
801         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
802         return TRANSLATE_SUCCESS;
803     }
804 
805     *prot = 0;
806 
807     hwaddr base;
808     int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
809 
810     if (first_stage == true) {
811         mxr = get_field(env->mstatus, MSTATUS_MXR);
812     } else {
813         mxr = get_field(env->vsstatus, MSTATUS_MXR);
814     }
815 
816     if (first_stage == true) {
817         if (use_background) {
818             if (riscv_cpu_mxl(env) == MXL_RV32) {
819                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
820                 vm = get_field(env->vsatp, SATP32_MODE);
821             } else {
822                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
823                 vm = get_field(env->vsatp, SATP64_MODE);
824             }
825         } else {
826             if (riscv_cpu_mxl(env) == MXL_RV32) {
827                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
828                 vm = get_field(env->satp, SATP32_MODE);
829             } else {
830                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
831                 vm = get_field(env->satp, SATP64_MODE);
832             }
833         }
834         widened = 0;
835     } else {
836         if (riscv_cpu_mxl(env) == MXL_RV32) {
837             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
838             vm = get_field(env->hgatp, SATP32_MODE);
839         } else {
840             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
841             vm = get_field(env->hgatp, SATP64_MODE);
842         }
843         widened = 2;
844     }
845     /* status.SUM will be ignored if execute on background */
846     sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
847     switch (vm) {
848     case VM_1_10_SV32:
849       levels = 2; ptidxbits = 10; ptesize = 4; break;
850     case VM_1_10_SV39:
851       levels = 3; ptidxbits = 9; ptesize = 8; break;
852     case VM_1_10_SV48:
853       levels = 4; ptidxbits = 9; ptesize = 8; break;
854     case VM_1_10_SV57:
855       levels = 5; ptidxbits = 9; ptesize = 8; break;
856     case VM_1_10_MBARE:
857         *physical = addr;
858         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
859         return TRANSLATE_SUCCESS;
860     default:
861       g_assert_not_reached();
862     }
863 
864     CPUState *cs = env_cpu(env);
865     int va_bits = PGSHIFT + levels * ptidxbits + widened;
866     target_ulong mask, masked_msbs;
867 
868     if (TARGET_LONG_BITS > (va_bits - 1)) {
869         mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
870     } else {
871         mask = 0;
872     }
873     masked_msbs = (addr >> (va_bits - 1)) & mask;
874 
875     if (masked_msbs != 0 && masked_msbs != mask) {
876         return TRANSLATE_FAIL;
877     }
878 
879     int ptshift = (levels - 1) * ptidxbits;
880     int i;
881 
882 #if !TCG_OVERSIZED_GUEST
883 restart:
884 #endif
885     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
886         target_ulong idx;
887         if (i == 0) {
888             idx = (addr >> (PGSHIFT + ptshift)) &
889                            ((1 << (ptidxbits + widened)) - 1);
890         } else {
891             idx = (addr >> (PGSHIFT + ptshift)) &
892                            ((1 << ptidxbits) - 1);
893         }
894 
895         /* check that physical address of PTE is legal */
896         hwaddr pte_addr;
897 
898         if (two_stage && first_stage) {
899             int vbase_prot;
900             hwaddr vbase;
901 
902             /* Do the second stage translation on the base PTE address. */
903             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
904                                                  base, NULL, MMU_DATA_LOAD,
905                                                  mmu_idx, false, true,
906                                                  is_debug);
907 
908             if (vbase_ret != TRANSLATE_SUCCESS) {
909                 if (fault_pte_addr) {
910                     *fault_pte_addr = (base + idx * ptesize) >> 2;
911                 }
912                 return TRANSLATE_G_STAGE_FAIL;
913             }
914 
915             pte_addr = vbase + idx * ptesize;
916         } else {
917             pte_addr = base + idx * ptesize;
918         }
919 
920         int pmp_prot;
921         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
922                                                sizeof(target_ulong),
923                                                MMU_DATA_LOAD, PRV_S);
924         if (pmp_ret != TRANSLATE_SUCCESS) {
925             return TRANSLATE_PMP_FAIL;
926         }
927 
928         target_ulong pte;
929         if (riscv_cpu_mxl(env) == MXL_RV32) {
930             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
931         } else {
932             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
933         }
934 
935         if (res != MEMTX_OK) {
936             return TRANSLATE_FAIL;
937         }
938 
939         if (riscv_cpu_sxl(env) == MXL_RV32) {
940             ppn = pte >> PTE_PPN_SHIFT;
941         } else if (cpu->cfg.ext_svpbmt || cpu->cfg.ext_svnapot) {
942             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
943         } else {
944             ppn = pte >> PTE_PPN_SHIFT;
945             if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
946                 return TRANSLATE_FAIL;
947             }
948         }
949 
950         if (!(pte & PTE_V)) {
951             /* Invalid PTE */
952             return TRANSLATE_FAIL;
953         } else if (!cpu->cfg.ext_svpbmt && (pte & PTE_PBMT)) {
954             return TRANSLATE_FAIL;
955         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
956             /* Inner PTE, continue walking */
957             if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
958                 return TRANSLATE_FAIL;
959             }
960             base = ppn << PGSHIFT;
961         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
962             /* Reserved leaf PTE flags: PTE_W */
963             return TRANSLATE_FAIL;
964         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
965             /* Reserved leaf PTE flags: PTE_W + PTE_X */
966             return TRANSLATE_FAIL;
967         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
968                    (!sum || access_type == MMU_INST_FETCH))) {
969             /* User PTE flags when not U mode and mstatus.SUM is not set,
970                or the access type is an instruction fetch */
971             return TRANSLATE_FAIL;
972         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
973             /* Supervisor PTE flags when not S mode */
974             return TRANSLATE_FAIL;
975         } else if (ppn & ((1ULL << ptshift) - 1)) {
976             /* Misaligned PPN */
977             return TRANSLATE_FAIL;
978         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
979                    ((pte & PTE_X) && mxr))) {
980             /* Read access check failed */
981             return TRANSLATE_FAIL;
982         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
983             /* Write access check failed */
984             return TRANSLATE_FAIL;
985         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
986             /* Fetch access check failed */
987             return TRANSLATE_FAIL;
988         } else {
989             /* if necessary, set accessed and dirty bits. */
990             target_ulong updated_pte = pte | PTE_A |
991                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
992 
993             /* Page table updates need to be atomic with MTTCG enabled */
994             if (updated_pte != pte) {
995                 /*
996                  * - if accessed or dirty bits need updating, and the PTE is
997                  *   in RAM, then we do so atomically with a compare and swap.
998                  * - if the PTE is in IO space or ROM, then it can't be updated
999                  *   and we return TRANSLATE_FAIL.
1000                  * - if the PTE changed by the time we went to update it, then
1001                  *   it is no longer valid and we must re-walk the page table.
1002                  */
1003                 MemoryRegion *mr;
1004                 hwaddr l = sizeof(target_ulong), addr1;
1005                 mr = address_space_translate(cs->as, pte_addr,
1006                     &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
1007                 if (memory_region_is_ram(mr)) {
1008                     target_ulong *pte_pa =
1009                         qemu_map_ram_ptr(mr->ram_block, addr1);
1010 #if TCG_OVERSIZED_GUEST
1011                     /* MTTCG is not enabled on oversized TCG guests so
1012                      * page table updates do not need to be atomic */
1013                     *pte_pa = pte = updated_pte;
1014 #else
1015                     target_ulong old_pte =
1016                         qatomic_cmpxchg(pte_pa, pte, updated_pte);
1017                     if (old_pte != pte) {
1018                         goto restart;
1019                     } else {
1020                         pte = updated_pte;
1021                     }
1022 #endif
1023                 } else {
1024                     /* misconfigured PTE in ROM (AD bits are not preset) or
1025                      * PTE is in IO space and can't be updated atomically */
1026                     return TRANSLATE_FAIL;
1027                 }
1028             }
1029 
1030             /* for superpage mappings, make a fake leaf PTE for the TLB's
1031                benefit. */
1032             target_ulong vpn = addr >> PGSHIFT;
1033 
1034             if (cpu->cfg.ext_svnapot && (pte & PTE_N)) {
1035                 napot_bits = ctzl(ppn) + 1;
1036                 if ((i != (levels - 1)) || (napot_bits != 4)) {
1037                     return TRANSLATE_FAIL;
1038                 }
1039             }
1040 
1041             napot_mask = (1 << napot_bits) - 1;
1042             *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1043                           (vpn & (((target_ulong)1 << ptshift) - 1))
1044                          ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1045 
1046             /* set permissions on the TLB entry */
1047             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
1048                 *prot |= PAGE_READ;
1049             }
1050             if ((pte & PTE_X)) {
1051                 *prot |= PAGE_EXEC;
1052             }
1053             /* add write permission on stores or if the page is already dirty,
1054                so that we TLB miss on later writes to update the dirty bit */
1055             if ((pte & PTE_W) &&
1056                     (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1057                 *prot |= PAGE_WRITE;
1058             }
1059             return TRANSLATE_SUCCESS;
1060         }
1061     }
1062     return TRANSLATE_FAIL;
1063 }
1064 
1065 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1066                                 MMUAccessType access_type, bool pmp_violation,
1067                                 bool first_stage, bool two_stage,
1068                                 bool two_stage_indirect)
1069 {
1070     CPUState *cs = env_cpu(env);
1071     int page_fault_exceptions, vm;
1072     uint64_t stap_mode;
1073 
1074     if (riscv_cpu_mxl(env) == MXL_RV32) {
1075         stap_mode = SATP32_MODE;
1076     } else {
1077         stap_mode = SATP64_MODE;
1078     }
1079 
1080     if (first_stage) {
1081         vm = get_field(env->satp, stap_mode);
1082     } else {
1083         vm = get_field(env->hgatp, stap_mode);
1084     }
1085 
1086     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1087 
1088     switch (access_type) {
1089     case MMU_INST_FETCH:
1090         if (riscv_cpu_virt_enabled(env) && !first_stage) {
1091             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1092         } else {
1093             cs->exception_index = page_fault_exceptions ?
1094                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1095         }
1096         break;
1097     case MMU_DATA_LOAD:
1098         if (two_stage && !first_stage) {
1099             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1100         } else {
1101             cs->exception_index = page_fault_exceptions ?
1102                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1103         }
1104         break;
1105     case MMU_DATA_STORE:
1106         if (two_stage && !first_stage) {
1107             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1108         } else {
1109             cs->exception_index = page_fault_exceptions ?
1110                 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1111         }
1112         break;
1113     default:
1114         g_assert_not_reached();
1115     }
1116     env->badaddr = address;
1117     env->two_stage_lookup = two_stage;
1118     env->two_stage_indirect_lookup = two_stage_indirect;
1119 }
1120 
1121 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1122 {
1123     RISCVCPU *cpu = RISCV_CPU(cs);
1124     CPURISCVState *env = &cpu->env;
1125     hwaddr phys_addr;
1126     int prot;
1127     int mmu_idx = cpu_mmu_index(&cpu->env, false);
1128 
1129     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1130                              true, riscv_cpu_virt_enabled(env), true)) {
1131         return -1;
1132     }
1133 
1134     if (riscv_cpu_virt_enabled(env)) {
1135         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1136                                  0, mmu_idx, false, true, true)) {
1137             return -1;
1138         }
1139     }
1140 
1141     return phys_addr & TARGET_PAGE_MASK;
1142 }
1143 
1144 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1145                                      vaddr addr, unsigned size,
1146                                      MMUAccessType access_type,
1147                                      int mmu_idx, MemTxAttrs attrs,
1148                                      MemTxResult response, uintptr_t retaddr)
1149 {
1150     RISCVCPU *cpu = RISCV_CPU(cs);
1151     CPURISCVState *env = &cpu->env;
1152 
1153     if (access_type == MMU_DATA_STORE) {
1154         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1155     } else if (access_type == MMU_DATA_LOAD) {
1156         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1157     } else {
1158         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1159     }
1160 
1161     env->badaddr = addr;
1162     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1163                             riscv_cpu_two_stage_lookup(mmu_idx);
1164     env->two_stage_indirect_lookup = false;
1165     cpu_loop_exit_restore(cs, retaddr);
1166 }
1167 
1168 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1169                                    MMUAccessType access_type, int mmu_idx,
1170                                    uintptr_t retaddr)
1171 {
1172     RISCVCPU *cpu = RISCV_CPU(cs);
1173     CPURISCVState *env = &cpu->env;
1174     switch (access_type) {
1175     case MMU_INST_FETCH:
1176         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1177         break;
1178     case MMU_DATA_LOAD:
1179         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1180         break;
1181     case MMU_DATA_STORE:
1182         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1183         break;
1184     default:
1185         g_assert_not_reached();
1186     }
1187     env->badaddr = addr;
1188     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1189                             riscv_cpu_two_stage_lookup(mmu_idx);
1190     env->two_stage_indirect_lookup = false;
1191     cpu_loop_exit_restore(cs, retaddr);
1192 }
1193 
1194 
1195 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1196 {
1197     enum riscv_pmu_event_idx pmu_event_type;
1198 
1199     switch (access_type) {
1200     case MMU_INST_FETCH:
1201         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1202         break;
1203     case MMU_DATA_LOAD:
1204         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1205         break;
1206     case MMU_DATA_STORE:
1207         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1208         break;
1209     default:
1210         return;
1211     }
1212 
1213     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1214 }
1215 
1216 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1217                         MMUAccessType access_type, int mmu_idx,
1218                         bool probe, uintptr_t retaddr)
1219 {
1220     RISCVCPU *cpu = RISCV_CPU(cs);
1221     CPURISCVState *env = &cpu->env;
1222     vaddr im_address;
1223     hwaddr pa = 0;
1224     int prot, prot2, prot_pmp;
1225     bool pmp_violation = false;
1226     bool first_stage_error = true;
1227     bool two_stage_lookup = false;
1228     bool two_stage_indirect_error = false;
1229     int ret = TRANSLATE_FAIL;
1230     int mode = mmu_idx;
1231     /* default TLB page size */
1232     target_ulong tlb_size = TARGET_PAGE_SIZE;
1233 
1234     env->guest_phys_fault_addr = 0;
1235 
1236     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1237                   __func__, address, access_type, mmu_idx);
1238 
1239     /* MPRV does not affect the virtual-machine load/store
1240        instructions, HLV, HLVX, and HSV. */
1241     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1242         mode = get_field(env->hstatus, HSTATUS_SPVP);
1243     } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1244                get_field(env->mstatus, MSTATUS_MPRV)) {
1245         mode = get_field(env->mstatus, MSTATUS_MPP);
1246         if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1247             two_stage_lookup = true;
1248         }
1249     }
1250 
1251     pmu_tlb_fill_incr_ctr(cpu, access_type);
1252     if (riscv_cpu_virt_enabled(env) ||
1253         ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1254          access_type != MMU_INST_FETCH)) {
1255         /* Two stage lookup */
1256         ret = get_physical_address(env, &pa, &prot, address,
1257                                    &env->guest_phys_fault_addr, access_type,
1258                                    mmu_idx, true, true, false);
1259 
1260         /*
1261          * A G-stage exception may be triggered during two state lookup.
1262          * And the env->guest_phys_fault_addr has already been set in
1263          * get_physical_address().
1264          */
1265         if (ret == TRANSLATE_G_STAGE_FAIL) {
1266             first_stage_error = false;
1267             two_stage_indirect_error = true;
1268             access_type = MMU_DATA_LOAD;
1269         }
1270 
1271         qemu_log_mask(CPU_LOG_MMU,
1272                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1273                       HWADDR_FMT_plx " prot %d\n",
1274                       __func__, address, ret, pa, prot);
1275 
1276         if (ret == TRANSLATE_SUCCESS) {
1277             /* Second stage lookup */
1278             im_address = pa;
1279 
1280             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1281                                        access_type, mmu_idx, false, true,
1282                                        false);
1283 
1284             qemu_log_mask(CPU_LOG_MMU,
1285                     "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
1286                     HWADDR_FMT_plx " prot %d\n",
1287                     __func__, im_address, ret, pa, prot2);
1288 
1289             prot &= prot2;
1290 
1291             if (ret == TRANSLATE_SUCCESS) {
1292                 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1293                                                size, access_type, mode);
1294 
1295                 qemu_log_mask(CPU_LOG_MMU,
1296                               "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1297                               " %d tlb_size " TARGET_FMT_lu "\n",
1298                               __func__, pa, ret, prot_pmp, tlb_size);
1299 
1300                 prot &= prot_pmp;
1301             }
1302 
1303             if (ret != TRANSLATE_SUCCESS) {
1304                 /*
1305                  * Guest physical address translation failed, this is a HS
1306                  * level exception
1307                  */
1308                 first_stage_error = false;
1309                 env->guest_phys_fault_addr = (im_address |
1310                                               (address &
1311                                                (TARGET_PAGE_SIZE - 1))) >> 2;
1312             }
1313         }
1314     } else {
1315         /* Single stage lookup */
1316         ret = get_physical_address(env, &pa, &prot, address, NULL,
1317                                    access_type, mmu_idx, true, false, false);
1318 
1319         qemu_log_mask(CPU_LOG_MMU,
1320                       "%s address=%" VADDR_PRIx " ret %d physical "
1321                       HWADDR_FMT_plx " prot %d\n",
1322                       __func__, address, ret, pa, prot);
1323 
1324         if (ret == TRANSLATE_SUCCESS) {
1325             ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1326                                            size, access_type, mode);
1327 
1328             qemu_log_mask(CPU_LOG_MMU,
1329                           "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1330                           " %d tlb_size " TARGET_FMT_lu "\n",
1331                           __func__, pa, ret, prot_pmp, tlb_size);
1332 
1333             prot &= prot_pmp;
1334         }
1335     }
1336 
1337     if (ret == TRANSLATE_PMP_FAIL) {
1338         pmp_violation = true;
1339     }
1340 
1341     if (ret == TRANSLATE_SUCCESS) {
1342         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1343                      prot, mmu_idx, tlb_size);
1344         return true;
1345     } else if (probe) {
1346         return false;
1347     } else {
1348         raise_mmu_exception(env, address, access_type, pmp_violation,
1349                             first_stage_error,
1350                             riscv_cpu_virt_enabled(env) ||
1351                                 riscv_cpu_two_stage_lookup(mmu_idx),
1352                             two_stage_indirect_error);
1353         cpu_loop_exit_restore(cs, retaddr);
1354     }
1355 
1356     return true;
1357 }
1358 
1359 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1360                                            target_ulong insn,
1361                                            target_ulong taddr)
1362 {
1363     target_ulong xinsn = 0;
1364     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1365 
1366     /*
1367      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1368      * be uncompressed. The Quadrant 1 of RVC instruction space need
1369      * not be transformed because these instructions won't generate
1370      * any load/store trap.
1371      */
1372 
1373     if ((insn & 0x3) != 0x3) {
1374         /* Transform 16bit instruction into 32bit instruction */
1375         switch (GET_C_OP(insn)) {
1376         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1377             switch (GET_C_FUNC(insn)) {
1378             case OPC_RISC_C_FUNC_FLD_LQ:
1379                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1380                     xinsn = OPC_RISC_FLD;
1381                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1382                     access_rs1 = GET_C_RS1S(insn);
1383                     access_imm = GET_C_LD_IMM(insn);
1384                     access_size = 8;
1385                 }
1386                 break;
1387             case OPC_RISC_C_FUNC_LW: /* C.LW */
1388                 xinsn = OPC_RISC_LW;
1389                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1390                 access_rs1 = GET_C_RS1S(insn);
1391                 access_imm = GET_C_LW_IMM(insn);
1392                 access_size = 4;
1393                 break;
1394             case OPC_RISC_C_FUNC_FLW_LD:
1395                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1396                     xinsn = OPC_RISC_FLW;
1397                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1398                     access_rs1 = GET_C_RS1S(insn);
1399                     access_imm = GET_C_LW_IMM(insn);
1400                     access_size = 4;
1401                 } else { /* C.LD (RV64/RV128) */
1402                     xinsn = OPC_RISC_LD;
1403                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1404                     access_rs1 = GET_C_RS1S(insn);
1405                     access_imm = GET_C_LD_IMM(insn);
1406                     access_size = 8;
1407                 }
1408                 break;
1409             case OPC_RISC_C_FUNC_FSD_SQ:
1410                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1411                     xinsn = OPC_RISC_FSD;
1412                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1413                     access_rs1 = GET_C_RS1S(insn);
1414                     access_imm = GET_C_SD_IMM(insn);
1415                     access_size = 8;
1416                 }
1417                 break;
1418             case OPC_RISC_C_FUNC_SW: /* C.SW */
1419                 xinsn = OPC_RISC_SW;
1420                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1421                 access_rs1 = GET_C_RS1S(insn);
1422                 access_imm = GET_C_SW_IMM(insn);
1423                 access_size = 4;
1424                 break;
1425             case OPC_RISC_C_FUNC_FSW_SD:
1426                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1427                     xinsn = OPC_RISC_FSW;
1428                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1429                     access_rs1 = GET_C_RS1S(insn);
1430                     access_imm = GET_C_SW_IMM(insn);
1431                     access_size = 4;
1432                 } else { /* C.SD (RV64/RV128) */
1433                     xinsn = OPC_RISC_SD;
1434                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1435                     access_rs1 = GET_C_RS1S(insn);
1436                     access_imm = GET_C_SD_IMM(insn);
1437                     access_size = 8;
1438                 }
1439                 break;
1440             default:
1441                 break;
1442             }
1443             break;
1444         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1445             switch (GET_C_FUNC(insn)) {
1446             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1447                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1448                     xinsn = OPC_RISC_FLD;
1449                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1450                     access_rs1 = 2;
1451                     access_imm = GET_C_LDSP_IMM(insn);
1452                     access_size = 8;
1453                 }
1454                 break;
1455             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1456                 xinsn = OPC_RISC_LW;
1457                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1458                 access_rs1 = 2;
1459                 access_imm = GET_C_LWSP_IMM(insn);
1460                 access_size = 4;
1461                 break;
1462             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1463                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1464                     xinsn = OPC_RISC_FLW;
1465                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1466                     access_rs1 = 2;
1467                     access_imm = GET_C_LWSP_IMM(insn);
1468                     access_size = 4;
1469                 } else { /* C.LDSP (RV64/RV128) */
1470                     xinsn = OPC_RISC_LD;
1471                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1472                     access_rs1 = 2;
1473                     access_imm = GET_C_LDSP_IMM(insn);
1474                     access_size = 8;
1475                 }
1476                 break;
1477             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1478                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1479                     xinsn = OPC_RISC_FSD;
1480                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1481                     access_rs1 = 2;
1482                     access_imm = GET_C_SDSP_IMM(insn);
1483                     access_size = 8;
1484                 }
1485                 break;
1486             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1487                 xinsn = OPC_RISC_SW;
1488                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1489                 access_rs1 = 2;
1490                 access_imm = GET_C_SWSP_IMM(insn);
1491                 access_size = 4;
1492                 break;
1493             case 7:
1494                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1495                     xinsn = OPC_RISC_FSW;
1496                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1497                     access_rs1 = 2;
1498                     access_imm = GET_C_SWSP_IMM(insn);
1499                     access_size = 4;
1500                 } else { /* C.SDSP (RV64/RV128) */
1501                     xinsn = OPC_RISC_SD;
1502                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1503                     access_rs1 = 2;
1504                     access_imm = GET_C_SDSP_IMM(insn);
1505                     access_size = 8;
1506                 }
1507                 break;
1508             default:
1509                 break;
1510             }
1511             break;
1512         default:
1513             break;
1514         }
1515 
1516         /*
1517          * Clear Bit1 of transformed instruction to indicate that
1518          * original insruction was a 16bit instruction
1519          */
1520         xinsn &= ~((target_ulong)0x2);
1521     } else {
1522         /* Transform 32bit (or wider) instructions */
1523         switch (MASK_OP_MAJOR(insn)) {
1524         case OPC_RISC_ATOMIC:
1525             xinsn = insn;
1526             access_rs1 = GET_RS1(insn);
1527             access_size = 1 << GET_FUNCT3(insn);
1528             break;
1529         case OPC_RISC_LOAD:
1530         case OPC_RISC_FP_LOAD:
1531             xinsn = SET_I_IMM(insn, 0);
1532             access_rs1 = GET_RS1(insn);
1533             access_imm = GET_IMM(insn);
1534             access_size = 1 << GET_FUNCT3(insn);
1535             break;
1536         case OPC_RISC_STORE:
1537         case OPC_RISC_FP_STORE:
1538             xinsn = SET_S_IMM(insn, 0);
1539             access_rs1 = GET_RS1(insn);
1540             access_imm = GET_STORE_IMM(insn);
1541             access_size = 1 << GET_FUNCT3(insn);
1542             break;
1543         case OPC_RISC_SYSTEM:
1544             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1545                 xinsn = insn;
1546                 access_rs1 = GET_RS1(insn);
1547                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1548                 access_size = 1 << access_size;
1549             }
1550             break;
1551         default:
1552             break;
1553         }
1554     }
1555 
1556     if (access_size) {
1557         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1558                                (access_size - 1));
1559     }
1560 
1561     return xinsn;
1562 }
1563 #endif /* !CONFIG_USER_ONLY */
1564 
1565 /*
1566  * Handle Traps
1567  *
1568  * Adapted from Spike's processor_t::take_trap.
1569  *
1570  */
1571 void riscv_cpu_do_interrupt(CPUState *cs)
1572 {
1573 #if !defined(CONFIG_USER_ONLY)
1574 
1575     RISCVCPU *cpu = RISCV_CPU(cs);
1576     CPURISCVState *env = &cpu->env;
1577     bool write_gva = false;
1578     uint64_t s;
1579 
1580     /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1581      * so we mask off the MSB and separate into trap type and cause.
1582      */
1583     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1584     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1585     uint64_t deleg = async ? env->mideleg : env->medeleg;
1586     target_ulong tval = 0;
1587     target_ulong tinst = 0;
1588     target_ulong htval = 0;
1589     target_ulong mtval2 = 0;
1590 
1591     if  (cause == RISCV_EXCP_SEMIHOST) {
1592         do_common_semihosting(cs);
1593         env->pc += 4;
1594         return;
1595     }
1596 
1597     if (!async) {
1598         /* set tval to badaddr for traps with address information */
1599         switch (cause) {
1600         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1601         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1602         case RISCV_EXCP_LOAD_ADDR_MIS:
1603         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1604         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1605         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1606         case RISCV_EXCP_LOAD_PAGE_FAULT:
1607         case RISCV_EXCP_STORE_PAGE_FAULT:
1608             write_gva = env->two_stage_lookup;
1609             tval = env->badaddr;
1610             if (env->two_stage_indirect_lookup) {
1611                 /*
1612                  * special pseudoinstruction for G-stage fault taken while
1613                  * doing VS-stage page table walk.
1614                  */
1615                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1616             } else {
1617                 /*
1618                  * The "Addr. Offset" field in transformed instruction is
1619                  * non-zero only for misaligned access.
1620                  */
1621                 tinst = riscv_transformed_insn(env, env->bins, tval);
1622             }
1623             break;
1624         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1625         case RISCV_EXCP_INST_ADDR_MIS:
1626         case RISCV_EXCP_INST_ACCESS_FAULT:
1627         case RISCV_EXCP_INST_PAGE_FAULT:
1628             write_gva = env->two_stage_lookup;
1629             tval = env->badaddr;
1630             if (env->two_stage_indirect_lookup) {
1631                 /*
1632                  * special pseudoinstruction for G-stage fault taken while
1633                  * doing VS-stage page table walk.
1634                  */
1635                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1636             }
1637             break;
1638         case RISCV_EXCP_ILLEGAL_INST:
1639         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1640             tval = env->bins;
1641             break;
1642         case RISCV_EXCP_BREAKPOINT:
1643             if (cs->watchpoint_hit) {
1644                 tval = cs->watchpoint_hit->hitaddr;
1645                 cs->watchpoint_hit = NULL;
1646             }
1647             break;
1648         default:
1649             break;
1650         }
1651         /* ecall is dispatched as one cause so translate based on mode */
1652         if (cause == RISCV_EXCP_U_ECALL) {
1653             assert(env->priv <= 3);
1654 
1655             if (env->priv == PRV_M) {
1656                 cause = RISCV_EXCP_M_ECALL;
1657             } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
1658                 cause = RISCV_EXCP_VS_ECALL;
1659             } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
1660                 cause = RISCV_EXCP_S_ECALL;
1661             } else if (env->priv == PRV_U) {
1662                 cause = RISCV_EXCP_U_ECALL;
1663             }
1664         }
1665     }
1666 
1667     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1668                      riscv_cpu_get_trap_name(cause, async));
1669 
1670     qemu_log_mask(CPU_LOG_INT,
1671                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1672                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1673                   __func__, env->mhartid, async, cause, env->pc, tval,
1674                   riscv_cpu_get_trap_name(cause, async));
1675 
1676     if (env->priv <= PRV_S &&
1677             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1678         /* handle the trap in S-mode */
1679         if (riscv_has_ext(env, RVH)) {
1680             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1681 
1682             if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
1683                 /* Trap to VS mode */
1684                 /*
1685                  * See if we need to adjust cause. Yes if its VS mode interrupt
1686                  * no if hypervisor has delegated one of hs mode's interrupt
1687                  */
1688                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1689                     cause == IRQ_VS_EXT) {
1690                     cause = cause - 1;
1691                 }
1692                 write_gva = false;
1693             } else if (riscv_cpu_virt_enabled(env)) {
1694                 /* Trap into HS mode, from virt */
1695                 riscv_cpu_swap_hypervisor_regs(env);
1696                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1697                                          env->priv);
1698                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1699                                          riscv_cpu_virt_enabled(env));
1700 
1701 
1702                 htval = env->guest_phys_fault_addr;
1703 
1704                 riscv_cpu_set_virt_enabled(env, 0);
1705             } else {
1706                 /* Trap into HS mode */
1707                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1708                 htval = env->guest_phys_fault_addr;
1709             }
1710             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1711         }
1712 
1713         s = env->mstatus;
1714         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1715         s = set_field(s, MSTATUS_SPP, env->priv);
1716         s = set_field(s, MSTATUS_SIE, 0);
1717         env->mstatus = s;
1718         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1719         env->sepc = env->pc;
1720         env->stval = tval;
1721         env->htval = htval;
1722         env->htinst = tinst;
1723         env->pc = (env->stvec >> 2 << 2) +
1724             ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1725         riscv_cpu_set_mode(env, PRV_S);
1726     } else {
1727         /* handle the trap in M-mode */
1728         if (riscv_has_ext(env, RVH)) {
1729             if (riscv_cpu_virt_enabled(env)) {
1730                 riscv_cpu_swap_hypervisor_regs(env);
1731             }
1732             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1733                                      riscv_cpu_virt_enabled(env));
1734             if (riscv_cpu_virt_enabled(env) && tval) {
1735                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1736             }
1737 
1738             mtval2 = env->guest_phys_fault_addr;
1739 
1740             /* Trapping to M mode, virt is disabled */
1741             riscv_cpu_set_virt_enabled(env, 0);
1742         }
1743 
1744         s = env->mstatus;
1745         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1746         s = set_field(s, MSTATUS_MPP, env->priv);
1747         s = set_field(s, MSTATUS_MIE, 0);
1748         env->mstatus = s;
1749         env->mcause = cause | ~(((target_ulong)-1) >> async);
1750         env->mepc = env->pc;
1751         env->mtval = tval;
1752         env->mtval2 = mtval2;
1753         env->mtinst = tinst;
1754         env->pc = (env->mtvec >> 2 << 2) +
1755             ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1756         riscv_cpu_set_mode(env, PRV_M);
1757     }
1758 
1759     /* NOTE: it is not necessary to yield load reservations here. It is only
1760      * necessary for an SC from "another hart" to cause a load reservation
1761      * to be yielded. Refer to the memory consistency model section of the
1762      * RISC-V ISA Specification.
1763      */
1764 
1765     env->two_stage_lookup = false;
1766     env->two_stage_indirect_lookup = false;
1767 #endif
1768     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1769 }
1770