xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision 8e2aa21b)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "instmap.h"
26 #include "tcg/tcg-op.h"
27 #include "trace.h"
28 #include "semihosting/common-semi.h"
29 
30 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
31 {
32 #ifdef CONFIG_USER_ONLY
33     return 0;
34 #else
35     return env->priv;
36 #endif
37 }
38 
39 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
40                           target_ulong *cs_base, uint32_t *pflags)
41 {
42     CPUState *cs = env_cpu(env);
43     RISCVCPU *cpu = RISCV_CPU(cs);
44 
45     uint32_t flags = 0;
46 
47     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
48     *cs_base = 0;
49 
50     if (riscv_has_ext(env, RVV) || cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) {
51         /*
52          * If env->vl equals to VLMAX, we can use generic vector operation
53          * expanders (GVEC) to accerlate the vector operations.
54          * However, as LMUL could be a fractional number. The maximum
55          * vector size can be operated might be less than 8 bytes,
56          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
57          * only when maxsz >= 8 bytes.
58          */
59         uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype);
60         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
61         uint32_t maxsz = vlmax << sew;
62         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
63                            (maxsz >= 8);
64         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
65         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
66         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
67                     FIELD_EX64(env->vtype, VTYPE, VLMUL));
68         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
69         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
70                     FIELD_EX64(env->vtype, VTYPE, VTA));
71     } else {
72         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
73     }
74 
75 #ifdef CONFIG_USER_ONLY
76     flags |= TB_FLAGS_MSTATUS_FS;
77     flags |= TB_FLAGS_MSTATUS_VS;
78 #else
79     flags |= cpu_mmu_index(env, 0);
80     if (riscv_cpu_fp_enabled(env)) {
81         flags |= env->mstatus & MSTATUS_FS;
82     }
83 
84     if (riscv_cpu_vector_enabled(env)) {
85         flags |= env->mstatus & MSTATUS_VS;
86     }
87 
88     if (riscv_has_ext(env, RVH)) {
89         if (env->priv == PRV_M ||
90             (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
91             (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
92                 get_field(env->hstatus, HSTATUS_HU))) {
93             flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
94         }
95 
96         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
97                            get_field(env->mstatus_hs, MSTATUS_FS));
98 
99         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS,
100                            get_field(env->mstatus_hs, MSTATUS_VS));
101     }
102 #endif
103 
104     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
105     if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
106         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
107     }
108     if (env->cur_pmbase != 0) {
109         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
110     }
111 
112     *pflags = flags;
113 }
114 
115 void riscv_cpu_update_mask(CPURISCVState *env)
116 {
117     target_ulong mask = -1, base = 0;
118     /*
119      * TODO: Current RVJ spec does not specify
120      * how the extension interacts with XLEN.
121      */
122 #ifndef CONFIG_USER_ONLY
123     if (riscv_has_ext(env, RVJ)) {
124         switch (env->priv) {
125         case PRV_M:
126             if (env->mmte & M_PM_ENABLE) {
127                 mask = env->mpmmask;
128                 base = env->mpmbase;
129             }
130             break;
131         case PRV_S:
132             if (env->mmte & S_PM_ENABLE) {
133                 mask = env->spmmask;
134                 base = env->spmbase;
135             }
136             break;
137         case PRV_U:
138             if (env->mmte & U_PM_ENABLE) {
139                 mask = env->upmmask;
140                 base = env->upmbase;
141             }
142             break;
143         default:
144             g_assert_not_reached();
145         }
146     }
147 #endif
148     if (env->xl == MXL_RV32) {
149         env->cur_pmmask = mask & UINT32_MAX;
150         env->cur_pmbase = base & UINT32_MAX;
151     } else {
152         env->cur_pmmask = mask;
153         env->cur_pmbase = base;
154     }
155 }
156 
157 #ifndef CONFIG_USER_ONLY
158 
159 /*
160  * The HS-mode is allowed to configure priority only for the
161  * following VS-mode local interrupts:
162  *
163  * 0  (Reserved interrupt, reads as zero)
164  * 1  Supervisor software interrupt
165  * 4  (Reserved interrupt, reads as zero)
166  * 5  Supervisor timer interrupt
167  * 8  (Reserved interrupt, reads as zero)
168  * 13 (Reserved interrupt)
169  * 14 "
170  * 15 "
171  * 16 "
172  * 17 "
173  * 18 "
174  * 19 "
175  * 20 "
176  * 21 "
177  * 22 "
178  * 23 "
179  */
180 
181 static const int hviprio_index2irq[] = {
182     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
183 static const int hviprio_index2rdzero[] = {
184     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
185 
186 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
187 {
188     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
189         return -EINVAL;
190     }
191 
192     if (out_irq) {
193         *out_irq = hviprio_index2irq[index];
194     }
195 
196     if (out_rdzero) {
197         *out_rdzero = hviprio_index2rdzero[index];
198     }
199 
200     return 0;
201 }
202 
203 /*
204  * Default priorities of local interrupts are defined in the
205  * RISC-V Advanced Interrupt Architecture specification.
206  *
207  * ----------------------------------------------------------------
208  *  Default  |
209  *  Priority | Major Interrupt Numbers
210  * ----------------------------------------------------------------
211  *  Highest  | 47, 23, 46, 45, 22, 44,
212  *           | 43, 21, 42, 41, 20, 40
213  *           |
214  *           | 11 (0b),  3 (03),  7 (07)
215  *           |  9 (09),  1 (01),  5 (05)
216  *           | 12 (0c)
217  *           | 10 (0a),  2 (02),  6 (06)
218  *           |
219  *           | 39, 19, 38, 37, 18, 36,
220  *  Lowest   | 35, 17, 34, 33, 16, 32
221  * ----------------------------------------------------------------
222  */
223 static const uint8_t default_iprio[64] = {
224  /* Custom interrupts 48 to 63 */
225  [63] = IPRIO_MMAXIPRIO,
226  [62] = IPRIO_MMAXIPRIO,
227  [61] = IPRIO_MMAXIPRIO,
228  [60] = IPRIO_MMAXIPRIO,
229  [59] = IPRIO_MMAXIPRIO,
230  [58] = IPRIO_MMAXIPRIO,
231  [57] = IPRIO_MMAXIPRIO,
232  [56] = IPRIO_MMAXIPRIO,
233  [55] = IPRIO_MMAXIPRIO,
234  [54] = IPRIO_MMAXIPRIO,
235  [53] = IPRIO_MMAXIPRIO,
236  [52] = IPRIO_MMAXIPRIO,
237  [51] = IPRIO_MMAXIPRIO,
238  [50] = IPRIO_MMAXIPRIO,
239  [49] = IPRIO_MMAXIPRIO,
240  [48] = IPRIO_MMAXIPRIO,
241 
242  /* Custom interrupts 24 to 31 */
243  [31] = IPRIO_MMAXIPRIO,
244  [30] = IPRIO_MMAXIPRIO,
245  [29] = IPRIO_MMAXIPRIO,
246  [28] = IPRIO_MMAXIPRIO,
247  [27] = IPRIO_MMAXIPRIO,
248  [26] = IPRIO_MMAXIPRIO,
249  [25] = IPRIO_MMAXIPRIO,
250  [24] = IPRIO_MMAXIPRIO,
251 
252  [47] = IPRIO_DEFAULT_UPPER,
253  [23] = IPRIO_DEFAULT_UPPER + 1,
254  [46] = IPRIO_DEFAULT_UPPER + 2,
255  [45] = IPRIO_DEFAULT_UPPER + 3,
256  [22] = IPRIO_DEFAULT_UPPER + 4,
257  [44] = IPRIO_DEFAULT_UPPER + 5,
258 
259  [43] = IPRIO_DEFAULT_UPPER + 6,
260  [21] = IPRIO_DEFAULT_UPPER + 7,
261  [42] = IPRIO_DEFAULT_UPPER + 8,
262  [41] = IPRIO_DEFAULT_UPPER + 9,
263  [20] = IPRIO_DEFAULT_UPPER + 10,
264  [40] = IPRIO_DEFAULT_UPPER + 11,
265 
266  [11] = IPRIO_DEFAULT_M,
267  [3]  = IPRIO_DEFAULT_M + 1,
268  [7]  = IPRIO_DEFAULT_M + 2,
269 
270  [9]  = IPRIO_DEFAULT_S,
271  [1]  = IPRIO_DEFAULT_S + 1,
272  [5]  = IPRIO_DEFAULT_S + 2,
273 
274  [12] = IPRIO_DEFAULT_SGEXT,
275 
276  [10] = IPRIO_DEFAULT_VS,
277  [2]  = IPRIO_DEFAULT_VS + 1,
278  [6]  = IPRIO_DEFAULT_VS + 2,
279 
280  [39] = IPRIO_DEFAULT_LOWER,
281  [19] = IPRIO_DEFAULT_LOWER + 1,
282  [38] = IPRIO_DEFAULT_LOWER + 2,
283  [37] = IPRIO_DEFAULT_LOWER + 3,
284  [18] = IPRIO_DEFAULT_LOWER + 4,
285  [36] = IPRIO_DEFAULT_LOWER + 5,
286 
287  [35] = IPRIO_DEFAULT_LOWER + 6,
288  [17] = IPRIO_DEFAULT_LOWER + 7,
289  [34] = IPRIO_DEFAULT_LOWER + 8,
290  [33] = IPRIO_DEFAULT_LOWER + 9,
291  [16] = IPRIO_DEFAULT_LOWER + 10,
292  [32] = IPRIO_DEFAULT_LOWER + 11,
293 };
294 
295 uint8_t riscv_cpu_default_priority(int irq)
296 {
297     if (irq < 0 || irq > 63) {
298         return IPRIO_MMAXIPRIO;
299     }
300 
301     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
302 };
303 
304 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
305                                     int extirq, unsigned int extirq_def_prio,
306                                     uint64_t pending, uint8_t *iprio)
307 {
308     int irq, best_irq = RISCV_EXCP_NONE;
309     unsigned int prio, best_prio = UINT_MAX;
310 
311     if (!pending) {
312         return RISCV_EXCP_NONE;
313     }
314 
315     irq = ctz64(pending);
316     if (!riscv_feature(env, RISCV_FEATURE_AIA)) {
317         return irq;
318     }
319 
320     pending = pending >> irq;
321     while (pending) {
322         prio = iprio[irq];
323         if (!prio) {
324             if (irq == extirq) {
325                 prio = extirq_def_prio;
326             } else {
327                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
328                        1 : IPRIO_MMAXIPRIO;
329             }
330         }
331         if ((pending & 0x1) && (prio <= best_prio)) {
332             best_irq = irq;
333             best_prio = prio;
334         }
335         irq++;
336         pending = pending >> 1;
337     }
338 
339     return best_irq;
340 }
341 
342 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
343 {
344     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
345     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
346 
347     return (env->mip | vsgein) & env->mie;
348 }
349 
350 int riscv_cpu_mirq_pending(CPURISCVState *env)
351 {
352     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
353                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
354 
355     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
356                                     irqs, env->miprio);
357 }
358 
359 int riscv_cpu_sirq_pending(CPURISCVState *env)
360 {
361     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
362                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
363 
364     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
365                                     irqs, env->siprio);
366 }
367 
368 int riscv_cpu_vsirq_pending(CPURISCVState *env)
369 {
370     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
371                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
372 
373     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
374                                     irqs >> 1, env->hviprio);
375 }
376 
377 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
378 {
379     int virq;
380     uint64_t irqs, pending, mie, hsie, vsie;
381 
382     /* Determine interrupt enable state of all privilege modes */
383     if (riscv_cpu_virt_enabled(env)) {
384         mie = 1;
385         hsie = 1;
386         vsie = (env->priv < PRV_S) ||
387                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
388     } else {
389         mie = (env->priv < PRV_M) ||
390               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
391         hsie = (env->priv < PRV_S) ||
392                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
393         vsie = 0;
394     }
395 
396     /* Determine all pending interrupts */
397     pending = riscv_cpu_all_pending(env);
398 
399     /* Check M-mode interrupts */
400     irqs = pending & ~env->mideleg & -mie;
401     if (irqs) {
402         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
403                                         irqs, env->miprio);
404     }
405 
406     /* Check HS-mode interrupts */
407     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
408     if (irqs) {
409         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
410                                         irqs, env->siprio);
411     }
412 
413     /* Check VS-mode interrupts */
414     irqs = pending & env->mideleg & env->hideleg & -vsie;
415     if (irqs) {
416         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
417                                         irqs >> 1, env->hviprio);
418         return (virq <= 0) ? virq : virq + 1;
419     }
420 
421     /* Indicate no pending interrupt */
422     return RISCV_EXCP_NONE;
423 }
424 
425 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
426 {
427     if (interrupt_request & CPU_INTERRUPT_HARD) {
428         RISCVCPU *cpu = RISCV_CPU(cs);
429         CPURISCVState *env = &cpu->env;
430         int interruptno = riscv_cpu_local_irq_pending(env);
431         if (interruptno >= 0) {
432             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
433             riscv_cpu_do_interrupt(cs);
434             return true;
435         }
436     }
437     return false;
438 }
439 
440 /* Return true is floating point support is currently enabled */
441 bool riscv_cpu_fp_enabled(CPURISCVState *env)
442 {
443     if (env->mstatus & MSTATUS_FS) {
444         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
445             return false;
446         }
447         return true;
448     }
449 
450     return false;
451 }
452 
453 /* Return true is vector support is currently enabled */
454 bool riscv_cpu_vector_enabled(CPURISCVState *env)
455 {
456     if (env->mstatus & MSTATUS_VS) {
457         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) {
458             return false;
459         }
460         return true;
461     }
462 
463     return false;
464 }
465 
466 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
467 {
468     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
469                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
470                             MSTATUS64_UXL | MSTATUS_VS;
471 
472     if (riscv_has_ext(env, RVF)) {
473         mstatus_mask |= MSTATUS_FS;
474     }
475     bool current_virt = riscv_cpu_virt_enabled(env);
476 
477     g_assert(riscv_has_ext(env, RVH));
478 
479     if (current_virt) {
480         /* Current V=1 and we are about to change to V=0 */
481         env->vsstatus = env->mstatus & mstatus_mask;
482         env->mstatus &= ~mstatus_mask;
483         env->mstatus |= env->mstatus_hs;
484 
485         env->vstvec = env->stvec;
486         env->stvec = env->stvec_hs;
487 
488         env->vsscratch = env->sscratch;
489         env->sscratch = env->sscratch_hs;
490 
491         env->vsepc = env->sepc;
492         env->sepc = env->sepc_hs;
493 
494         env->vscause = env->scause;
495         env->scause = env->scause_hs;
496 
497         env->vstval = env->stval;
498         env->stval = env->stval_hs;
499 
500         env->vsatp = env->satp;
501         env->satp = env->satp_hs;
502     } else {
503         /* Current V=0 and we are about to change to V=1 */
504         env->mstatus_hs = env->mstatus & mstatus_mask;
505         env->mstatus &= ~mstatus_mask;
506         env->mstatus |= env->vsstatus;
507 
508         env->stvec_hs = env->stvec;
509         env->stvec = env->vstvec;
510 
511         env->sscratch_hs = env->sscratch;
512         env->sscratch = env->vsscratch;
513 
514         env->sepc_hs = env->sepc;
515         env->sepc = env->vsepc;
516 
517         env->scause_hs = env->scause;
518         env->scause = env->vscause;
519 
520         env->stval_hs = env->stval;
521         env->stval = env->vstval;
522 
523         env->satp_hs = env->satp;
524         env->satp = env->vsatp;
525     }
526 }
527 
528 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
529 {
530     if (!riscv_has_ext(env, RVH)) {
531         return 0;
532     }
533 
534     return env->geilen;
535 }
536 
537 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
538 {
539     if (!riscv_has_ext(env, RVH)) {
540         return;
541     }
542 
543     if (geilen > (TARGET_LONG_BITS - 1)) {
544         return;
545     }
546 
547     env->geilen = geilen;
548 }
549 
550 bool riscv_cpu_virt_enabled(CPURISCVState *env)
551 {
552     if (!riscv_has_ext(env, RVH)) {
553         return false;
554     }
555 
556     return get_field(env->virt, VIRT_ONOFF);
557 }
558 
559 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
560 {
561     if (!riscv_has_ext(env, RVH)) {
562         return;
563     }
564 
565     /* Flush the TLB on all virt mode changes. */
566     if (get_field(env->virt, VIRT_ONOFF) != enable) {
567         tlb_flush(env_cpu(env));
568     }
569 
570     env->virt = set_field(env->virt, VIRT_ONOFF, enable);
571 
572     if (enable) {
573         /*
574          * The guest external interrupts from an interrupt controller are
575          * delivered only when the Guest/VM is running (i.e. V=1). This means
576          * any guest external interrupt which is triggered while the Guest/VM
577          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
578          * with sluggish response to serial console input and other I/O events.
579          *
580          * To solve this, we check and inject interrupt after setting V=1.
581          */
582         riscv_cpu_update_mip(env_archcpu(env), 0, 0);
583     }
584 }
585 
586 bool riscv_cpu_two_stage_lookup(int mmu_idx)
587 {
588     return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
589 }
590 
591 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
592 {
593     CPURISCVState *env = &cpu->env;
594     if (env->miclaim & interrupts) {
595         return -1;
596     } else {
597         env->miclaim |= interrupts;
598         return 0;
599     }
600 }
601 
602 uint64_t riscv_cpu_update_mip(RISCVCPU *cpu, uint64_t mask, uint64_t value)
603 {
604     CPURISCVState *env = &cpu->env;
605     CPUState *cs = CPU(cpu);
606     uint64_t gein, vsgein = 0, old = env->mip;
607     bool locked = false;
608 
609     if (riscv_cpu_virt_enabled(env)) {
610         gein = get_field(env->hstatus, HSTATUS_VGEIN);
611         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
612     }
613 
614     if (!qemu_mutex_iothread_locked()) {
615         locked = true;
616         qemu_mutex_lock_iothread();
617     }
618 
619     env->mip = (env->mip & ~mask) | (value & mask);
620 
621     if (env->mip | vsgein) {
622         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
623     } else {
624         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
625     }
626 
627     if (locked) {
628         qemu_mutex_unlock_iothread();
629     }
630 
631     return old;
632 }
633 
634 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
635                              void *arg)
636 {
637     env->rdtime_fn = fn;
638     env->rdtime_fn_arg = arg;
639 }
640 
641 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
642                                    int (*rmw_fn)(void *arg,
643                                                  target_ulong reg,
644                                                  target_ulong *val,
645                                                  target_ulong new_val,
646                                                  target_ulong write_mask),
647                                    void *rmw_fn_arg)
648 {
649     if (priv <= PRV_M) {
650         env->aia_ireg_rmw_fn[priv] = rmw_fn;
651         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
652     }
653 }
654 
655 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
656 {
657     if (newpriv > PRV_M) {
658         g_assert_not_reached();
659     }
660     if (newpriv == PRV_H) {
661         newpriv = PRV_U;
662     }
663     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
664     env->priv = newpriv;
665     env->xl = cpu_recompute_xl(env);
666     riscv_cpu_update_mask(env);
667 
668     /*
669      * Clear the load reservation - otherwise a reservation placed in one
670      * context/process can be used by another, resulting in an SC succeeding
671      * incorrectly. Version 2.2 of the ISA specification explicitly requires
672      * this behaviour, while later revisions say that the kernel "should" use
673      * an SC instruction to force the yielding of a load reservation on a
674      * preemptive context switch. As a result, do both.
675      */
676     env->load_res = -1;
677 }
678 
679 /*
680  * get_physical_address_pmp - check PMP permission for this physical address
681  *
682  * Match the PMP region and check permission for this physical address and it's
683  * TLB page. Returns 0 if the permission checking was successful
684  *
685  * @env: CPURISCVState
686  * @prot: The returned protection attributes
687  * @tlb_size: TLB page size containing addr. It could be modified after PMP
688  *            permission checking. NULL if not set TLB page for addr.
689  * @addr: The physical address to be checked permission
690  * @access_type: The type of MMU access
691  * @mode: Indicates current privilege level.
692  */
693 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
694                                     target_ulong *tlb_size, hwaddr addr,
695                                     int size, MMUAccessType access_type,
696                                     int mode)
697 {
698     pmp_priv_t pmp_priv;
699     target_ulong tlb_size_pmp = 0;
700 
701     if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
702         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
703         return TRANSLATE_SUCCESS;
704     }
705 
706     if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv,
707                             mode)) {
708         *prot = 0;
709         return TRANSLATE_PMP_FAIL;
710     }
711 
712     *prot = pmp_priv_to_page_prot(pmp_priv);
713     if (tlb_size != NULL) {
714         if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) {
715             *tlb_size = tlb_size_pmp;
716         }
717     }
718 
719     return TRANSLATE_SUCCESS;
720 }
721 
722 /* get_physical_address - get the physical address for this virtual address
723  *
724  * Do a page table walk to obtain the physical address corresponding to a
725  * virtual address. Returns 0 if the translation was successful
726  *
727  * Adapted from Spike's mmu_t::translate and mmu_t::walk
728  *
729  * @env: CPURISCVState
730  * @physical: This will be set to the calculated physical address
731  * @prot: The returned protection attributes
732  * @addr: The virtual address to be translated
733  * @fault_pte_addr: If not NULL, this will be set to fault pte address
734  *                  when a error occurs on pte address translation.
735  *                  This will already be shifted to match htval.
736  * @access_type: The type of MMU access
737  * @mmu_idx: Indicates current privilege level
738  * @first_stage: Are we in first stage translation?
739  *               Second stage is used for hypervisor guest translation
740  * @two_stage: Are we going to perform two stage translation
741  * @is_debug: Is this access from a debugger or the monitor?
742  */
743 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
744                                 int *prot, target_ulong addr,
745                                 target_ulong *fault_pte_addr,
746                                 int access_type, int mmu_idx,
747                                 bool first_stage, bool two_stage,
748                                 bool is_debug)
749 {
750     /* NOTE: the env->pc value visible here will not be
751      * correct, but the value visible to the exception handler
752      * (riscv_cpu_do_interrupt) is correct */
753     MemTxResult res;
754     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
755     int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
756     bool use_background = false;
757     hwaddr ppn;
758     RISCVCPU *cpu = env_archcpu(env);
759     int napot_bits = 0;
760     target_ulong napot_mask;
761 
762     /*
763      * Check if we should use the background registers for the two
764      * stage translation. We don't need to check if we actually need
765      * two stage translation as that happened before this function
766      * was called. Background registers will be used if the guest has
767      * forced a two stage translation to be on (in HS or M mode).
768      */
769     if (!riscv_cpu_virt_enabled(env) && two_stage) {
770         use_background = true;
771     }
772 
773     /* MPRV does not affect the virtual-machine load/store
774        instructions, HLV, HLVX, and HSV. */
775     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
776         mode = get_field(env->hstatus, HSTATUS_SPVP);
777     } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
778         if (get_field(env->mstatus, MSTATUS_MPRV)) {
779             mode = get_field(env->mstatus, MSTATUS_MPP);
780         }
781     }
782 
783     if (first_stage == false) {
784         /* We are in stage 2 translation, this is similar to stage 1. */
785         /* Stage 2 is always taken as U-mode */
786         mode = PRV_U;
787     }
788 
789     if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
790         *physical = addr;
791         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
792         return TRANSLATE_SUCCESS;
793     }
794 
795     *prot = 0;
796 
797     hwaddr base;
798     int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
799 
800     if (first_stage == true) {
801         mxr = get_field(env->mstatus, MSTATUS_MXR);
802     } else {
803         mxr = get_field(env->vsstatus, MSTATUS_MXR);
804     }
805 
806     if (first_stage == true) {
807         if (use_background) {
808             if (riscv_cpu_mxl(env) == MXL_RV32) {
809                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
810                 vm = get_field(env->vsatp, SATP32_MODE);
811             } else {
812                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
813                 vm = get_field(env->vsatp, SATP64_MODE);
814             }
815         } else {
816             if (riscv_cpu_mxl(env) == MXL_RV32) {
817                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
818                 vm = get_field(env->satp, SATP32_MODE);
819             } else {
820                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
821                 vm = get_field(env->satp, SATP64_MODE);
822             }
823         }
824         widened = 0;
825     } else {
826         if (riscv_cpu_mxl(env) == MXL_RV32) {
827             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
828             vm = get_field(env->hgatp, SATP32_MODE);
829         } else {
830             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
831             vm = get_field(env->hgatp, SATP64_MODE);
832         }
833         widened = 2;
834     }
835     /* status.SUM will be ignored if execute on background */
836     sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
837     switch (vm) {
838     case VM_1_10_SV32:
839       levels = 2; ptidxbits = 10; ptesize = 4; break;
840     case VM_1_10_SV39:
841       levels = 3; ptidxbits = 9; ptesize = 8; break;
842     case VM_1_10_SV48:
843       levels = 4; ptidxbits = 9; ptesize = 8; break;
844     case VM_1_10_SV57:
845       levels = 5; ptidxbits = 9; ptesize = 8; break;
846     case VM_1_10_MBARE:
847         *physical = addr;
848         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
849         return TRANSLATE_SUCCESS;
850     default:
851       g_assert_not_reached();
852     }
853 
854     CPUState *cs = env_cpu(env);
855     int va_bits = PGSHIFT + levels * ptidxbits + widened;
856     target_ulong mask, masked_msbs;
857 
858     if (TARGET_LONG_BITS > (va_bits - 1)) {
859         mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
860     } else {
861         mask = 0;
862     }
863     masked_msbs = (addr >> (va_bits - 1)) & mask;
864 
865     if (masked_msbs != 0 && masked_msbs != mask) {
866         return TRANSLATE_FAIL;
867     }
868 
869     int ptshift = (levels - 1) * ptidxbits;
870     int i;
871 
872 #if !TCG_OVERSIZED_GUEST
873 restart:
874 #endif
875     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
876         target_ulong idx;
877         if (i == 0) {
878             idx = (addr >> (PGSHIFT + ptshift)) &
879                            ((1 << (ptidxbits + widened)) - 1);
880         } else {
881             idx = (addr >> (PGSHIFT + ptshift)) &
882                            ((1 << ptidxbits) - 1);
883         }
884 
885         /* check that physical address of PTE is legal */
886         hwaddr pte_addr;
887 
888         if (two_stage && first_stage) {
889             int vbase_prot;
890             hwaddr vbase;
891 
892             /* Do the second stage translation on the base PTE address. */
893             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
894                                                  base, NULL, MMU_DATA_LOAD,
895                                                  mmu_idx, false, true,
896                                                  is_debug);
897 
898             if (vbase_ret != TRANSLATE_SUCCESS) {
899                 if (fault_pte_addr) {
900                     *fault_pte_addr = (base + idx * ptesize) >> 2;
901                 }
902                 return TRANSLATE_G_STAGE_FAIL;
903             }
904 
905             pte_addr = vbase + idx * ptesize;
906         } else {
907             pte_addr = base + idx * ptesize;
908         }
909 
910         int pmp_prot;
911         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
912                                                sizeof(target_ulong),
913                                                MMU_DATA_LOAD, PRV_S);
914         if (pmp_ret != TRANSLATE_SUCCESS) {
915             return TRANSLATE_PMP_FAIL;
916         }
917 
918         target_ulong pte;
919         if (riscv_cpu_mxl(env) == MXL_RV32) {
920             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
921         } else {
922             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
923         }
924 
925         if (res != MEMTX_OK) {
926             return TRANSLATE_FAIL;
927         }
928 
929         if (riscv_cpu_sxl(env) == MXL_RV32) {
930             ppn = pte >> PTE_PPN_SHIFT;
931         } else if (cpu->cfg.ext_svpbmt || cpu->cfg.ext_svnapot) {
932             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
933         } else {
934             ppn = pte >> PTE_PPN_SHIFT;
935             if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
936                 return TRANSLATE_FAIL;
937             }
938         }
939 
940         if (!(pte & PTE_V)) {
941             /* Invalid PTE */
942             return TRANSLATE_FAIL;
943         } else if (!cpu->cfg.ext_svpbmt && (pte & PTE_PBMT)) {
944             return TRANSLATE_FAIL;
945         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
946             /* Inner PTE, continue walking */
947             if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
948                 return TRANSLATE_FAIL;
949             }
950             base = ppn << PGSHIFT;
951         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
952             /* Reserved leaf PTE flags: PTE_W */
953             return TRANSLATE_FAIL;
954         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
955             /* Reserved leaf PTE flags: PTE_W + PTE_X */
956             return TRANSLATE_FAIL;
957         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
958                    (!sum || access_type == MMU_INST_FETCH))) {
959             /* User PTE flags when not U mode and mstatus.SUM is not set,
960                or the access type is an instruction fetch */
961             return TRANSLATE_FAIL;
962         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
963             /* Supervisor PTE flags when not S mode */
964             return TRANSLATE_FAIL;
965         } else if (ppn & ((1ULL << ptshift) - 1)) {
966             /* Misaligned PPN */
967             return TRANSLATE_FAIL;
968         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
969                    ((pte & PTE_X) && mxr))) {
970             /* Read access check failed */
971             return TRANSLATE_FAIL;
972         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
973             /* Write access check failed */
974             return TRANSLATE_FAIL;
975         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
976             /* Fetch access check failed */
977             return TRANSLATE_FAIL;
978         } else {
979             /* if necessary, set accessed and dirty bits. */
980             target_ulong updated_pte = pte | PTE_A |
981                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
982 
983             /* Page table updates need to be atomic with MTTCG enabled */
984             if (updated_pte != pte) {
985                 /*
986                  * - if accessed or dirty bits need updating, and the PTE is
987                  *   in RAM, then we do so atomically with a compare and swap.
988                  * - if the PTE is in IO space or ROM, then it can't be updated
989                  *   and we return TRANSLATE_FAIL.
990                  * - if the PTE changed by the time we went to update it, then
991                  *   it is no longer valid and we must re-walk the page table.
992                  */
993                 MemoryRegion *mr;
994                 hwaddr l = sizeof(target_ulong), addr1;
995                 mr = address_space_translate(cs->as, pte_addr,
996                     &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
997                 if (memory_region_is_ram(mr)) {
998                     target_ulong *pte_pa =
999                         qemu_map_ram_ptr(mr->ram_block, addr1);
1000 #if TCG_OVERSIZED_GUEST
1001                     /* MTTCG is not enabled on oversized TCG guests so
1002                      * page table updates do not need to be atomic */
1003                     *pte_pa = pte = updated_pte;
1004 #else
1005                     target_ulong old_pte =
1006                         qatomic_cmpxchg(pte_pa, pte, updated_pte);
1007                     if (old_pte != pte) {
1008                         goto restart;
1009                     } else {
1010                         pte = updated_pte;
1011                     }
1012 #endif
1013                 } else {
1014                     /* misconfigured PTE in ROM (AD bits are not preset) or
1015                      * PTE is in IO space and can't be updated atomically */
1016                     return TRANSLATE_FAIL;
1017                 }
1018             }
1019 
1020             /* for superpage mappings, make a fake leaf PTE for the TLB's
1021                benefit. */
1022             target_ulong vpn = addr >> PGSHIFT;
1023 
1024             if (cpu->cfg.ext_svnapot && (pte & PTE_N)) {
1025                 napot_bits = ctzl(ppn) + 1;
1026                 if ((i != (levels - 1)) || (napot_bits != 4)) {
1027                     return TRANSLATE_FAIL;
1028                 }
1029             }
1030 
1031             napot_mask = (1 << napot_bits) - 1;
1032             *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1033                           (vpn & (((target_ulong)1 << ptshift) - 1))
1034                          ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1035 
1036             /* set permissions on the TLB entry */
1037             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
1038                 *prot |= PAGE_READ;
1039             }
1040             if ((pte & PTE_X)) {
1041                 *prot |= PAGE_EXEC;
1042             }
1043             /* add write permission on stores or if the page is already dirty,
1044                so that we TLB miss on later writes to update the dirty bit */
1045             if ((pte & PTE_W) &&
1046                     (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1047                 *prot |= PAGE_WRITE;
1048             }
1049             return TRANSLATE_SUCCESS;
1050         }
1051     }
1052     return TRANSLATE_FAIL;
1053 }
1054 
1055 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1056                                 MMUAccessType access_type, bool pmp_violation,
1057                                 bool first_stage, bool two_stage,
1058                                 bool two_stage_indirect)
1059 {
1060     CPUState *cs = env_cpu(env);
1061     int page_fault_exceptions, vm;
1062     uint64_t stap_mode;
1063 
1064     if (riscv_cpu_mxl(env) == MXL_RV32) {
1065         stap_mode = SATP32_MODE;
1066     } else {
1067         stap_mode = SATP64_MODE;
1068     }
1069 
1070     if (first_stage) {
1071         vm = get_field(env->satp, stap_mode);
1072     } else {
1073         vm = get_field(env->hgatp, stap_mode);
1074     }
1075 
1076     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1077 
1078     switch (access_type) {
1079     case MMU_INST_FETCH:
1080         if (riscv_cpu_virt_enabled(env) && !first_stage) {
1081             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1082         } else {
1083             cs->exception_index = page_fault_exceptions ?
1084                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1085         }
1086         break;
1087     case MMU_DATA_LOAD:
1088         if (two_stage && !first_stage) {
1089             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1090         } else {
1091             cs->exception_index = page_fault_exceptions ?
1092                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1093         }
1094         break;
1095     case MMU_DATA_STORE:
1096         if (two_stage && !first_stage) {
1097             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1098         } else {
1099             cs->exception_index = page_fault_exceptions ?
1100                 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1101         }
1102         break;
1103     default:
1104         g_assert_not_reached();
1105     }
1106     env->badaddr = address;
1107     env->two_stage_lookup = two_stage;
1108     env->two_stage_indirect_lookup = two_stage_indirect;
1109 }
1110 
1111 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1112 {
1113     RISCVCPU *cpu = RISCV_CPU(cs);
1114     CPURISCVState *env = &cpu->env;
1115     hwaddr phys_addr;
1116     int prot;
1117     int mmu_idx = cpu_mmu_index(&cpu->env, false);
1118 
1119     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1120                              true, riscv_cpu_virt_enabled(env), true)) {
1121         return -1;
1122     }
1123 
1124     if (riscv_cpu_virt_enabled(env)) {
1125         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1126                                  0, mmu_idx, false, true, true)) {
1127             return -1;
1128         }
1129     }
1130 
1131     return phys_addr & TARGET_PAGE_MASK;
1132 }
1133 
1134 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1135                                      vaddr addr, unsigned size,
1136                                      MMUAccessType access_type,
1137                                      int mmu_idx, MemTxAttrs attrs,
1138                                      MemTxResult response, uintptr_t retaddr)
1139 {
1140     RISCVCPU *cpu = RISCV_CPU(cs);
1141     CPURISCVState *env = &cpu->env;
1142 
1143     if (access_type == MMU_DATA_STORE) {
1144         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1145     } else if (access_type == MMU_DATA_LOAD) {
1146         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1147     } else {
1148         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1149     }
1150 
1151     env->badaddr = addr;
1152     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1153                             riscv_cpu_two_stage_lookup(mmu_idx);
1154     env->two_stage_indirect_lookup = false;
1155     cpu_loop_exit_restore(cs, retaddr);
1156 }
1157 
1158 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1159                                    MMUAccessType access_type, int mmu_idx,
1160                                    uintptr_t retaddr)
1161 {
1162     RISCVCPU *cpu = RISCV_CPU(cs);
1163     CPURISCVState *env = &cpu->env;
1164     switch (access_type) {
1165     case MMU_INST_FETCH:
1166         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1167         break;
1168     case MMU_DATA_LOAD:
1169         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1170         break;
1171     case MMU_DATA_STORE:
1172         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1173         break;
1174     default:
1175         g_assert_not_reached();
1176     }
1177     env->badaddr = addr;
1178     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1179                             riscv_cpu_two_stage_lookup(mmu_idx);
1180     env->two_stage_indirect_lookup = false;
1181     cpu_loop_exit_restore(cs, retaddr);
1182 }
1183 
1184 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1185                         MMUAccessType access_type, int mmu_idx,
1186                         bool probe, uintptr_t retaddr)
1187 {
1188     RISCVCPU *cpu = RISCV_CPU(cs);
1189     CPURISCVState *env = &cpu->env;
1190     vaddr im_address;
1191     hwaddr pa = 0;
1192     int prot, prot2, prot_pmp;
1193     bool pmp_violation = false;
1194     bool first_stage_error = true;
1195     bool two_stage_lookup = false;
1196     bool two_stage_indirect_error = false;
1197     int ret = TRANSLATE_FAIL;
1198     int mode = mmu_idx;
1199     /* default TLB page size */
1200     target_ulong tlb_size = TARGET_PAGE_SIZE;
1201 
1202     env->guest_phys_fault_addr = 0;
1203 
1204     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1205                   __func__, address, access_type, mmu_idx);
1206 
1207     /* MPRV does not affect the virtual-machine load/store
1208        instructions, HLV, HLVX, and HSV. */
1209     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1210         mode = get_field(env->hstatus, HSTATUS_SPVP);
1211     } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1212                get_field(env->mstatus, MSTATUS_MPRV)) {
1213         mode = get_field(env->mstatus, MSTATUS_MPP);
1214         if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1215             two_stage_lookup = true;
1216         }
1217     }
1218 
1219     if (riscv_cpu_virt_enabled(env) ||
1220         ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1221          access_type != MMU_INST_FETCH)) {
1222         /* Two stage lookup */
1223         ret = get_physical_address(env, &pa, &prot, address,
1224                                    &env->guest_phys_fault_addr, access_type,
1225                                    mmu_idx, true, true, false);
1226 
1227         /*
1228          * A G-stage exception may be triggered during two state lookup.
1229          * And the env->guest_phys_fault_addr has already been set in
1230          * get_physical_address().
1231          */
1232         if (ret == TRANSLATE_G_STAGE_FAIL) {
1233             first_stage_error = false;
1234             two_stage_indirect_error = true;
1235             access_type = MMU_DATA_LOAD;
1236         }
1237 
1238         qemu_log_mask(CPU_LOG_MMU,
1239                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1240                       TARGET_FMT_plx " prot %d\n",
1241                       __func__, address, ret, pa, prot);
1242 
1243         if (ret == TRANSLATE_SUCCESS) {
1244             /* Second stage lookup */
1245             im_address = pa;
1246 
1247             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1248                                        access_type, mmu_idx, false, true,
1249                                        false);
1250 
1251             qemu_log_mask(CPU_LOG_MMU,
1252                     "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
1253                     TARGET_FMT_plx " prot %d\n",
1254                     __func__, im_address, ret, pa, prot2);
1255 
1256             prot &= prot2;
1257 
1258             if (ret == TRANSLATE_SUCCESS) {
1259                 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1260                                                size, access_type, mode);
1261 
1262                 qemu_log_mask(CPU_LOG_MMU,
1263                               "%s PMP address=" TARGET_FMT_plx " ret %d prot"
1264                               " %d tlb_size " TARGET_FMT_lu "\n",
1265                               __func__, pa, ret, prot_pmp, tlb_size);
1266 
1267                 prot &= prot_pmp;
1268             }
1269 
1270             if (ret != TRANSLATE_SUCCESS) {
1271                 /*
1272                  * Guest physical address translation failed, this is a HS
1273                  * level exception
1274                  */
1275                 first_stage_error = false;
1276                 env->guest_phys_fault_addr = (im_address |
1277                                               (address &
1278                                                (TARGET_PAGE_SIZE - 1))) >> 2;
1279             }
1280         }
1281     } else {
1282         /* Single stage lookup */
1283         ret = get_physical_address(env, &pa, &prot, address, NULL,
1284                                    access_type, mmu_idx, true, false, false);
1285 
1286         qemu_log_mask(CPU_LOG_MMU,
1287                       "%s address=%" VADDR_PRIx " ret %d physical "
1288                       TARGET_FMT_plx " prot %d\n",
1289                       __func__, address, ret, pa, prot);
1290 
1291         if (ret == TRANSLATE_SUCCESS) {
1292             ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1293                                            size, access_type, mode);
1294 
1295             qemu_log_mask(CPU_LOG_MMU,
1296                           "%s PMP address=" TARGET_FMT_plx " ret %d prot"
1297                           " %d tlb_size " TARGET_FMT_lu "\n",
1298                           __func__, pa, ret, prot_pmp, tlb_size);
1299 
1300             prot &= prot_pmp;
1301         }
1302     }
1303 
1304     if (ret == TRANSLATE_PMP_FAIL) {
1305         pmp_violation = true;
1306     }
1307 
1308     if (ret == TRANSLATE_SUCCESS) {
1309         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1310                      prot, mmu_idx, tlb_size);
1311         return true;
1312     } else if (probe) {
1313         return false;
1314     } else {
1315         raise_mmu_exception(env, address, access_type, pmp_violation,
1316                             first_stage_error,
1317                             riscv_cpu_virt_enabled(env) ||
1318                                 riscv_cpu_two_stage_lookup(mmu_idx),
1319                             two_stage_indirect_error);
1320         cpu_loop_exit_restore(cs, retaddr);
1321     }
1322 
1323     return true;
1324 }
1325 
1326 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1327                                            target_ulong insn,
1328                                            target_ulong taddr)
1329 {
1330     target_ulong xinsn = 0;
1331     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1332 
1333     /*
1334      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1335      * be uncompressed. The Quadrant 1 of RVC instruction space need
1336      * not be transformed because these instructions won't generate
1337      * any load/store trap.
1338      */
1339 
1340     if ((insn & 0x3) != 0x3) {
1341         /* Transform 16bit instruction into 32bit instruction */
1342         switch (GET_C_OP(insn)) {
1343         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1344             switch (GET_C_FUNC(insn)) {
1345             case OPC_RISC_C_FUNC_FLD_LQ:
1346                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1347                     xinsn = OPC_RISC_FLD;
1348                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1349                     access_rs1 = GET_C_RS1S(insn);
1350                     access_imm = GET_C_LD_IMM(insn);
1351                     access_size = 8;
1352                 }
1353                 break;
1354             case OPC_RISC_C_FUNC_LW: /* C.LW */
1355                 xinsn = OPC_RISC_LW;
1356                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1357                 access_rs1 = GET_C_RS1S(insn);
1358                 access_imm = GET_C_LW_IMM(insn);
1359                 access_size = 4;
1360                 break;
1361             case OPC_RISC_C_FUNC_FLW_LD:
1362                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1363                     xinsn = OPC_RISC_FLW;
1364                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1365                     access_rs1 = GET_C_RS1S(insn);
1366                     access_imm = GET_C_LW_IMM(insn);
1367                     access_size = 4;
1368                 } else { /* C.LD (RV64/RV128) */
1369                     xinsn = OPC_RISC_LD;
1370                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1371                     access_rs1 = GET_C_RS1S(insn);
1372                     access_imm = GET_C_LD_IMM(insn);
1373                     access_size = 8;
1374                 }
1375                 break;
1376             case OPC_RISC_C_FUNC_FSD_SQ:
1377                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1378                     xinsn = OPC_RISC_FSD;
1379                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1380                     access_rs1 = GET_C_RS1S(insn);
1381                     access_imm = GET_C_SD_IMM(insn);
1382                     access_size = 8;
1383                 }
1384                 break;
1385             case OPC_RISC_C_FUNC_SW: /* C.SW */
1386                 xinsn = OPC_RISC_SW;
1387                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1388                 access_rs1 = GET_C_RS1S(insn);
1389                 access_imm = GET_C_SW_IMM(insn);
1390                 access_size = 4;
1391                 break;
1392             case OPC_RISC_C_FUNC_FSW_SD:
1393                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1394                     xinsn = OPC_RISC_FSW;
1395                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1396                     access_rs1 = GET_C_RS1S(insn);
1397                     access_imm = GET_C_SW_IMM(insn);
1398                     access_size = 4;
1399                 } else { /* C.SD (RV64/RV128) */
1400                     xinsn = OPC_RISC_SD;
1401                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1402                     access_rs1 = GET_C_RS1S(insn);
1403                     access_imm = GET_C_SD_IMM(insn);
1404                     access_size = 8;
1405                 }
1406                 break;
1407             default:
1408                 break;
1409             }
1410             break;
1411         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1412             switch (GET_C_FUNC(insn)) {
1413             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1414                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1415                     xinsn = OPC_RISC_FLD;
1416                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1417                     access_rs1 = 2;
1418                     access_imm = GET_C_LDSP_IMM(insn);
1419                     access_size = 8;
1420                 }
1421                 break;
1422             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1423                 xinsn = OPC_RISC_LW;
1424                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1425                 access_rs1 = 2;
1426                 access_imm = GET_C_LWSP_IMM(insn);
1427                 access_size = 4;
1428                 break;
1429             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1430                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1431                     xinsn = OPC_RISC_FLW;
1432                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1433                     access_rs1 = 2;
1434                     access_imm = GET_C_LWSP_IMM(insn);
1435                     access_size = 4;
1436                 } else { /* C.LDSP (RV64/RV128) */
1437                     xinsn = OPC_RISC_LD;
1438                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1439                     access_rs1 = 2;
1440                     access_imm = GET_C_LDSP_IMM(insn);
1441                     access_size = 8;
1442                 }
1443                 break;
1444             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1445                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1446                     xinsn = OPC_RISC_FSD;
1447                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1448                     access_rs1 = 2;
1449                     access_imm = GET_C_SDSP_IMM(insn);
1450                     access_size = 8;
1451                 }
1452                 break;
1453             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1454                 xinsn = OPC_RISC_SW;
1455                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1456                 access_rs1 = 2;
1457                 access_imm = GET_C_SWSP_IMM(insn);
1458                 access_size = 4;
1459                 break;
1460             case 7:
1461                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1462                     xinsn = OPC_RISC_FSW;
1463                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1464                     access_rs1 = 2;
1465                     access_imm = GET_C_SWSP_IMM(insn);
1466                     access_size = 4;
1467                 } else { /* C.SDSP (RV64/RV128) */
1468                     xinsn = OPC_RISC_SD;
1469                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1470                     access_rs1 = 2;
1471                     access_imm = GET_C_SDSP_IMM(insn);
1472                     access_size = 8;
1473                 }
1474                 break;
1475             default:
1476                 break;
1477             }
1478             break;
1479         default:
1480             break;
1481         }
1482 
1483         /*
1484          * Clear Bit1 of transformed instruction to indicate that
1485          * original insruction was a 16bit instruction
1486          */
1487         xinsn &= ~((target_ulong)0x2);
1488     } else {
1489         /* Transform 32bit (or wider) instructions */
1490         switch (MASK_OP_MAJOR(insn)) {
1491         case OPC_RISC_ATOMIC:
1492             xinsn = insn;
1493             access_rs1 = GET_RS1(insn);
1494             access_size = 1 << GET_FUNCT3(insn);
1495             break;
1496         case OPC_RISC_LOAD:
1497         case OPC_RISC_FP_LOAD:
1498             xinsn = SET_I_IMM(insn, 0);
1499             access_rs1 = GET_RS1(insn);
1500             access_imm = GET_IMM(insn);
1501             access_size = 1 << GET_FUNCT3(insn);
1502             break;
1503         case OPC_RISC_STORE:
1504         case OPC_RISC_FP_STORE:
1505             xinsn = SET_S_IMM(insn, 0);
1506             access_rs1 = GET_RS1(insn);
1507             access_imm = GET_STORE_IMM(insn);
1508             access_size = 1 << GET_FUNCT3(insn);
1509             break;
1510         case OPC_RISC_SYSTEM:
1511             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1512                 xinsn = insn;
1513                 access_rs1 = GET_RS1(insn);
1514                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1515                 access_size = 1 << access_size;
1516             }
1517             break;
1518         default:
1519             break;
1520         }
1521     }
1522 
1523     if (access_size) {
1524         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1525                                (access_size - 1));
1526     }
1527 
1528     return xinsn;
1529 }
1530 #endif /* !CONFIG_USER_ONLY */
1531 
1532 /*
1533  * Handle Traps
1534  *
1535  * Adapted from Spike's processor_t::take_trap.
1536  *
1537  */
1538 void riscv_cpu_do_interrupt(CPUState *cs)
1539 {
1540 #if !defined(CONFIG_USER_ONLY)
1541 
1542     RISCVCPU *cpu = RISCV_CPU(cs);
1543     CPURISCVState *env = &cpu->env;
1544     bool write_gva = false;
1545     uint64_t s;
1546 
1547     /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1548      * so we mask off the MSB and separate into trap type and cause.
1549      */
1550     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1551     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1552     uint64_t deleg = async ? env->mideleg : env->medeleg;
1553     target_ulong tval = 0;
1554     target_ulong tinst = 0;
1555     target_ulong htval = 0;
1556     target_ulong mtval2 = 0;
1557 
1558     if  (cause == RISCV_EXCP_SEMIHOST) {
1559         if (env->priv >= PRV_S) {
1560             do_common_semihosting(cs);
1561             env->pc += 4;
1562             return;
1563         }
1564         cause = RISCV_EXCP_BREAKPOINT;
1565     }
1566 
1567     if (!async) {
1568         /* set tval to badaddr for traps with address information */
1569         switch (cause) {
1570         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1571         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1572         case RISCV_EXCP_LOAD_ADDR_MIS:
1573         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1574         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1575         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1576         case RISCV_EXCP_LOAD_PAGE_FAULT:
1577         case RISCV_EXCP_STORE_PAGE_FAULT:
1578             write_gva = env->two_stage_lookup;
1579             tval = env->badaddr;
1580             if (env->two_stage_indirect_lookup) {
1581                 /*
1582                  * special pseudoinstruction for G-stage fault taken while
1583                  * doing VS-stage page table walk.
1584                  */
1585                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1586             } else {
1587                 /*
1588                  * The "Addr. Offset" field in transformed instruction is
1589                  * non-zero only for misaligned access.
1590                  */
1591                 tinst = riscv_transformed_insn(env, env->bins, tval);
1592             }
1593             break;
1594         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1595         case RISCV_EXCP_INST_ADDR_MIS:
1596         case RISCV_EXCP_INST_ACCESS_FAULT:
1597         case RISCV_EXCP_INST_PAGE_FAULT:
1598             write_gva = env->two_stage_lookup;
1599             tval = env->badaddr;
1600             if (env->two_stage_indirect_lookup) {
1601                 /*
1602                  * special pseudoinstruction for G-stage fault taken while
1603                  * doing VS-stage page table walk.
1604                  */
1605                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1606             }
1607             break;
1608         case RISCV_EXCP_ILLEGAL_INST:
1609         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1610             tval = env->bins;
1611             break;
1612         default:
1613             break;
1614         }
1615         /* ecall is dispatched as one cause so translate based on mode */
1616         if (cause == RISCV_EXCP_U_ECALL) {
1617             assert(env->priv <= 3);
1618 
1619             if (env->priv == PRV_M) {
1620                 cause = RISCV_EXCP_M_ECALL;
1621             } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
1622                 cause = RISCV_EXCP_VS_ECALL;
1623             } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
1624                 cause = RISCV_EXCP_S_ECALL;
1625             } else if (env->priv == PRV_U) {
1626                 cause = RISCV_EXCP_U_ECALL;
1627             }
1628         }
1629     }
1630 
1631     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1632                      riscv_cpu_get_trap_name(cause, async));
1633 
1634     qemu_log_mask(CPU_LOG_INT,
1635                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1636                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1637                   __func__, env->mhartid, async, cause, env->pc, tval,
1638                   riscv_cpu_get_trap_name(cause, async));
1639 
1640     if (env->priv <= PRV_S &&
1641             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1642         /* handle the trap in S-mode */
1643         if (riscv_has_ext(env, RVH)) {
1644             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1645 
1646             if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
1647                 /* Trap to VS mode */
1648                 /*
1649                  * See if we need to adjust cause. Yes if its VS mode interrupt
1650                  * no if hypervisor has delegated one of hs mode's interrupt
1651                  */
1652                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1653                     cause == IRQ_VS_EXT) {
1654                     cause = cause - 1;
1655                 }
1656                 write_gva = false;
1657             } else if (riscv_cpu_virt_enabled(env)) {
1658                 /* Trap into HS mode, from virt */
1659                 riscv_cpu_swap_hypervisor_regs(env);
1660                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1661                                          env->priv);
1662                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1663                                          riscv_cpu_virt_enabled(env));
1664 
1665 
1666                 htval = env->guest_phys_fault_addr;
1667 
1668                 riscv_cpu_set_virt_enabled(env, 0);
1669             } else {
1670                 /* Trap into HS mode */
1671                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1672                 htval = env->guest_phys_fault_addr;
1673             }
1674             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1675         }
1676 
1677         s = env->mstatus;
1678         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1679         s = set_field(s, MSTATUS_SPP, env->priv);
1680         s = set_field(s, MSTATUS_SIE, 0);
1681         env->mstatus = s;
1682         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1683         env->sepc = env->pc;
1684         env->stval = tval;
1685         env->htval = htval;
1686         env->htinst = tinst;
1687         env->pc = (env->stvec >> 2 << 2) +
1688             ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1689         riscv_cpu_set_mode(env, PRV_S);
1690     } else {
1691         /* handle the trap in M-mode */
1692         if (riscv_has_ext(env, RVH)) {
1693             if (riscv_cpu_virt_enabled(env)) {
1694                 riscv_cpu_swap_hypervisor_regs(env);
1695             }
1696             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1697                                      riscv_cpu_virt_enabled(env));
1698             if (riscv_cpu_virt_enabled(env) && tval) {
1699                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1700             }
1701 
1702             mtval2 = env->guest_phys_fault_addr;
1703 
1704             /* Trapping to M mode, virt is disabled */
1705             riscv_cpu_set_virt_enabled(env, 0);
1706         }
1707 
1708         s = env->mstatus;
1709         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1710         s = set_field(s, MSTATUS_MPP, env->priv);
1711         s = set_field(s, MSTATUS_MIE, 0);
1712         env->mstatus = s;
1713         env->mcause = cause | ~(((target_ulong)-1) >> async);
1714         env->mepc = env->pc;
1715         env->mtval = tval;
1716         env->mtval2 = mtval2;
1717         env->mtinst = tinst;
1718         env->pc = (env->mtvec >> 2 << 2) +
1719             ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1720         riscv_cpu_set_mode(env, PRV_M);
1721     }
1722 
1723     /* NOTE: it is not necessary to yield load reservations here. It is only
1724      * necessary for an SC from "another hart" to cause a load reservation
1725      * to be yielded. Refer to the memory consistency model section of the
1726      * RISC-V ISA Specification.
1727      */
1728 
1729     env->two_stage_lookup = false;
1730     env->two_stage_indirect_lookup = false;
1731 #endif
1732     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1733 }
1734