1 /* 2 * RISC-V CPU helpers for qemu. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/main-loop.h" 23 #include "cpu.h" 24 #include "exec/exec-all.h" 25 #include "tcg/tcg-op.h" 26 #include "trace.h" 27 #include "semihosting/common-semi.h" 28 29 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch) 30 { 31 #ifdef CONFIG_USER_ONLY 32 return 0; 33 #else 34 return env->priv; 35 #endif 36 } 37 38 #ifndef CONFIG_USER_ONLY 39 static int riscv_cpu_local_irq_pending(CPURISCVState *env) 40 { 41 target_ulong irqs; 42 43 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE); 44 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE); 45 target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE); 46 47 target_ulong pending = env->mip & env->mie & 48 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 49 target_ulong vspending = (env->mip & env->mie & 50 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)); 51 52 target_ulong mie = env->priv < PRV_M || 53 (env->priv == PRV_M && mstatus_mie); 54 target_ulong sie = env->priv < PRV_S || 55 (env->priv == PRV_S && mstatus_sie); 56 target_ulong hs_sie = env->priv < PRV_S || 57 (env->priv == PRV_S && hs_mstatus_sie); 58 59 if (riscv_cpu_virt_enabled(env)) { 60 target_ulong pending_hs_irq = pending & -hs_sie; 61 62 if (pending_hs_irq) { 63 riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP); 64 return ctz64(pending_hs_irq); 65 } 66 67 pending = vspending; 68 } 69 70 irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie); 71 72 if (irqs) { 73 return ctz64(irqs); /* since non-zero */ 74 } else { 75 return RISCV_EXCP_NONE; /* indicates no pending interrupt */ 76 } 77 } 78 79 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 80 { 81 if (interrupt_request & CPU_INTERRUPT_HARD) { 82 RISCVCPU *cpu = RISCV_CPU(cs); 83 CPURISCVState *env = &cpu->env; 84 int interruptno = riscv_cpu_local_irq_pending(env); 85 if (interruptno >= 0) { 86 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; 87 riscv_cpu_do_interrupt(cs); 88 return true; 89 } 90 } 91 return false; 92 } 93 94 /* Return true is floating point support is currently enabled */ 95 bool riscv_cpu_fp_enabled(CPURISCVState *env) 96 { 97 if (env->mstatus & MSTATUS_FS) { 98 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) { 99 return false; 100 } 101 return true; 102 } 103 104 return false; 105 } 106 107 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) 108 { 109 uint64_t sd = riscv_cpu_is_32bit(env) ? MSTATUS32_SD : MSTATUS64_SD; 110 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS | 111 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE | 112 MSTATUS64_UXL | sd; 113 bool current_virt = riscv_cpu_virt_enabled(env); 114 115 g_assert(riscv_has_ext(env, RVH)); 116 117 if (current_virt) { 118 /* Current V=1 and we are about to change to V=0 */ 119 env->vsstatus = env->mstatus & mstatus_mask; 120 env->mstatus &= ~mstatus_mask; 121 env->mstatus |= env->mstatus_hs; 122 123 env->vstvec = env->stvec; 124 env->stvec = env->stvec_hs; 125 126 env->vsscratch = env->sscratch; 127 env->sscratch = env->sscratch_hs; 128 129 env->vsepc = env->sepc; 130 env->sepc = env->sepc_hs; 131 132 env->vscause = env->scause; 133 env->scause = env->scause_hs; 134 135 env->vstval = env->stval; 136 env->stval = env->stval_hs; 137 138 env->vsatp = env->satp; 139 env->satp = env->satp_hs; 140 } else { 141 /* Current V=0 and we are about to change to V=1 */ 142 env->mstatus_hs = env->mstatus & mstatus_mask; 143 env->mstatus &= ~mstatus_mask; 144 env->mstatus |= env->vsstatus; 145 146 env->stvec_hs = env->stvec; 147 env->stvec = env->vstvec; 148 149 env->sscratch_hs = env->sscratch; 150 env->sscratch = env->vsscratch; 151 152 env->sepc_hs = env->sepc; 153 env->sepc = env->vsepc; 154 155 env->scause_hs = env->scause; 156 env->scause = env->vscause; 157 158 env->stval_hs = env->stval; 159 env->stval = env->vstval; 160 161 env->satp_hs = env->satp; 162 env->satp = env->vsatp; 163 } 164 } 165 166 bool riscv_cpu_virt_enabled(CPURISCVState *env) 167 { 168 if (!riscv_has_ext(env, RVH)) { 169 return false; 170 } 171 172 return get_field(env->virt, VIRT_ONOFF); 173 } 174 175 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable) 176 { 177 if (!riscv_has_ext(env, RVH)) { 178 return; 179 } 180 181 /* Flush the TLB on all virt mode changes. */ 182 if (get_field(env->virt, VIRT_ONOFF) != enable) { 183 tlb_flush(env_cpu(env)); 184 } 185 186 env->virt = set_field(env->virt, VIRT_ONOFF, enable); 187 } 188 189 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env) 190 { 191 if (!riscv_has_ext(env, RVH)) { 192 return false; 193 } 194 195 return get_field(env->virt, FORCE_HS_EXCEP); 196 } 197 198 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable) 199 { 200 if (!riscv_has_ext(env, RVH)) { 201 return; 202 } 203 204 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable); 205 } 206 207 bool riscv_cpu_two_stage_lookup(int mmu_idx) 208 { 209 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK; 210 } 211 212 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts) 213 { 214 CPURISCVState *env = &cpu->env; 215 if (env->miclaim & interrupts) { 216 return -1; 217 } else { 218 env->miclaim |= interrupts; 219 return 0; 220 } 221 } 222 223 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value) 224 { 225 CPURISCVState *env = &cpu->env; 226 CPUState *cs = CPU(cpu); 227 uint32_t old = env->mip; 228 bool locked = false; 229 230 if (!qemu_mutex_iothread_locked()) { 231 locked = true; 232 qemu_mutex_lock_iothread(); 233 } 234 235 env->mip = (env->mip & ~mask) | (value & mask); 236 237 if (env->mip) { 238 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 239 } else { 240 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 241 } 242 243 if (locked) { 244 qemu_mutex_unlock_iothread(); 245 } 246 247 return old; 248 } 249 250 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t), 251 uint32_t arg) 252 { 253 env->rdtime_fn = fn; 254 env->rdtime_fn_arg = arg; 255 } 256 257 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) 258 { 259 if (newpriv > PRV_M) { 260 g_assert_not_reached(); 261 } 262 if (newpriv == PRV_H) { 263 newpriv = PRV_U; 264 } 265 /* tlb_flush is unnecessary as mode is contained in mmu_idx */ 266 env->priv = newpriv; 267 268 /* 269 * Clear the load reservation - otherwise a reservation placed in one 270 * context/process can be used by another, resulting in an SC succeeding 271 * incorrectly. Version 2.2 of the ISA specification explicitly requires 272 * this behaviour, while later revisions say that the kernel "should" use 273 * an SC instruction to force the yielding of a load reservation on a 274 * preemptive context switch. As a result, do both. 275 */ 276 env->load_res = -1; 277 } 278 279 /* 280 * get_physical_address_pmp - check PMP permission for this physical address 281 * 282 * Match the PMP region and check permission for this physical address and it's 283 * TLB page. Returns 0 if the permission checking was successful 284 * 285 * @env: CPURISCVState 286 * @prot: The returned protection attributes 287 * @tlb_size: TLB page size containing addr. It could be modified after PMP 288 * permission checking. NULL if not set TLB page for addr. 289 * @addr: The physical address to be checked permission 290 * @access_type: The type of MMU access 291 * @mode: Indicates current privilege level. 292 */ 293 static int get_physical_address_pmp(CPURISCVState *env, int *prot, 294 target_ulong *tlb_size, hwaddr addr, 295 int size, MMUAccessType access_type, 296 int mode) 297 { 298 pmp_priv_t pmp_priv; 299 target_ulong tlb_size_pmp = 0; 300 301 if (!riscv_feature(env, RISCV_FEATURE_PMP)) { 302 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 303 return TRANSLATE_SUCCESS; 304 } 305 306 if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv, 307 mode)) { 308 *prot = 0; 309 return TRANSLATE_PMP_FAIL; 310 } 311 312 *prot = pmp_priv_to_page_prot(pmp_priv); 313 if (tlb_size != NULL) { 314 if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) { 315 *tlb_size = tlb_size_pmp; 316 } 317 } 318 319 return TRANSLATE_SUCCESS; 320 } 321 322 /* get_physical_address - get the physical address for this virtual address 323 * 324 * Do a page table walk to obtain the physical address corresponding to a 325 * virtual address. Returns 0 if the translation was successful 326 * 327 * Adapted from Spike's mmu_t::translate and mmu_t::walk 328 * 329 * @env: CPURISCVState 330 * @physical: This will be set to the calculated physical address 331 * @prot: The returned protection attributes 332 * @addr: The virtual address to be translated 333 * @fault_pte_addr: If not NULL, this will be set to fault pte address 334 * when a error occurs on pte address translation. 335 * This will already be shifted to match htval. 336 * @access_type: The type of MMU access 337 * @mmu_idx: Indicates current privilege level 338 * @first_stage: Are we in first stage translation? 339 * Second stage is used for hypervisor guest translation 340 * @two_stage: Are we going to perform two stage translation 341 * @is_debug: Is this access from a debugger or the monitor? 342 */ 343 static int get_physical_address(CPURISCVState *env, hwaddr *physical, 344 int *prot, target_ulong addr, 345 target_ulong *fault_pte_addr, 346 int access_type, int mmu_idx, 347 bool first_stage, bool two_stage, 348 bool is_debug) 349 { 350 /* NOTE: the env->pc value visible here will not be 351 * correct, but the value visible to the exception handler 352 * (riscv_cpu_do_interrupt) is correct */ 353 MemTxResult res; 354 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 355 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK; 356 bool use_background = false; 357 358 /* 359 * Check if we should use the background registers for the two 360 * stage translation. We don't need to check if we actually need 361 * two stage translation as that happened before this function 362 * was called. Background registers will be used if the guest has 363 * forced a two stage translation to be on (in HS or M mode). 364 */ 365 if (!riscv_cpu_virt_enabled(env) && two_stage) { 366 use_background = true; 367 } 368 369 /* MPRV does not affect the virtual-machine load/store 370 instructions, HLV, HLVX, and HSV. */ 371 if (riscv_cpu_two_stage_lookup(mmu_idx)) { 372 mode = get_field(env->hstatus, HSTATUS_SPVP); 373 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) { 374 if (get_field(env->mstatus, MSTATUS_MPRV)) { 375 mode = get_field(env->mstatus, MSTATUS_MPP); 376 } 377 } 378 379 if (first_stage == false) { 380 /* We are in stage 2 translation, this is similar to stage 1. */ 381 /* Stage 2 is always taken as U-mode */ 382 mode = PRV_U; 383 } 384 385 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) { 386 *physical = addr; 387 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 388 return TRANSLATE_SUCCESS; 389 } 390 391 *prot = 0; 392 393 hwaddr base; 394 int levels, ptidxbits, ptesize, vm, sum, mxr, widened; 395 396 if (first_stage == true) { 397 mxr = get_field(env->mstatus, MSTATUS_MXR); 398 } else { 399 mxr = get_field(env->vsstatus, MSTATUS_MXR); 400 } 401 402 if (first_stage == true) { 403 if (use_background) { 404 if (riscv_cpu_is_32bit(env)) { 405 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT; 406 vm = get_field(env->vsatp, SATP32_MODE); 407 } else { 408 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT; 409 vm = get_field(env->vsatp, SATP64_MODE); 410 } 411 } else { 412 if (riscv_cpu_is_32bit(env)) { 413 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT; 414 vm = get_field(env->satp, SATP32_MODE); 415 } else { 416 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT; 417 vm = get_field(env->satp, SATP64_MODE); 418 } 419 } 420 widened = 0; 421 } else { 422 if (riscv_cpu_is_32bit(env)) { 423 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT; 424 vm = get_field(env->hgatp, SATP32_MODE); 425 } else { 426 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT; 427 vm = get_field(env->hgatp, SATP64_MODE); 428 } 429 widened = 2; 430 } 431 /* status.SUM will be ignored if execute on background */ 432 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug; 433 switch (vm) { 434 case VM_1_10_SV32: 435 levels = 2; ptidxbits = 10; ptesize = 4; break; 436 case VM_1_10_SV39: 437 levels = 3; ptidxbits = 9; ptesize = 8; break; 438 case VM_1_10_SV48: 439 levels = 4; ptidxbits = 9; ptesize = 8; break; 440 case VM_1_10_SV57: 441 levels = 5; ptidxbits = 9; ptesize = 8; break; 442 case VM_1_10_MBARE: 443 *physical = addr; 444 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 445 return TRANSLATE_SUCCESS; 446 default: 447 g_assert_not_reached(); 448 } 449 450 CPUState *cs = env_cpu(env); 451 int va_bits = PGSHIFT + levels * ptidxbits + widened; 452 target_ulong mask, masked_msbs; 453 454 if (TARGET_LONG_BITS > (va_bits - 1)) { 455 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; 456 } else { 457 mask = 0; 458 } 459 masked_msbs = (addr >> (va_bits - 1)) & mask; 460 461 if (masked_msbs != 0 && masked_msbs != mask) { 462 return TRANSLATE_FAIL; 463 } 464 465 int ptshift = (levels - 1) * ptidxbits; 466 int i; 467 468 #if !TCG_OVERSIZED_GUEST 469 restart: 470 #endif 471 for (i = 0; i < levels; i++, ptshift -= ptidxbits) { 472 target_ulong idx; 473 if (i == 0) { 474 idx = (addr >> (PGSHIFT + ptshift)) & 475 ((1 << (ptidxbits + widened)) - 1); 476 } else { 477 idx = (addr >> (PGSHIFT + ptshift)) & 478 ((1 << ptidxbits) - 1); 479 } 480 481 /* check that physical address of PTE is legal */ 482 hwaddr pte_addr; 483 484 if (two_stage && first_stage) { 485 int vbase_prot; 486 hwaddr vbase; 487 488 /* Do the second stage translation on the base PTE address. */ 489 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, 490 base, NULL, MMU_DATA_LOAD, 491 mmu_idx, false, true, 492 is_debug); 493 494 if (vbase_ret != TRANSLATE_SUCCESS) { 495 if (fault_pte_addr) { 496 *fault_pte_addr = (base + idx * ptesize) >> 2; 497 } 498 return TRANSLATE_G_STAGE_FAIL; 499 } 500 501 pte_addr = vbase + idx * ptesize; 502 } else { 503 pte_addr = base + idx * ptesize; 504 } 505 506 int pmp_prot; 507 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr, 508 sizeof(target_ulong), 509 MMU_DATA_LOAD, PRV_S); 510 if (pmp_ret != TRANSLATE_SUCCESS) { 511 return TRANSLATE_PMP_FAIL; 512 } 513 514 target_ulong pte; 515 if (riscv_cpu_is_32bit(env)) { 516 pte = address_space_ldl(cs->as, pte_addr, attrs, &res); 517 } else { 518 pte = address_space_ldq(cs->as, pte_addr, attrs, &res); 519 } 520 521 if (res != MEMTX_OK) { 522 return TRANSLATE_FAIL; 523 } 524 525 hwaddr ppn = pte >> PTE_PPN_SHIFT; 526 527 if (!(pte & PTE_V)) { 528 /* Invalid PTE */ 529 return TRANSLATE_FAIL; 530 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) { 531 /* Inner PTE, continue walking */ 532 base = ppn << PGSHIFT; 533 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) { 534 /* Reserved leaf PTE flags: PTE_W */ 535 return TRANSLATE_FAIL; 536 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) { 537 /* Reserved leaf PTE flags: PTE_W + PTE_X */ 538 return TRANSLATE_FAIL; 539 } else if ((pte & PTE_U) && ((mode != PRV_U) && 540 (!sum || access_type == MMU_INST_FETCH))) { 541 /* User PTE flags when not U mode and mstatus.SUM is not set, 542 or the access type is an instruction fetch */ 543 return TRANSLATE_FAIL; 544 } else if (!(pte & PTE_U) && (mode != PRV_S)) { 545 /* Supervisor PTE flags when not S mode */ 546 return TRANSLATE_FAIL; 547 } else if (ppn & ((1ULL << ptshift) - 1)) { 548 /* Misaligned PPN */ 549 return TRANSLATE_FAIL; 550 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) || 551 ((pte & PTE_X) && mxr))) { 552 /* Read access check failed */ 553 return TRANSLATE_FAIL; 554 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) { 555 /* Write access check failed */ 556 return TRANSLATE_FAIL; 557 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) { 558 /* Fetch access check failed */ 559 return TRANSLATE_FAIL; 560 } else { 561 /* if necessary, set accessed and dirty bits. */ 562 target_ulong updated_pte = pte | PTE_A | 563 (access_type == MMU_DATA_STORE ? PTE_D : 0); 564 565 /* Page table updates need to be atomic with MTTCG enabled */ 566 if (updated_pte != pte) { 567 /* 568 * - if accessed or dirty bits need updating, and the PTE is 569 * in RAM, then we do so atomically with a compare and swap. 570 * - if the PTE is in IO space or ROM, then it can't be updated 571 * and we return TRANSLATE_FAIL. 572 * - if the PTE changed by the time we went to update it, then 573 * it is no longer valid and we must re-walk the page table. 574 */ 575 MemoryRegion *mr; 576 hwaddr l = sizeof(target_ulong), addr1; 577 mr = address_space_translate(cs->as, pte_addr, 578 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED); 579 if (memory_region_is_ram(mr)) { 580 target_ulong *pte_pa = 581 qemu_map_ram_ptr(mr->ram_block, addr1); 582 #if TCG_OVERSIZED_GUEST 583 /* MTTCG is not enabled on oversized TCG guests so 584 * page table updates do not need to be atomic */ 585 *pte_pa = pte = updated_pte; 586 #else 587 target_ulong old_pte = 588 qatomic_cmpxchg(pte_pa, pte, updated_pte); 589 if (old_pte != pte) { 590 goto restart; 591 } else { 592 pte = updated_pte; 593 } 594 #endif 595 } else { 596 /* misconfigured PTE in ROM (AD bits are not preset) or 597 * PTE is in IO space and can't be updated atomically */ 598 return TRANSLATE_FAIL; 599 } 600 } 601 602 /* for superpage mappings, make a fake leaf PTE for the TLB's 603 benefit. */ 604 target_ulong vpn = addr >> PGSHIFT; 605 *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) | 606 (addr & ~TARGET_PAGE_MASK); 607 608 /* set permissions on the TLB entry */ 609 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) { 610 *prot |= PAGE_READ; 611 } 612 if ((pte & PTE_X)) { 613 *prot |= PAGE_EXEC; 614 } 615 /* add write permission on stores or if the page is already dirty, 616 so that we TLB miss on later writes to update the dirty bit */ 617 if ((pte & PTE_W) && 618 (access_type == MMU_DATA_STORE || (pte & PTE_D))) { 619 *prot |= PAGE_WRITE; 620 } 621 return TRANSLATE_SUCCESS; 622 } 623 } 624 return TRANSLATE_FAIL; 625 } 626 627 static void raise_mmu_exception(CPURISCVState *env, target_ulong address, 628 MMUAccessType access_type, bool pmp_violation, 629 bool first_stage, bool two_stage) 630 { 631 CPUState *cs = env_cpu(env); 632 int page_fault_exceptions, vm; 633 uint64_t stap_mode; 634 635 if (riscv_cpu_is_32bit(env)) { 636 stap_mode = SATP32_MODE; 637 } else { 638 stap_mode = SATP64_MODE; 639 } 640 641 if (first_stage) { 642 vm = get_field(env->satp, stap_mode); 643 } else { 644 vm = get_field(env->hgatp, stap_mode); 645 } 646 647 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation; 648 649 switch (access_type) { 650 case MMU_INST_FETCH: 651 if (riscv_cpu_virt_enabled(env) && !first_stage) { 652 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; 653 } else { 654 cs->exception_index = page_fault_exceptions ? 655 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT; 656 } 657 break; 658 case MMU_DATA_LOAD: 659 if (two_stage && !first_stage) { 660 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; 661 } else { 662 cs->exception_index = page_fault_exceptions ? 663 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT; 664 } 665 break; 666 case MMU_DATA_STORE: 667 if (two_stage && !first_stage) { 668 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; 669 } else { 670 cs->exception_index = page_fault_exceptions ? 671 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 672 } 673 break; 674 default: 675 g_assert_not_reached(); 676 } 677 env->badaddr = address; 678 env->two_stage_lookup = two_stage; 679 } 680 681 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 682 { 683 RISCVCPU *cpu = RISCV_CPU(cs); 684 CPURISCVState *env = &cpu->env; 685 hwaddr phys_addr; 686 int prot; 687 int mmu_idx = cpu_mmu_index(&cpu->env, false); 688 689 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx, 690 true, riscv_cpu_virt_enabled(env), true)) { 691 return -1; 692 } 693 694 if (riscv_cpu_virt_enabled(env)) { 695 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL, 696 0, mmu_idx, false, true, true)) { 697 return -1; 698 } 699 } 700 701 return phys_addr & TARGET_PAGE_MASK; 702 } 703 704 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 705 vaddr addr, unsigned size, 706 MMUAccessType access_type, 707 int mmu_idx, MemTxAttrs attrs, 708 MemTxResult response, uintptr_t retaddr) 709 { 710 RISCVCPU *cpu = RISCV_CPU(cs); 711 CPURISCVState *env = &cpu->env; 712 713 if (access_type == MMU_DATA_STORE) { 714 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 715 } else if (access_type == MMU_DATA_LOAD) { 716 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 717 } else { 718 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT; 719 } 720 721 env->badaddr = addr; 722 env->two_stage_lookup = riscv_cpu_virt_enabled(env) || 723 riscv_cpu_two_stage_lookup(mmu_idx); 724 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr); 725 } 726 727 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 728 MMUAccessType access_type, int mmu_idx, 729 uintptr_t retaddr) 730 { 731 RISCVCPU *cpu = RISCV_CPU(cs); 732 CPURISCVState *env = &cpu->env; 733 switch (access_type) { 734 case MMU_INST_FETCH: 735 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; 736 break; 737 case MMU_DATA_LOAD: 738 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; 739 break; 740 case MMU_DATA_STORE: 741 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; 742 break; 743 default: 744 g_assert_not_reached(); 745 } 746 env->badaddr = addr; 747 env->two_stage_lookup = riscv_cpu_virt_enabled(env) || 748 riscv_cpu_two_stage_lookup(mmu_idx); 749 riscv_raise_exception(env, cs->exception_index, retaddr); 750 } 751 #endif /* !CONFIG_USER_ONLY */ 752 753 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 754 MMUAccessType access_type, int mmu_idx, 755 bool probe, uintptr_t retaddr) 756 { 757 RISCVCPU *cpu = RISCV_CPU(cs); 758 CPURISCVState *env = &cpu->env; 759 #ifndef CONFIG_USER_ONLY 760 vaddr im_address; 761 hwaddr pa = 0; 762 int prot, prot2, prot_pmp; 763 bool pmp_violation = false; 764 bool first_stage_error = true; 765 bool two_stage_lookup = false; 766 int ret = TRANSLATE_FAIL; 767 int mode = mmu_idx; 768 /* default TLB page size */ 769 target_ulong tlb_size = TARGET_PAGE_SIZE; 770 771 env->guest_phys_fault_addr = 0; 772 773 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", 774 __func__, address, access_type, mmu_idx); 775 776 /* MPRV does not affect the virtual-machine load/store 777 instructions, HLV, HLVX, and HSV. */ 778 if (riscv_cpu_two_stage_lookup(mmu_idx)) { 779 mode = get_field(env->hstatus, HSTATUS_SPVP); 780 } else if (mode == PRV_M && access_type != MMU_INST_FETCH && 781 get_field(env->mstatus, MSTATUS_MPRV)) { 782 mode = get_field(env->mstatus, MSTATUS_MPP); 783 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) { 784 two_stage_lookup = true; 785 } 786 } 787 788 if (riscv_cpu_virt_enabled(env) || 789 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) && 790 access_type != MMU_INST_FETCH)) { 791 /* Two stage lookup */ 792 ret = get_physical_address(env, &pa, &prot, address, 793 &env->guest_phys_fault_addr, access_type, 794 mmu_idx, true, true, false); 795 796 /* 797 * A G-stage exception may be triggered during two state lookup. 798 * And the env->guest_phys_fault_addr has already been set in 799 * get_physical_address(). 800 */ 801 if (ret == TRANSLATE_G_STAGE_FAIL) { 802 first_stage_error = false; 803 access_type = MMU_DATA_LOAD; 804 } 805 806 qemu_log_mask(CPU_LOG_MMU, 807 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " 808 TARGET_FMT_plx " prot %d\n", 809 __func__, address, ret, pa, prot); 810 811 if (ret == TRANSLATE_SUCCESS) { 812 /* Second stage lookup */ 813 im_address = pa; 814 815 ret = get_physical_address(env, &pa, &prot2, im_address, NULL, 816 access_type, mmu_idx, false, true, 817 false); 818 819 qemu_log_mask(CPU_LOG_MMU, 820 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical " 821 TARGET_FMT_plx " prot %d\n", 822 __func__, im_address, ret, pa, prot2); 823 824 prot &= prot2; 825 826 if (ret == TRANSLATE_SUCCESS) { 827 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, 828 size, access_type, mode); 829 830 qemu_log_mask(CPU_LOG_MMU, 831 "%s PMP address=" TARGET_FMT_plx " ret %d prot" 832 " %d tlb_size " TARGET_FMT_lu "\n", 833 __func__, pa, ret, prot_pmp, tlb_size); 834 835 prot &= prot_pmp; 836 } 837 838 if (ret != TRANSLATE_SUCCESS) { 839 /* 840 * Guest physical address translation failed, this is a HS 841 * level exception 842 */ 843 first_stage_error = false; 844 env->guest_phys_fault_addr = (im_address | 845 (address & 846 (TARGET_PAGE_SIZE - 1))) >> 2; 847 } 848 } 849 } else { 850 /* Single stage lookup */ 851 ret = get_physical_address(env, &pa, &prot, address, NULL, 852 access_type, mmu_idx, true, false, false); 853 854 qemu_log_mask(CPU_LOG_MMU, 855 "%s address=%" VADDR_PRIx " ret %d physical " 856 TARGET_FMT_plx " prot %d\n", 857 __func__, address, ret, pa, prot); 858 859 if (ret == TRANSLATE_SUCCESS) { 860 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, 861 size, access_type, mode); 862 863 qemu_log_mask(CPU_LOG_MMU, 864 "%s PMP address=" TARGET_FMT_plx " ret %d prot" 865 " %d tlb_size " TARGET_FMT_lu "\n", 866 __func__, pa, ret, prot_pmp, tlb_size); 867 868 prot &= prot_pmp; 869 } 870 } 871 872 if (ret == TRANSLATE_PMP_FAIL) { 873 pmp_violation = true; 874 } 875 876 if (ret == TRANSLATE_SUCCESS) { 877 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), 878 prot, mmu_idx, tlb_size); 879 return true; 880 } else if (probe) { 881 return false; 882 } else { 883 raise_mmu_exception(env, address, access_type, pmp_violation, 884 first_stage_error, 885 riscv_cpu_virt_enabled(env) || 886 riscv_cpu_two_stage_lookup(mmu_idx)); 887 riscv_raise_exception(env, cs->exception_index, retaddr); 888 } 889 890 return true; 891 892 #else 893 switch (access_type) { 894 case MMU_INST_FETCH: 895 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT; 896 break; 897 case MMU_DATA_LOAD: 898 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT; 899 break; 900 case MMU_DATA_STORE: 901 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT; 902 break; 903 default: 904 g_assert_not_reached(); 905 } 906 env->badaddr = address; 907 cpu_loop_exit_restore(cs, retaddr); 908 #endif 909 } 910 911 /* 912 * Handle Traps 913 * 914 * Adapted from Spike's processor_t::take_trap. 915 * 916 */ 917 void riscv_cpu_do_interrupt(CPUState *cs) 918 { 919 #if !defined(CONFIG_USER_ONLY) 920 921 RISCVCPU *cpu = RISCV_CPU(cs); 922 CPURISCVState *env = &cpu->env; 923 bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env); 924 uint64_t s; 925 926 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide 927 * so we mask off the MSB and separate into trap type and cause. 928 */ 929 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); 930 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; 931 target_ulong deleg = async ? env->mideleg : env->medeleg; 932 bool write_tval = false; 933 target_ulong tval = 0; 934 target_ulong htval = 0; 935 target_ulong mtval2 = 0; 936 937 if (cause == RISCV_EXCP_SEMIHOST) { 938 if (env->priv >= PRV_S) { 939 env->gpr[xA0] = do_common_semihosting(cs); 940 env->pc += 4; 941 return; 942 } 943 cause = RISCV_EXCP_BREAKPOINT; 944 } 945 946 if (!async) { 947 /* set tval to badaddr for traps with address information */ 948 switch (cause) { 949 case RISCV_EXCP_INST_GUEST_PAGE_FAULT: 950 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: 951 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: 952 force_hs_execp = true; 953 /* fallthrough */ 954 case RISCV_EXCP_INST_ADDR_MIS: 955 case RISCV_EXCP_INST_ACCESS_FAULT: 956 case RISCV_EXCP_LOAD_ADDR_MIS: 957 case RISCV_EXCP_STORE_AMO_ADDR_MIS: 958 case RISCV_EXCP_LOAD_ACCESS_FAULT: 959 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: 960 case RISCV_EXCP_INST_PAGE_FAULT: 961 case RISCV_EXCP_LOAD_PAGE_FAULT: 962 case RISCV_EXCP_STORE_PAGE_FAULT: 963 write_tval = true; 964 tval = env->badaddr; 965 break; 966 default: 967 break; 968 } 969 /* ecall is dispatched as one cause so translate based on mode */ 970 if (cause == RISCV_EXCP_U_ECALL) { 971 assert(env->priv <= 3); 972 973 if (env->priv == PRV_M) { 974 cause = RISCV_EXCP_M_ECALL; 975 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) { 976 cause = RISCV_EXCP_VS_ECALL; 977 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) { 978 cause = RISCV_EXCP_S_ECALL; 979 } else if (env->priv == PRV_U) { 980 cause = RISCV_EXCP_U_ECALL; 981 } 982 } 983 } 984 985 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, 986 riscv_cpu_get_trap_name(cause, async)); 987 988 qemu_log_mask(CPU_LOG_INT, 989 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", " 990 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n", 991 __func__, env->mhartid, async, cause, env->pc, tval, 992 riscv_cpu_get_trap_name(cause, async)); 993 994 if (env->priv <= PRV_S && 995 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) { 996 /* handle the trap in S-mode */ 997 if (riscv_has_ext(env, RVH)) { 998 target_ulong hdeleg = async ? env->hideleg : env->hedeleg; 999 1000 if (env->two_stage_lookup && write_tval) { 1001 /* 1002 * If we are writing a guest virtual address to stval, set 1003 * this to 1. If we are trapping to VS we will set this to 0 1004 * later. 1005 */ 1006 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1); 1007 } else { 1008 /* For other HS-mode traps, we set this to 0. */ 1009 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0); 1010 } 1011 1012 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) && 1013 !force_hs_execp) { 1014 /* Trap to VS mode */ 1015 /* 1016 * See if we need to adjust cause. Yes if its VS mode interrupt 1017 * no if hypervisor has delegated one of hs mode's interrupt 1018 */ 1019 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || 1020 cause == IRQ_VS_EXT) { 1021 cause = cause - 1; 1022 } 1023 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0); 1024 } else if (riscv_cpu_virt_enabled(env)) { 1025 /* Trap into HS mode, from virt */ 1026 riscv_cpu_swap_hypervisor_regs(env); 1027 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, 1028 env->priv); 1029 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, 1030 riscv_cpu_virt_enabled(env)); 1031 1032 htval = env->guest_phys_fault_addr; 1033 1034 riscv_cpu_set_virt_enabled(env, 0); 1035 riscv_cpu_set_force_hs_excep(env, 0); 1036 } else { 1037 /* Trap into HS mode */ 1038 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false); 1039 htval = env->guest_phys_fault_addr; 1040 } 1041 } 1042 1043 s = env->mstatus; 1044 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); 1045 s = set_field(s, MSTATUS_SPP, env->priv); 1046 s = set_field(s, MSTATUS_SIE, 0); 1047 env->mstatus = s; 1048 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); 1049 env->sepc = env->pc; 1050 env->stval = tval; 1051 env->htval = htval; 1052 env->pc = (env->stvec >> 2 << 2) + 1053 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); 1054 riscv_cpu_set_mode(env, PRV_S); 1055 } else { 1056 /* handle the trap in M-mode */ 1057 if (riscv_has_ext(env, RVH)) { 1058 if (riscv_cpu_virt_enabled(env)) { 1059 riscv_cpu_swap_hypervisor_regs(env); 1060 } 1061 env->mstatus = set_field(env->mstatus, MSTATUS_MPV, 1062 riscv_cpu_virt_enabled(env)); 1063 if (riscv_cpu_virt_enabled(env) && tval) { 1064 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); 1065 } 1066 1067 mtval2 = env->guest_phys_fault_addr; 1068 1069 /* Trapping to M mode, virt is disabled */ 1070 riscv_cpu_set_virt_enabled(env, 0); 1071 riscv_cpu_set_force_hs_excep(env, 0); 1072 } 1073 1074 s = env->mstatus; 1075 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); 1076 s = set_field(s, MSTATUS_MPP, env->priv); 1077 s = set_field(s, MSTATUS_MIE, 0); 1078 env->mstatus = s; 1079 env->mcause = cause | ~(((target_ulong)-1) >> async); 1080 env->mepc = env->pc; 1081 env->mtval = tval; 1082 env->mtval2 = mtval2; 1083 env->pc = (env->mtvec >> 2 << 2) + 1084 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); 1085 riscv_cpu_set_mode(env, PRV_M); 1086 } 1087 1088 /* NOTE: it is not necessary to yield load reservations here. It is only 1089 * necessary for an SC from "another hart" to cause a load reservation 1090 * to be yielded. Refer to the memory consistency model section of the 1091 * RISC-V ISA Specification. 1092 */ 1093 1094 env->two_stage_lookup = false; 1095 #endif 1096 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */ 1097 } 1098