xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision 5a4ae64c)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "pmu.h"
25 #include "exec/exec-all.h"
26 #include "instmap.h"
27 #include "tcg/tcg-op.h"
28 #include "trace.h"
29 #include "semihosting/common-semi.h"
30 #include "sysemu/cpu-timers.h"
31 #include "cpu_bits.h"
32 #include "debug.h"
33 
34 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
35 {
36 #ifdef CONFIG_USER_ONLY
37     return 0;
38 #else
39     return env->priv;
40 #endif
41 }
42 
43 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
44                           target_ulong *cs_base, uint32_t *pflags)
45 {
46     CPUState *cs = env_cpu(env);
47     RISCVCPU *cpu = RISCV_CPU(cs);
48 
49     uint32_t flags = 0;
50 
51     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
52     *cs_base = 0;
53 
54     if (riscv_has_ext(env, RVV) || cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) {
55         /*
56          * If env->vl equals to VLMAX, we can use generic vector operation
57          * expanders (GVEC) to accerlate the vector operations.
58          * However, as LMUL could be a fractional number. The maximum
59          * vector size can be operated might be less than 8 bytes,
60          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
61          * only when maxsz >= 8 bytes.
62          */
63         uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype);
64         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
65         uint32_t maxsz = vlmax << sew;
66         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
67                            (maxsz >= 8);
68         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
69         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
70         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
71                     FIELD_EX64(env->vtype, VTYPE, VLMUL));
72         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
73         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
74                     FIELD_EX64(env->vtype, VTYPE, VTA));
75         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
76                     FIELD_EX64(env->vtype, VTYPE, VMA));
77     } else {
78         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
79     }
80 
81 #ifdef CONFIG_USER_ONLY
82     flags |= TB_FLAGS_MSTATUS_FS;
83     flags |= TB_FLAGS_MSTATUS_VS;
84 #else
85     flags |= cpu_mmu_index(env, 0);
86     if (riscv_cpu_fp_enabled(env)) {
87         flags |= env->mstatus & MSTATUS_FS;
88     }
89 
90     if (riscv_cpu_vector_enabled(env)) {
91         flags |= env->mstatus & MSTATUS_VS;
92     }
93 
94     if (riscv_has_ext(env, RVH)) {
95         if (env->priv == PRV_M ||
96             (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
97             (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
98                 get_field(env->hstatus, HSTATUS_HU))) {
99             flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
100         }
101 
102         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
103                            get_field(env->mstatus_hs, MSTATUS_FS));
104 
105         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS,
106                            get_field(env->mstatus_hs, MSTATUS_VS));
107     }
108     if (riscv_feature(env, RISCV_FEATURE_DEBUG) && !icount_enabled()) {
109         flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER,
110                            riscv_itrigger_enabled(env));
111     }
112 #endif
113 
114     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
115     if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
116         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
117     }
118     if (env->cur_pmbase != 0) {
119         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
120     }
121 
122     *pflags = flags;
123 }
124 
125 void riscv_cpu_update_mask(CPURISCVState *env)
126 {
127     target_ulong mask = -1, base = 0;
128     /*
129      * TODO: Current RVJ spec does not specify
130      * how the extension interacts with XLEN.
131      */
132 #ifndef CONFIG_USER_ONLY
133     if (riscv_has_ext(env, RVJ)) {
134         switch (env->priv) {
135         case PRV_M:
136             if (env->mmte & M_PM_ENABLE) {
137                 mask = env->mpmmask;
138                 base = env->mpmbase;
139             }
140             break;
141         case PRV_S:
142             if (env->mmte & S_PM_ENABLE) {
143                 mask = env->spmmask;
144                 base = env->spmbase;
145             }
146             break;
147         case PRV_U:
148             if (env->mmte & U_PM_ENABLE) {
149                 mask = env->upmmask;
150                 base = env->upmbase;
151             }
152             break;
153         default:
154             g_assert_not_reached();
155         }
156     }
157 #endif
158     if (env->xl == MXL_RV32) {
159         env->cur_pmmask = mask & UINT32_MAX;
160         env->cur_pmbase = base & UINT32_MAX;
161     } else {
162         env->cur_pmmask = mask;
163         env->cur_pmbase = base;
164     }
165 }
166 
167 #ifndef CONFIG_USER_ONLY
168 
169 /*
170  * The HS-mode is allowed to configure priority only for the
171  * following VS-mode local interrupts:
172  *
173  * 0  (Reserved interrupt, reads as zero)
174  * 1  Supervisor software interrupt
175  * 4  (Reserved interrupt, reads as zero)
176  * 5  Supervisor timer interrupt
177  * 8  (Reserved interrupt, reads as zero)
178  * 13 (Reserved interrupt)
179  * 14 "
180  * 15 "
181  * 16 "
182  * 17 "
183  * 18 "
184  * 19 "
185  * 20 "
186  * 21 "
187  * 22 "
188  * 23 "
189  */
190 
191 static const int hviprio_index2irq[] = {
192     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
193 static const int hviprio_index2rdzero[] = {
194     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
195 
196 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
197 {
198     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
199         return -EINVAL;
200     }
201 
202     if (out_irq) {
203         *out_irq = hviprio_index2irq[index];
204     }
205 
206     if (out_rdzero) {
207         *out_rdzero = hviprio_index2rdzero[index];
208     }
209 
210     return 0;
211 }
212 
213 /*
214  * Default priorities of local interrupts are defined in the
215  * RISC-V Advanced Interrupt Architecture specification.
216  *
217  * ----------------------------------------------------------------
218  *  Default  |
219  *  Priority | Major Interrupt Numbers
220  * ----------------------------------------------------------------
221  *  Highest  | 47, 23, 46, 45, 22, 44,
222  *           | 43, 21, 42, 41, 20, 40
223  *           |
224  *           | 11 (0b),  3 (03),  7 (07)
225  *           |  9 (09),  1 (01),  5 (05)
226  *           | 12 (0c)
227  *           | 10 (0a),  2 (02),  6 (06)
228  *           |
229  *           | 39, 19, 38, 37, 18, 36,
230  *  Lowest   | 35, 17, 34, 33, 16, 32
231  * ----------------------------------------------------------------
232  */
233 static const uint8_t default_iprio[64] = {
234  /* Custom interrupts 48 to 63 */
235  [63] = IPRIO_MMAXIPRIO,
236  [62] = IPRIO_MMAXIPRIO,
237  [61] = IPRIO_MMAXIPRIO,
238  [60] = IPRIO_MMAXIPRIO,
239  [59] = IPRIO_MMAXIPRIO,
240  [58] = IPRIO_MMAXIPRIO,
241  [57] = IPRIO_MMAXIPRIO,
242  [56] = IPRIO_MMAXIPRIO,
243  [55] = IPRIO_MMAXIPRIO,
244  [54] = IPRIO_MMAXIPRIO,
245  [53] = IPRIO_MMAXIPRIO,
246  [52] = IPRIO_MMAXIPRIO,
247  [51] = IPRIO_MMAXIPRIO,
248  [50] = IPRIO_MMAXIPRIO,
249  [49] = IPRIO_MMAXIPRIO,
250  [48] = IPRIO_MMAXIPRIO,
251 
252  /* Custom interrupts 24 to 31 */
253  [31] = IPRIO_MMAXIPRIO,
254  [30] = IPRIO_MMAXIPRIO,
255  [29] = IPRIO_MMAXIPRIO,
256  [28] = IPRIO_MMAXIPRIO,
257  [27] = IPRIO_MMAXIPRIO,
258  [26] = IPRIO_MMAXIPRIO,
259  [25] = IPRIO_MMAXIPRIO,
260  [24] = IPRIO_MMAXIPRIO,
261 
262  [47] = IPRIO_DEFAULT_UPPER,
263  [23] = IPRIO_DEFAULT_UPPER + 1,
264  [46] = IPRIO_DEFAULT_UPPER + 2,
265  [45] = IPRIO_DEFAULT_UPPER + 3,
266  [22] = IPRIO_DEFAULT_UPPER + 4,
267  [44] = IPRIO_DEFAULT_UPPER + 5,
268 
269  [43] = IPRIO_DEFAULT_UPPER + 6,
270  [21] = IPRIO_DEFAULT_UPPER + 7,
271  [42] = IPRIO_DEFAULT_UPPER + 8,
272  [41] = IPRIO_DEFAULT_UPPER + 9,
273  [20] = IPRIO_DEFAULT_UPPER + 10,
274  [40] = IPRIO_DEFAULT_UPPER + 11,
275 
276  [11] = IPRIO_DEFAULT_M,
277  [3]  = IPRIO_DEFAULT_M + 1,
278  [7]  = IPRIO_DEFAULT_M + 2,
279 
280  [9]  = IPRIO_DEFAULT_S,
281  [1]  = IPRIO_DEFAULT_S + 1,
282  [5]  = IPRIO_DEFAULT_S + 2,
283 
284  [12] = IPRIO_DEFAULT_SGEXT,
285 
286  [10] = IPRIO_DEFAULT_VS,
287  [2]  = IPRIO_DEFAULT_VS + 1,
288  [6]  = IPRIO_DEFAULT_VS + 2,
289 
290  [39] = IPRIO_DEFAULT_LOWER,
291  [19] = IPRIO_DEFAULT_LOWER + 1,
292  [38] = IPRIO_DEFAULT_LOWER + 2,
293  [37] = IPRIO_DEFAULT_LOWER + 3,
294  [18] = IPRIO_DEFAULT_LOWER + 4,
295  [36] = IPRIO_DEFAULT_LOWER + 5,
296 
297  [35] = IPRIO_DEFAULT_LOWER + 6,
298  [17] = IPRIO_DEFAULT_LOWER + 7,
299  [34] = IPRIO_DEFAULT_LOWER + 8,
300  [33] = IPRIO_DEFAULT_LOWER + 9,
301  [16] = IPRIO_DEFAULT_LOWER + 10,
302  [32] = IPRIO_DEFAULT_LOWER + 11,
303 };
304 
305 uint8_t riscv_cpu_default_priority(int irq)
306 {
307     if (irq < 0 || irq > 63) {
308         return IPRIO_MMAXIPRIO;
309     }
310 
311     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
312 };
313 
314 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
315                                     int extirq, unsigned int extirq_def_prio,
316                                     uint64_t pending, uint8_t *iprio)
317 {
318     RISCVCPU *cpu = env_archcpu(env);
319     int irq, best_irq = RISCV_EXCP_NONE;
320     unsigned int prio, best_prio = UINT_MAX;
321 
322     if (!pending) {
323         return RISCV_EXCP_NONE;
324     }
325 
326     irq = ctz64(pending);
327     if (!((extirq == IRQ_M_EXT) ? cpu->cfg.ext_smaia : cpu->cfg.ext_ssaia)) {
328         return irq;
329     }
330 
331     pending = pending >> irq;
332     while (pending) {
333         prio = iprio[irq];
334         if (!prio) {
335             if (irq == extirq) {
336                 prio = extirq_def_prio;
337             } else {
338                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
339                        1 : IPRIO_MMAXIPRIO;
340             }
341         }
342         if ((pending & 0x1) && (prio <= best_prio)) {
343             best_irq = irq;
344             best_prio = prio;
345         }
346         irq++;
347         pending = pending >> 1;
348     }
349 
350     return best_irq;
351 }
352 
353 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
354 {
355     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
356     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
357     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
358 
359     return (env->mip | vsgein | vstip) & env->mie;
360 }
361 
362 int riscv_cpu_mirq_pending(CPURISCVState *env)
363 {
364     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
365                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
366 
367     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
368                                     irqs, env->miprio);
369 }
370 
371 int riscv_cpu_sirq_pending(CPURISCVState *env)
372 {
373     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
374                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
375 
376     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
377                                     irqs, env->siprio);
378 }
379 
380 int riscv_cpu_vsirq_pending(CPURISCVState *env)
381 {
382     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
383                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
384 
385     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
386                                     irqs >> 1, env->hviprio);
387 }
388 
389 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
390 {
391     int virq;
392     uint64_t irqs, pending, mie, hsie, vsie;
393 
394     /* Determine interrupt enable state of all privilege modes */
395     if (riscv_cpu_virt_enabled(env)) {
396         mie = 1;
397         hsie = 1;
398         vsie = (env->priv < PRV_S) ||
399                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
400     } else {
401         mie = (env->priv < PRV_M) ||
402               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
403         hsie = (env->priv < PRV_S) ||
404                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
405         vsie = 0;
406     }
407 
408     /* Determine all pending interrupts */
409     pending = riscv_cpu_all_pending(env);
410 
411     /* Check M-mode interrupts */
412     irqs = pending & ~env->mideleg & -mie;
413     if (irqs) {
414         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
415                                         irqs, env->miprio);
416     }
417 
418     /* Check HS-mode interrupts */
419     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
420     if (irqs) {
421         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
422                                         irqs, env->siprio);
423     }
424 
425     /* Check VS-mode interrupts */
426     irqs = pending & env->mideleg & env->hideleg & -vsie;
427     if (irqs) {
428         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
429                                         irqs >> 1, env->hviprio);
430         return (virq <= 0) ? virq : virq + 1;
431     }
432 
433     /* Indicate no pending interrupt */
434     return RISCV_EXCP_NONE;
435 }
436 
437 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
438 {
439     if (interrupt_request & CPU_INTERRUPT_HARD) {
440         RISCVCPU *cpu = RISCV_CPU(cs);
441         CPURISCVState *env = &cpu->env;
442         int interruptno = riscv_cpu_local_irq_pending(env);
443         if (interruptno >= 0) {
444             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
445             riscv_cpu_do_interrupt(cs);
446             return true;
447         }
448     }
449     return false;
450 }
451 
452 /* Return true is floating point support is currently enabled */
453 bool riscv_cpu_fp_enabled(CPURISCVState *env)
454 {
455     if (env->mstatus & MSTATUS_FS) {
456         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
457             return false;
458         }
459         return true;
460     }
461 
462     return false;
463 }
464 
465 /* Return true is vector support is currently enabled */
466 bool riscv_cpu_vector_enabled(CPURISCVState *env)
467 {
468     if (env->mstatus & MSTATUS_VS) {
469         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) {
470             return false;
471         }
472         return true;
473     }
474 
475     return false;
476 }
477 
478 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
479 {
480     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
481                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
482                             MSTATUS64_UXL | MSTATUS_VS;
483 
484     if (riscv_has_ext(env, RVF)) {
485         mstatus_mask |= MSTATUS_FS;
486     }
487     bool current_virt = riscv_cpu_virt_enabled(env);
488 
489     g_assert(riscv_has_ext(env, RVH));
490 
491     if (current_virt) {
492         /* Current V=1 and we are about to change to V=0 */
493         env->vsstatus = env->mstatus & mstatus_mask;
494         env->mstatus &= ~mstatus_mask;
495         env->mstatus |= env->mstatus_hs;
496 
497         env->vstvec = env->stvec;
498         env->stvec = env->stvec_hs;
499 
500         env->vsscratch = env->sscratch;
501         env->sscratch = env->sscratch_hs;
502 
503         env->vsepc = env->sepc;
504         env->sepc = env->sepc_hs;
505 
506         env->vscause = env->scause;
507         env->scause = env->scause_hs;
508 
509         env->vstval = env->stval;
510         env->stval = env->stval_hs;
511 
512         env->vsatp = env->satp;
513         env->satp = env->satp_hs;
514     } else {
515         /* Current V=0 and we are about to change to V=1 */
516         env->mstatus_hs = env->mstatus & mstatus_mask;
517         env->mstatus &= ~mstatus_mask;
518         env->mstatus |= env->vsstatus;
519 
520         env->stvec_hs = env->stvec;
521         env->stvec = env->vstvec;
522 
523         env->sscratch_hs = env->sscratch;
524         env->sscratch = env->vsscratch;
525 
526         env->sepc_hs = env->sepc;
527         env->sepc = env->vsepc;
528 
529         env->scause_hs = env->scause;
530         env->scause = env->vscause;
531 
532         env->stval_hs = env->stval;
533         env->stval = env->vstval;
534 
535         env->satp_hs = env->satp;
536         env->satp = env->vsatp;
537     }
538 }
539 
540 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
541 {
542     if (!riscv_has_ext(env, RVH)) {
543         return 0;
544     }
545 
546     return env->geilen;
547 }
548 
549 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
550 {
551     if (!riscv_has_ext(env, RVH)) {
552         return;
553     }
554 
555     if (geilen > (TARGET_LONG_BITS - 1)) {
556         return;
557     }
558 
559     env->geilen = geilen;
560 }
561 
562 bool riscv_cpu_virt_enabled(CPURISCVState *env)
563 {
564     if (!riscv_has_ext(env, RVH)) {
565         return false;
566     }
567 
568     return get_field(env->virt, VIRT_ONOFF);
569 }
570 
571 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
572 {
573     if (!riscv_has_ext(env, RVH)) {
574         return;
575     }
576 
577     /* Flush the TLB on all virt mode changes. */
578     if (get_field(env->virt, VIRT_ONOFF) != enable) {
579         tlb_flush(env_cpu(env));
580     }
581 
582     env->virt = set_field(env->virt, VIRT_ONOFF, enable);
583 
584     if (enable) {
585         /*
586          * The guest external interrupts from an interrupt controller are
587          * delivered only when the Guest/VM is running (i.e. V=1). This means
588          * any guest external interrupt which is triggered while the Guest/VM
589          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
590          * with sluggish response to serial console input and other I/O events.
591          *
592          * To solve this, we check and inject interrupt after setting V=1.
593          */
594         riscv_cpu_update_mip(env_archcpu(env), 0, 0);
595     }
596 }
597 
598 bool riscv_cpu_two_stage_lookup(int mmu_idx)
599 {
600     return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
601 }
602 
603 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
604 {
605     CPURISCVState *env = &cpu->env;
606     if (env->miclaim & interrupts) {
607         return -1;
608     } else {
609         env->miclaim |= interrupts;
610         return 0;
611     }
612 }
613 
614 uint64_t riscv_cpu_update_mip(RISCVCPU *cpu, uint64_t mask, uint64_t value)
615 {
616     CPURISCVState *env = &cpu->env;
617     CPUState *cs = CPU(cpu);
618     uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
619     bool locked = false;
620 
621     if (riscv_cpu_virt_enabled(env)) {
622         gein = get_field(env->hstatus, HSTATUS_VGEIN);
623         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
624     }
625 
626     /* No need to update mip for VSTIP */
627     mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask;
628     vstip = env->vstime_irq ? MIP_VSTIP : 0;
629 
630     if (!qemu_mutex_iothread_locked()) {
631         locked = true;
632         qemu_mutex_lock_iothread();
633     }
634 
635     env->mip = (env->mip & ~mask) | (value & mask);
636 
637     if (env->mip | vsgein | vstip) {
638         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
639     } else {
640         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
641     }
642 
643     if (locked) {
644         qemu_mutex_unlock_iothread();
645     }
646 
647     return old;
648 }
649 
650 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
651                              void *arg)
652 {
653     env->rdtime_fn = fn;
654     env->rdtime_fn_arg = arg;
655 }
656 
657 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
658                                    int (*rmw_fn)(void *arg,
659                                                  target_ulong reg,
660                                                  target_ulong *val,
661                                                  target_ulong new_val,
662                                                  target_ulong write_mask),
663                                    void *rmw_fn_arg)
664 {
665     if (priv <= PRV_M) {
666         env->aia_ireg_rmw_fn[priv] = rmw_fn;
667         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
668     }
669 }
670 
671 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
672 {
673     if (newpriv > PRV_M) {
674         g_assert_not_reached();
675     }
676     if (newpriv == PRV_H) {
677         newpriv = PRV_U;
678     }
679     if (icount_enabled() && newpriv != env->priv) {
680         riscv_itrigger_update_priv(env);
681     }
682     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
683     env->priv = newpriv;
684     env->xl = cpu_recompute_xl(env);
685     riscv_cpu_update_mask(env);
686 
687     /*
688      * Clear the load reservation - otherwise a reservation placed in one
689      * context/process can be used by another, resulting in an SC succeeding
690      * incorrectly. Version 2.2 of the ISA specification explicitly requires
691      * this behaviour, while later revisions say that the kernel "should" use
692      * an SC instruction to force the yielding of a load reservation on a
693      * preemptive context switch. As a result, do both.
694      */
695     env->load_res = -1;
696 }
697 
698 /*
699  * get_physical_address_pmp - check PMP permission for this physical address
700  *
701  * Match the PMP region and check permission for this physical address and it's
702  * TLB page. Returns 0 if the permission checking was successful
703  *
704  * @env: CPURISCVState
705  * @prot: The returned protection attributes
706  * @tlb_size: TLB page size containing addr. It could be modified after PMP
707  *            permission checking. NULL if not set TLB page for addr.
708  * @addr: The physical address to be checked permission
709  * @access_type: The type of MMU access
710  * @mode: Indicates current privilege level.
711  */
712 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
713                                     target_ulong *tlb_size, hwaddr addr,
714                                     int size, MMUAccessType access_type,
715                                     int mode)
716 {
717     pmp_priv_t pmp_priv;
718     int pmp_index = -1;
719 
720     if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
721         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
722         return TRANSLATE_SUCCESS;
723     }
724 
725     pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
726                                    &pmp_priv, mode);
727     if (pmp_index < 0) {
728         *prot = 0;
729         return TRANSLATE_PMP_FAIL;
730     }
731 
732     *prot = pmp_priv_to_page_prot(pmp_priv);
733     if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
734         target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
735         target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
736 
737         *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
738     }
739 
740     return TRANSLATE_SUCCESS;
741 }
742 
743 /* get_physical_address - get the physical address for this virtual address
744  *
745  * Do a page table walk to obtain the physical address corresponding to a
746  * virtual address. Returns 0 if the translation was successful
747  *
748  * Adapted from Spike's mmu_t::translate and mmu_t::walk
749  *
750  * @env: CPURISCVState
751  * @physical: This will be set to the calculated physical address
752  * @prot: The returned protection attributes
753  * @addr: The virtual address to be translated
754  * @fault_pte_addr: If not NULL, this will be set to fault pte address
755  *                  when a error occurs on pte address translation.
756  *                  This will already be shifted to match htval.
757  * @access_type: The type of MMU access
758  * @mmu_idx: Indicates current privilege level
759  * @first_stage: Are we in first stage translation?
760  *               Second stage is used for hypervisor guest translation
761  * @two_stage: Are we going to perform two stage translation
762  * @is_debug: Is this access from a debugger or the monitor?
763  */
764 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
765                                 int *prot, target_ulong addr,
766                                 target_ulong *fault_pte_addr,
767                                 int access_type, int mmu_idx,
768                                 bool first_stage, bool two_stage,
769                                 bool is_debug)
770 {
771     /* NOTE: the env->pc value visible here will not be
772      * correct, but the value visible to the exception handler
773      * (riscv_cpu_do_interrupt) is correct */
774     MemTxResult res;
775     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
776     int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
777     bool use_background = false;
778     hwaddr ppn;
779     RISCVCPU *cpu = env_archcpu(env);
780     int napot_bits = 0;
781     target_ulong napot_mask;
782 
783     /*
784      * Check if we should use the background registers for the two
785      * stage translation. We don't need to check if we actually need
786      * two stage translation as that happened before this function
787      * was called. Background registers will be used if the guest has
788      * forced a two stage translation to be on (in HS or M mode).
789      */
790     if (!riscv_cpu_virt_enabled(env) && two_stage) {
791         use_background = true;
792     }
793 
794     /* MPRV does not affect the virtual-machine load/store
795        instructions, HLV, HLVX, and HSV. */
796     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
797         mode = get_field(env->hstatus, HSTATUS_SPVP);
798     } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
799         if (get_field(env->mstatus, MSTATUS_MPRV)) {
800             mode = get_field(env->mstatus, MSTATUS_MPP);
801         }
802     }
803 
804     if (first_stage == false) {
805         /* We are in stage 2 translation, this is similar to stage 1. */
806         /* Stage 2 is always taken as U-mode */
807         mode = PRV_U;
808     }
809 
810     if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
811         *physical = addr;
812         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
813         return TRANSLATE_SUCCESS;
814     }
815 
816     *prot = 0;
817 
818     hwaddr base;
819     int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
820 
821     if (first_stage == true) {
822         mxr = get_field(env->mstatus, MSTATUS_MXR);
823     } else {
824         mxr = get_field(env->vsstatus, MSTATUS_MXR);
825     }
826 
827     if (first_stage == true) {
828         if (use_background) {
829             if (riscv_cpu_mxl(env) == MXL_RV32) {
830                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
831                 vm = get_field(env->vsatp, SATP32_MODE);
832             } else {
833                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
834                 vm = get_field(env->vsatp, SATP64_MODE);
835             }
836         } else {
837             if (riscv_cpu_mxl(env) == MXL_RV32) {
838                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
839                 vm = get_field(env->satp, SATP32_MODE);
840             } else {
841                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
842                 vm = get_field(env->satp, SATP64_MODE);
843             }
844         }
845         widened = 0;
846     } else {
847         if (riscv_cpu_mxl(env) == MXL_RV32) {
848             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
849             vm = get_field(env->hgatp, SATP32_MODE);
850         } else {
851             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
852             vm = get_field(env->hgatp, SATP64_MODE);
853         }
854         widened = 2;
855     }
856     /* status.SUM will be ignored if execute on background */
857     sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
858     switch (vm) {
859     case VM_1_10_SV32:
860       levels = 2; ptidxbits = 10; ptesize = 4; break;
861     case VM_1_10_SV39:
862       levels = 3; ptidxbits = 9; ptesize = 8; break;
863     case VM_1_10_SV48:
864       levels = 4; ptidxbits = 9; ptesize = 8; break;
865     case VM_1_10_SV57:
866       levels = 5; ptidxbits = 9; ptesize = 8; break;
867     case VM_1_10_MBARE:
868         *physical = addr;
869         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
870         return TRANSLATE_SUCCESS;
871     default:
872       g_assert_not_reached();
873     }
874 
875     CPUState *cs = env_cpu(env);
876     int va_bits = PGSHIFT + levels * ptidxbits + widened;
877     target_ulong mask, masked_msbs;
878 
879     if (TARGET_LONG_BITS > (va_bits - 1)) {
880         mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
881     } else {
882         mask = 0;
883     }
884     masked_msbs = (addr >> (va_bits - 1)) & mask;
885 
886     if (masked_msbs != 0 && masked_msbs != mask) {
887         return TRANSLATE_FAIL;
888     }
889 
890     int ptshift = (levels - 1) * ptidxbits;
891     int i;
892 
893 #if !TCG_OVERSIZED_GUEST
894 restart:
895 #endif
896     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
897         target_ulong idx;
898         if (i == 0) {
899             idx = (addr >> (PGSHIFT + ptshift)) &
900                            ((1 << (ptidxbits + widened)) - 1);
901         } else {
902             idx = (addr >> (PGSHIFT + ptshift)) &
903                            ((1 << ptidxbits) - 1);
904         }
905 
906         /* check that physical address of PTE is legal */
907         hwaddr pte_addr;
908 
909         if (two_stage && first_stage) {
910             int vbase_prot;
911             hwaddr vbase;
912 
913             /* Do the second stage translation on the base PTE address. */
914             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
915                                                  base, NULL, MMU_DATA_LOAD,
916                                                  mmu_idx, false, true,
917                                                  is_debug);
918 
919             if (vbase_ret != TRANSLATE_SUCCESS) {
920                 if (fault_pte_addr) {
921                     *fault_pte_addr = (base + idx * ptesize) >> 2;
922                 }
923                 return TRANSLATE_G_STAGE_FAIL;
924             }
925 
926             pte_addr = vbase + idx * ptesize;
927         } else {
928             pte_addr = base + idx * ptesize;
929         }
930 
931         int pmp_prot;
932         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
933                                                sizeof(target_ulong),
934                                                MMU_DATA_LOAD, PRV_S);
935         if (pmp_ret != TRANSLATE_SUCCESS) {
936             return TRANSLATE_PMP_FAIL;
937         }
938 
939         target_ulong pte;
940         if (riscv_cpu_mxl(env) == MXL_RV32) {
941             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
942         } else {
943             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
944         }
945 
946         if (res != MEMTX_OK) {
947             return TRANSLATE_FAIL;
948         }
949 
950         if (riscv_cpu_sxl(env) == MXL_RV32) {
951             ppn = pte >> PTE_PPN_SHIFT;
952         } else if (cpu->cfg.ext_svpbmt || cpu->cfg.ext_svnapot) {
953             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
954         } else {
955             ppn = pte >> PTE_PPN_SHIFT;
956             if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
957                 return TRANSLATE_FAIL;
958             }
959         }
960 
961         if (!(pte & PTE_V)) {
962             /* Invalid PTE */
963             return TRANSLATE_FAIL;
964         } else if (!cpu->cfg.ext_svpbmt && (pte & PTE_PBMT)) {
965             return TRANSLATE_FAIL;
966         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
967             /* Inner PTE, continue walking */
968             if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
969                 return TRANSLATE_FAIL;
970             }
971             base = ppn << PGSHIFT;
972         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
973             /* Reserved leaf PTE flags: PTE_W */
974             return TRANSLATE_FAIL;
975         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
976             /* Reserved leaf PTE flags: PTE_W + PTE_X */
977             return TRANSLATE_FAIL;
978         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
979                    (!sum || access_type == MMU_INST_FETCH))) {
980             /* User PTE flags when not U mode and mstatus.SUM is not set,
981                or the access type is an instruction fetch */
982             return TRANSLATE_FAIL;
983         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
984             /* Supervisor PTE flags when not S mode */
985             return TRANSLATE_FAIL;
986         } else if (ppn & ((1ULL << ptshift) - 1)) {
987             /* Misaligned PPN */
988             return TRANSLATE_FAIL;
989         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
990                    ((pte & PTE_X) && mxr))) {
991             /* Read access check failed */
992             return TRANSLATE_FAIL;
993         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
994             /* Write access check failed */
995             return TRANSLATE_FAIL;
996         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
997             /* Fetch access check failed */
998             return TRANSLATE_FAIL;
999         } else {
1000             /* if necessary, set accessed and dirty bits. */
1001             target_ulong updated_pte = pte | PTE_A |
1002                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
1003 
1004             /* Page table updates need to be atomic with MTTCG enabled */
1005             if (updated_pte != pte) {
1006                 /*
1007                  * - if accessed or dirty bits need updating, and the PTE is
1008                  *   in RAM, then we do so atomically with a compare and swap.
1009                  * - if the PTE is in IO space or ROM, then it can't be updated
1010                  *   and we return TRANSLATE_FAIL.
1011                  * - if the PTE changed by the time we went to update it, then
1012                  *   it is no longer valid and we must re-walk the page table.
1013                  */
1014                 MemoryRegion *mr;
1015                 hwaddr l = sizeof(target_ulong), addr1;
1016                 mr = address_space_translate(cs->as, pte_addr,
1017                     &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
1018                 if (memory_region_is_ram(mr)) {
1019                     target_ulong *pte_pa =
1020                         qemu_map_ram_ptr(mr->ram_block, addr1);
1021 #if TCG_OVERSIZED_GUEST
1022                     /* MTTCG is not enabled on oversized TCG guests so
1023                      * page table updates do not need to be atomic */
1024                     *pte_pa = pte = updated_pte;
1025 #else
1026                     target_ulong old_pte =
1027                         qatomic_cmpxchg(pte_pa, pte, updated_pte);
1028                     if (old_pte != pte) {
1029                         goto restart;
1030                     } else {
1031                         pte = updated_pte;
1032                     }
1033 #endif
1034                 } else {
1035                     /* misconfigured PTE in ROM (AD bits are not preset) or
1036                      * PTE is in IO space and can't be updated atomically */
1037                     return TRANSLATE_FAIL;
1038                 }
1039             }
1040 
1041             /* for superpage mappings, make a fake leaf PTE for the TLB's
1042                benefit. */
1043             target_ulong vpn = addr >> PGSHIFT;
1044 
1045             if (cpu->cfg.ext_svnapot && (pte & PTE_N)) {
1046                 napot_bits = ctzl(ppn) + 1;
1047                 if ((i != (levels - 1)) || (napot_bits != 4)) {
1048                     return TRANSLATE_FAIL;
1049                 }
1050             }
1051 
1052             napot_mask = (1 << napot_bits) - 1;
1053             *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1054                           (vpn & (((target_ulong)1 << ptshift) - 1))
1055                          ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1056 
1057             /* set permissions on the TLB entry */
1058             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
1059                 *prot |= PAGE_READ;
1060             }
1061             if ((pte & PTE_X)) {
1062                 *prot |= PAGE_EXEC;
1063             }
1064             /* add write permission on stores or if the page is already dirty,
1065                so that we TLB miss on later writes to update the dirty bit */
1066             if ((pte & PTE_W) &&
1067                     (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1068                 *prot |= PAGE_WRITE;
1069             }
1070             return TRANSLATE_SUCCESS;
1071         }
1072     }
1073     return TRANSLATE_FAIL;
1074 }
1075 
1076 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1077                                 MMUAccessType access_type, bool pmp_violation,
1078                                 bool first_stage, bool two_stage,
1079                                 bool two_stage_indirect)
1080 {
1081     CPUState *cs = env_cpu(env);
1082     int page_fault_exceptions, vm;
1083     uint64_t stap_mode;
1084 
1085     if (riscv_cpu_mxl(env) == MXL_RV32) {
1086         stap_mode = SATP32_MODE;
1087     } else {
1088         stap_mode = SATP64_MODE;
1089     }
1090 
1091     if (first_stage) {
1092         vm = get_field(env->satp, stap_mode);
1093     } else {
1094         vm = get_field(env->hgatp, stap_mode);
1095     }
1096 
1097     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1098 
1099     switch (access_type) {
1100     case MMU_INST_FETCH:
1101         if (riscv_cpu_virt_enabled(env) && !first_stage) {
1102             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1103         } else {
1104             cs->exception_index = page_fault_exceptions ?
1105                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1106         }
1107         break;
1108     case MMU_DATA_LOAD:
1109         if (two_stage && !first_stage) {
1110             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1111         } else {
1112             cs->exception_index = page_fault_exceptions ?
1113                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1114         }
1115         break;
1116     case MMU_DATA_STORE:
1117         if (two_stage && !first_stage) {
1118             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1119         } else {
1120             cs->exception_index = page_fault_exceptions ?
1121                 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1122         }
1123         break;
1124     default:
1125         g_assert_not_reached();
1126     }
1127     env->badaddr = address;
1128     env->two_stage_lookup = two_stage;
1129     env->two_stage_indirect_lookup = two_stage_indirect;
1130 }
1131 
1132 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1133 {
1134     RISCVCPU *cpu = RISCV_CPU(cs);
1135     CPURISCVState *env = &cpu->env;
1136     hwaddr phys_addr;
1137     int prot;
1138     int mmu_idx = cpu_mmu_index(&cpu->env, false);
1139 
1140     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1141                              true, riscv_cpu_virt_enabled(env), true)) {
1142         return -1;
1143     }
1144 
1145     if (riscv_cpu_virt_enabled(env)) {
1146         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1147                                  0, mmu_idx, false, true, true)) {
1148             return -1;
1149         }
1150     }
1151 
1152     return phys_addr & TARGET_PAGE_MASK;
1153 }
1154 
1155 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1156                                      vaddr addr, unsigned size,
1157                                      MMUAccessType access_type,
1158                                      int mmu_idx, MemTxAttrs attrs,
1159                                      MemTxResult response, uintptr_t retaddr)
1160 {
1161     RISCVCPU *cpu = RISCV_CPU(cs);
1162     CPURISCVState *env = &cpu->env;
1163 
1164     if (access_type == MMU_DATA_STORE) {
1165         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1166     } else if (access_type == MMU_DATA_LOAD) {
1167         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1168     } else {
1169         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1170     }
1171 
1172     env->badaddr = addr;
1173     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1174                             riscv_cpu_two_stage_lookup(mmu_idx);
1175     env->two_stage_indirect_lookup = false;
1176     cpu_loop_exit_restore(cs, retaddr);
1177 }
1178 
1179 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1180                                    MMUAccessType access_type, int mmu_idx,
1181                                    uintptr_t retaddr)
1182 {
1183     RISCVCPU *cpu = RISCV_CPU(cs);
1184     CPURISCVState *env = &cpu->env;
1185     switch (access_type) {
1186     case MMU_INST_FETCH:
1187         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1188         break;
1189     case MMU_DATA_LOAD:
1190         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1191         break;
1192     case MMU_DATA_STORE:
1193         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1194         break;
1195     default:
1196         g_assert_not_reached();
1197     }
1198     env->badaddr = addr;
1199     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1200                             riscv_cpu_two_stage_lookup(mmu_idx);
1201     env->two_stage_indirect_lookup = false;
1202     cpu_loop_exit_restore(cs, retaddr);
1203 }
1204 
1205 
1206 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1207 {
1208     enum riscv_pmu_event_idx pmu_event_type;
1209 
1210     switch (access_type) {
1211     case MMU_INST_FETCH:
1212         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1213         break;
1214     case MMU_DATA_LOAD:
1215         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1216         break;
1217     case MMU_DATA_STORE:
1218         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1219         break;
1220     default:
1221         return;
1222     }
1223 
1224     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1225 }
1226 
1227 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1228                         MMUAccessType access_type, int mmu_idx,
1229                         bool probe, uintptr_t retaddr)
1230 {
1231     RISCVCPU *cpu = RISCV_CPU(cs);
1232     CPURISCVState *env = &cpu->env;
1233     vaddr im_address;
1234     hwaddr pa = 0;
1235     int prot, prot2, prot_pmp;
1236     bool pmp_violation = false;
1237     bool first_stage_error = true;
1238     bool two_stage_lookup = false;
1239     bool two_stage_indirect_error = false;
1240     int ret = TRANSLATE_FAIL;
1241     int mode = mmu_idx;
1242     /* default TLB page size */
1243     target_ulong tlb_size = TARGET_PAGE_SIZE;
1244 
1245     env->guest_phys_fault_addr = 0;
1246 
1247     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1248                   __func__, address, access_type, mmu_idx);
1249 
1250     /* MPRV does not affect the virtual-machine load/store
1251        instructions, HLV, HLVX, and HSV. */
1252     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1253         mode = get_field(env->hstatus, HSTATUS_SPVP);
1254     } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1255                get_field(env->mstatus, MSTATUS_MPRV)) {
1256         mode = get_field(env->mstatus, MSTATUS_MPP);
1257         if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1258             two_stage_lookup = true;
1259         }
1260     }
1261 
1262     if (riscv_cpu_virt_enabled(env) ||
1263         ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1264          access_type != MMU_INST_FETCH)) {
1265         /* Two stage lookup */
1266         ret = get_physical_address(env, &pa, &prot, address,
1267                                    &env->guest_phys_fault_addr, access_type,
1268                                    mmu_idx, true, true, false);
1269 
1270         /*
1271          * A G-stage exception may be triggered during two state lookup.
1272          * And the env->guest_phys_fault_addr has already been set in
1273          * get_physical_address().
1274          */
1275         if (ret == TRANSLATE_G_STAGE_FAIL) {
1276             first_stage_error = false;
1277             two_stage_indirect_error = true;
1278             access_type = MMU_DATA_LOAD;
1279         }
1280 
1281         qemu_log_mask(CPU_LOG_MMU,
1282                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1283                       TARGET_FMT_plx " prot %d\n",
1284                       __func__, address, ret, pa, prot);
1285 
1286         if (ret == TRANSLATE_SUCCESS) {
1287             /* Second stage lookup */
1288             im_address = pa;
1289 
1290             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1291                                        access_type, mmu_idx, false, true,
1292                                        false);
1293 
1294             qemu_log_mask(CPU_LOG_MMU,
1295                     "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
1296                     TARGET_FMT_plx " prot %d\n",
1297                     __func__, im_address, ret, pa, prot2);
1298 
1299             prot &= prot2;
1300 
1301             if (ret == TRANSLATE_SUCCESS) {
1302                 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1303                                                size, access_type, mode);
1304 
1305                 qemu_log_mask(CPU_LOG_MMU,
1306                               "%s PMP address=" TARGET_FMT_plx " ret %d prot"
1307                               " %d tlb_size " TARGET_FMT_lu "\n",
1308                               __func__, pa, ret, prot_pmp, tlb_size);
1309 
1310                 prot &= prot_pmp;
1311             }
1312 
1313             if (ret != TRANSLATE_SUCCESS) {
1314                 /*
1315                  * Guest physical address translation failed, this is a HS
1316                  * level exception
1317                  */
1318                 first_stage_error = false;
1319                 env->guest_phys_fault_addr = (im_address |
1320                                               (address &
1321                                                (TARGET_PAGE_SIZE - 1))) >> 2;
1322             }
1323         }
1324     } else {
1325         pmu_tlb_fill_incr_ctr(cpu, access_type);
1326         /* Single stage lookup */
1327         ret = get_physical_address(env, &pa, &prot, address, NULL,
1328                                    access_type, mmu_idx, true, false, false);
1329 
1330         qemu_log_mask(CPU_LOG_MMU,
1331                       "%s address=%" VADDR_PRIx " ret %d physical "
1332                       TARGET_FMT_plx " prot %d\n",
1333                       __func__, address, ret, pa, prot);
1334 
1335         if (ret == TRANSLATE_SUCCESS) {
1336             ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1337                                            size, access_type, mode);
1338 
1339             qemu_log_mask(CPU_LOG_MMU,
1340                           "%s PMP address=" TARGET_FMT_plx " ret %d prot"
1341                           " %d tlb_size " TARGET_FMT_lu "\n",
1342                           __func__, pa, ret, prot_pmp, tlb_size);
1343 
1344             prot &= prot_pmp;
1345         }
1346     }
1347 
1348     if (ret == TRANSLATE_PMP_FAIL) {
1349         pmp_violation = true;
1350     }
1351 
1352     if (ret == TRANSLATE_SUCCESS) {
1353         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1354                      prot, mmu_idx, tlb_size);
1355         return true;
1356     } else if (probe) {
1357         return false;
1358     } else {
1359         raise_mmu_exception(env, address, access_type, pmp_violation,
1360                             first_stage_error,
1361                             riscv_cpu_virt_enabled(env) ||
1362                                 riscv_cpu_two_stage_lookup(mmu_idx),
1363                             two_stage_indirect_error);
1364         cpu_loop_exit_restore(cs, retaddr);
1365     }
1366 
1367     return true;
1368 }
1369 
1370 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1371                                            target_ulong insn,
1372                                            target_ulong taddr)
1373 {
1374     target_ulong xinsn = 0;
1375     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1376 
1377     /*
1378      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1379      * be uncompressed. The Quadrant 1 of RVC instruction space need
1380      * not be transformed because these instructions won't generate
1381      * any load/store trap.
1382      */
1383 
1384     if ((insn & 0x3) != 0x3) {
1385         /* Transform 16bit instruction into 32bit instruction */
1386         switch (GET_C_OP(insn)) {
1387         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1388             switch (GET_C_FUNC(insn)) {
1389             case OPC_RISC_C_FUNC_FLD_LQ:
1390                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1391                     xinsn = OPC_RISC_FLD;
1392                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1393                     access_rs1 = GET_C_RS1S(insn);
1394                     access_imm = GET_C_LD_IMM(insn);
1395                     access_size = 8;
1396                 }
1397                 break;
1398             case OPC_RISC_C_FUNC_LW: /* C.LW */
1399                 xinsn = OPC_RISC_LW;
1400                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1401                 access_rs1 = GET_C_RS1S(insn);
1402                 access_imm = GET_C_LW_IMM(insn);
1403                 access_size = 4;
1404                 break;
1405             case OPC_RISC_C_FUNC_FLW_LD:
1406                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1407                     xinsn = OPC_RISC_FLW;
1408                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1409                     access_rs1 = GET_C_RS1S(insn);
1410                     access_imm = GET_C_LW_IMM(insn);
1411                     access_size = 4;
1412                 } else { /* C.LD (RV64/RV128) */
1413                     xinsn = OPC_RISC_LD;
1414                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1415                     access_rs1 = GET_C_RS1S(insn);
1416                     access_imm = GET_C_LD_IMM(insn);
1417                     access_size = 8;
1418                 }
1419                 break;
1420             case OPC_RISC_C_FUNC_FSD_SQ:
1421                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1422                     xinsn = OPC_RISC_FSD;
1423                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1424                     access_rs1 = GET_C_RS1S(insn);
1425                     access_imm = GET_C_SD_IMM(insn);
1426                     access_size = 8;
1427                 }
1428                 break;
1429             case OPC_RISC_C_FUNC_SW: /* C.SW */
1430                 xinsn = OPC_RISC_SW;
1431                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1432                 access_rs1 = GET_C_RS1S(insn);
1433                 access_imm = GET_C_SW_IMM(insn);
1434                 access_size = 4;
1435                 break;
1436             case OPC_RISC_C_FUNC_FSW_SD:
1437                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1438                     xinsn = OPC_RISC_FSW;
1439                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1440                     access_rs1 = GET_C_RS1S(insn);
1441                     access_imm = GET_C_SW_IMM(insn);
1442                     access_size = 4;
1443                 } else { /* C.SD (RV64/RV128) */
1444                     xinsn = OPC_RISC_SD;
1445                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1446                     access_rs1 = GET_C_RS1S(insn);
1447                     access_imm = GET_C_SD_IMM(insn);
1448                     access_size = 8;
1449                 }
1450                 break;
1451             default:
1452                 break;
1453             }
1454             break;
1455         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1456             switch (GET_C_FUNC(insn)) {
1457             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1458                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1459                     xinsn = OPC_RISC_FLD;
1460                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1461                     access_rs1 = 2;
1462                     access_imm = GET_C_LDSP_IMM(insn);
1463                     access_size = 8;
1464                 }
1465                 break;
1466             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1467                 xinsn = OPC_RISC_LW;
1468                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1469                 access_rs1 = 2;
1470                 access_imm = GET_C_LWSP_IMM(insn);
1471                 access_size = 4;
1472                 break;
1473             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1474                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1475                     xinsn = OPC_RISC_FLW;
1476                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1477                     access_rs1 = 2;
1478                     access_imm = GET_C_LWSP_IMM(insn);
1479                     access_size = 4;
1480                 } else { /* C.LDSP (RV64/RV128) */
1481                     xinsn = OPC_RISC_LD;
1482                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1483                     access_rs1 = 2;
1484                     access_imm = GET_C_LDSP_IMM(insn);
1485                     access_size = 8;
1486                 }
1487                 break;
1488             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1489                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1490                     xinsn = OPC_RISC_FSD;
1491                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1492                     access_rs1 = 2;
1493                     access_imm = GET_C_SDSP_IMM(insn);
1494                     access_size = 8;
1495                 }
1496                 break;
1497             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1498                 xinsn = OPC_RISC_SW;
1499                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1500                 access_rs1 = 2;
1501                 access_imm = GET_C_SWSP_IMM(insn);
1502                 access_size = 4;
1503                 break;
1504             case 7:
1505                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1506                     xinsn = OPC_RISC_FSW;
1507                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1508                     access_rs1 = 2;
1509                     access_imm = GET_C_SWSP_IMM(insn);
1510                     access_size = 4;
1511                 } else { /* C.SDSP (RV64/RV128) */
1512                     xinsn = OPC_RISC_SD;
1513                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1514                     access_rs1 = 2;
1515                     access_imm = GET_C_SDSP_IMM(insn);
1516                     access_size = 8;
1517                 }
1518                 break;
1519             default:
1520                 break;
1521             }
1522             break;
1523         default:
1524             break;
1525         }
1526 
1527         /*
1528          * Clear Bit1 of transformed instruction to indicate that
1529          * original insruction was a 16bit instruction
1530          */
1531         xinsn &= ~((target_ulong)0x2);
1532     } else {
1533         /* Transform 32bit (or wider) instructions */
1534         switch (MASK_OP_MAJOR(insn)) {
1535         case OPC_RISC_ATOMIC:
1536             xinsn = insn;
1537             access_rs1 = GET_RS1(insn);
1538             access_size = 1 << GET_FUNCT3(insn);
1539             break;
1540         case OPC_RISC_LOAD:
1541         case OPC_RISC_FP_LOAD:
1542             xinsn = SET_I_IMM(insn, 0);
1543             access_rs1 = GET_RS1(insn);
1544             access_imm = GET_IMM(insn);
1545             access_size = 1 << GET_FUNCT3(insn);
1546             break;
1547         case OPC_RISC_STORE:
1548         case OPC_RISC_FP_STORE:
1549             xinsn = SET_S_IMM(insn, 0);
1550             access_rs1 = GET_RS1(insn);
1551             access_imm = GET_STORE_IMM(insn);
1552             access_size = 1 << GET_FUNCT3(insn);
1553             break;
1554         case OPC_RISC_SYSTEM:
1555             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1556                 xinsn = insn;
1557                 access_rs1 = GET_RS1(insn);
1558                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1559                 access_size = 1 << access_size;
1560             }
1561             break;
1562         default:
1563             break;
1564         }
1565     }
1566 
1567     if (access_size) {
1568         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1569                                (access_size - 1));
1570     }
1571 
1572     return xinsn;
1573 }
1574 #endif /* !CONFIG_USER_ONLY */
1575 
1576 /*
1577  * Handle Traps
1578  *
1579  * Adapted from Spike's processor_t::take_trap.
1580  *
1581  */
1582 void riscv_cpu_do_interrupt(CPUState *cs)
1583 {
1584 #if !defined(CONFIG_USER_ONLY)
1585 
1586     RISCVCPU *cpu = RISCV_CPU(cs);
1587     CPURISCVState *env = &cpu->env;
1588     bool write_gva = false;
1589     uint64_t s;
1590 
1591     /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1592      * so we mask off the MSB and separate into trap type and cause.
1593      */
1594     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1595     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1596     uint64_t deleg = async ? env->mideleg : env->medeleg;
1597     target_ulong tval = 0;
1598     target_ulong tinst = 0;
1599     target_ulong htval = 0;
1600     target_ulong mtval2 = 0;
1601 
1602     if  (cause == RISCV_EXCP_SEMIHOST) {
1603         do_common_semihosting(cs);
1604         env->pc += 4;
1605         return;
1606     }
1607 
1608     if (!async) {
1609         /* set tval to badaddr for traps with address information */
1610         switch (cause) {
1611         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1612         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1613         case RISCV_EXCP_LOAD_ADDR_MIS:
1614         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1615         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1616         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1617         case RISCV_EXCP_LOAD_PAGE_FAULT:
1618         case RISCV_EXCP_STORE_PAGE_FAULT:
1619             write_gva = env->two_stage_lookup;
1620             tval = env->badaddr;
1621             if (env->two_stage_indirect_lookup) {
1622                 /*
1623                  * special pseudoinstruction for G-stage fault taken while
1624                  * doing VS-stage page table walk.
1625                  */
1626                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1627             } else {
1628                 /*
1629                  * The "Addr. Offset" field in transformed instruction is
1630                  * non-zero only for misaligned access.
1631                  */
1632                 tinst = riscv_transformed_insn(env, env->bins, tval);
1633             }
1634             break;
1635         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1636         case RISCV_EXCP_INST_ADDR_MIS:
1637         case RISCV_EXCP_INST_ACCESS_FAULT:
1638         case RISCV_EXCP_INST_PAGE_FAULT:
1639             write_gva = env->two_stage_lookup;
1640             tval = env->badaddr;
1641             if (env->two_stage_indirect_lookup) {
1642                 /*
1643                  * special pseudoinstruction for G-stage fault taken while
1644                  * doing VS-stage page table walk.
1645                  */
1646                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1647             }
1648             break;
1649         case RISCV_EXCP_ILLEGAL_INST:
1650         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1651             tval = env->bins;
1652             break;
1653         default:
1654             break;
1655         }
1656         /* ecall is dispatched as one cause so translate based on mode */
1657         if (cause == RISCV_EXCP_U_ECALL) {
1658             assert(env->priv <= 3);
1659 
1660             if (env->priv == PRV_M) {
1661                 cause = RISCV_EXCP_M_ECALL;
1662             } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
1663                 cause = RISCV_EXCP_VS_ECALL;
1664             } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
1665                 cause = RISCV_EXCP_S_ECALL;
1666             } else if (env->priv == PRV_U) {
1667                 cause = RISCV_EXCP_U_ECALL;
1668             }
1669         }
1670     }
1671 
1672     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1673                      riscv_cpu_get_trap_name(cause, async));
1674 
1675     qemu_log_mask(CPU_LOG_INT,
1676                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1677                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1678                   __func__, env->mhartid, async, cause, env->pc, tval,
1679                   riscv_cpu_get_trap_name(cause, async));
1680 
1681     if (env->priv <= PRV_S &&
1682             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1683         /* handle the trap in S-mode */
1684         if (riscv_has_ext(env, RVH)) {
1685             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1686 
1687             if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
1688                 /* Trap to VS mode */
1689                 /*
1690                  * See if we need to adjust cause. Yes if its VS mode interrupt
1691                  * no if hypervisor has delegated one of hs mode's interrupt
1692                  */
1693                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1694                     cause == IRQ_VS_EXT) {
1695                     cause = cause - 1;
1696                 }
1697                 write_gva = false;
1698             } else if (riscv_cpu_virt_enabled(env)) {
1699                 /* Trap into HS mode, from virt */
1700                 riscv_cpu_swap_hypervisor_regs(env);
1701                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1702                                          env->priv);
1703                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1704                                          riscv_cpu_virt_enabled(env));
1705 
1706 
1707                 htval = env->guest_phys_fault_addr;
1708 
1709                 riscv_cpu_set_virt_enabled(env, 0);
1710             } else {
1711                 /* Trap into HS mode */
1712                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1713                 htval = env->guest_phys_fault_addr;
1714             }
1715             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1716         }
1717 
1718         s = env->mstatus;
1719         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1720         s = set_field(s, MSTATUS_SPP, env->priv);
1721         s = set_field(s, MSTATUS_SIE, 0);
1722         env->mstatus = s;
1723         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1724         env->sepc = env->pc;
1725         env->stval = tval;
1726         env->htval = htval;
1727         env->htinst = tinst;
1728         env->pc = (env->stvec >> 2 << 2) +
1729             ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1730         riscv_cpu_set_mode(env, PRV_S);
1731     } else {
1732         /* handle the trap in M-mode */
1733         if (riscv_has_ext(env, RVH)) {
1734             if (riscv_cpu_virt_enabled(env)) {
1735                 riscv_cpu_swap_hypervisor_regs(env);
1736             }
1737             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1738                                      riscv_cpu_virt_enabled(env));
1739             if (riscv_cpu_virt_enabled(env) && tval) {
1740                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1741             }
1742 
1743             mtval2 = env->guest_phys_fault_addr;
1744 
1745             /* Trapping to M mode, virt is disabled */
1746             riscv_cpu_set_virt_enabled(env, 0);
1747         }
1748 
1749         s = env->mstatus;
1750         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1751         s = set_field(s, MSTATUS_MPP, env->priv);
1752         s = set_field(s, MSTATUS_MIE, 0);
1753         env->mstatus = s;
1754         env->mcause = cause | ~(((target_ulong)-1) >> async);
1755         env->mepc = env->pc;
1756         env->mtval = tval;
1757         env->mtval2 = mtval2;
1758         env->mtinst = tinst;
1759         env->pc = (env->mtvec >> 2 << 2) +
1760             ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1761         riscv_cpu_set_mode(env, PRV_M);
1762     }
1763 
1764     /* NOTE: it is not necessary to yield load reservations here. It is only
1765      * necessary for an SC from "another hart" to cause a load reservation
1766      * to be yielded. Refer to the memory consistency model section of the
1767      * RISC-V ISA Specification.
1768      */
1769 
1770     env->two_stage_lookup = false;
1771     env->two_stage_indirect_lookup = false;
1772 #endif
1773     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1774 }
1775