xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision 51e47cf8)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "pmu.h"
26 #include "exec/exec-all.h"
27 #include "instmap.h"
28 #include "tcg/tcg-op.h"
29 #include "trace.h"
30 #include "semihosting/common-semi.h"
31 #include "sysemu/cpu-timers.h"
32 #include "cpu_bits.h"
33 #include "debug.h"
34 
35 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
36 {
37 #ifdef CONFIG_USER_ONLY
38     return 0;
39 #else
40     bool virt = env->virt_enabled;
41     int mode = env->priv;
42 
43     /* All priv -> mmu_idx mapping are here */
44     if (!ifetch) {
45         uint64_t status = env->mstatus;
46 
47         if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) {
48             mode = get_field(env->mstatus, MSTATUS_MPP);
49             virt = get_field(env->mstatus, MSTATUS_MPV);
50             if (virt) {
51                 status = env->vsstatus;
52             }
53         }
54         if (mode == PRV_S && get_field(status, MSTATUS_SUM)) {
55             mode = MMUIdx_S_SUM;
56         }
57     }
58 
59     return mode | (virt ? MMU_2STAGE_BIT : 0);
60 #endif
61 }
62 
63 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
64                           target_ulong *cs_base, uint32_t *pflags)
65 {
66     CPUState *cs = env_cpu(env);
67     RISCVCPU *cpu = RISCV_CPU(cs);
68     RISCVExtStatus fs, vs;
69     uint32_t flags = 0;
70 
71     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
72     *cs_base = 0;
73 
74     if (cpu->cfg.ext_zve32f) {
75         /*
76          * If env->vl equals to VLMAX, we can use generic vector operation
77          * expanders (GVEC) to accerlate the vector operations.
78          * However, as LMUL could be a fractional number. The maximum
79          * vector size can be operated might be less than 8 bytes,
80          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
81          * only when maxsz >= 8 bytes.
82          */
83         uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
84         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
85         uint32_t maxsz = vlmax << sew;
86         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
87                            (maxsz >= 8);
88         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
89         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
90         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
91                            FIELD_EX64(env->vtype, VTYPE, VLMUL));
92         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
93         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
94                            FIELD_EX64(env->vtype, VTYPE, VTA));
95         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
96                            FIELD_EX64(env->vtype, VTYPE, VMA));
97         flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
98     } else {
99         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
100     }
101 
102 #ifdef CONFIG_USER_ONLY
103     fs = EXT_STATUS_DIRTY;
104     vs = EXT_STATUS_DIRTY;
105 #else
106     flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
107 
108     flags |= cpu_mmu_index(env, 0);
109     fs = get_field(env->mstatus, MSTATUS_FS);
110     vs = get_field(env->mstatus, MSTATUS_VS);
111 
112     if (env->virt_enabled) {
113         flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
114         /*
115          * Merge DISABLED and !DIRTY states using MIN.
116          * We will set both fields when dirtying.
117          */
118         fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
119         vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
120     }
121 
122     if (cpu->cfg.debug && !icount_enabled()) {
123         flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
124     }
125 #endif
126 
127     flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
128     flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
129     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
130     if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
131         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
132     }
133     if (env->cur_pmbase != 0) {
134         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
135     }
136 
137     *pflags = flags;
138 }
139 
140 void riscv_cpu_update_mask(CPURISCVState *env)
141 {
142     target_ulong mask = -1, base = 0;
143     /*
144      * TODO: Current RVJ spec does not specify
145      * how the extension interacts with XLEN.
146      */
147 #ifndef CONFIG_USER_ONLY
148     if (riscv_has_ext(env, RVJ)) {
149         switch (env->priv) {
150         case PRV_M:
151             if (env->mmte & M_PM_ENABLE) {
152                 mask = env->mpmmask;
153                 base = env->mpmbase;
154             }
155             break;
156         case PRV_S:
157             if (env->mmte & S_PM_ENABLE) {
158                 mask = env->spmmask;
159                 base = env->spmbase;
160             }
161             break;
162         case PRV_U:
163             if (env->mmte & U_PM_ENABLE) {
164                 mask = env->upmmask;
165                 base = env->upmbase;
166             }
167             break;
168         default:
169             g_assert_not_reached();
170         }
171     }
172 #endif
173     if (env->xl == MXL_RV32) {
174         env->cur_pmmask = mask & UINT32_MAX;
175         env->cur_pmbase = base & UINT32_MAX;
176     } else {
177         env->cur_pmmask = mask;
178         env->cur_pmbase = base;
179     }
180 }
181 
182 #ifndef CONFIG_USER_ONLY
183 
184 /*
185  * The HS-mode is allowed to configure priority only for the
186  * following VS-mode local interrupts:
187  *
188  * 0  (Reserved interrupt, reads as zero)
189  * 1  Supervisor software interrupt
190  * 4  (Reserved interrupt, reads as zero)
191  * 5  Supervisor timer interrupt
192  * 8  (Reserved interrupt, reads as zero)
193  * 13 (Reserved interrupt)
194  * 14 "
195  * 15 "
196  * 16 "
197  * 17 "
198  * 18 "
199  * 19 "
200  * 20 "
201  * 21 "
202  * 22 "
203  * 23 "
204  */
205 
206 static const int hviprio_index2irq[] = {
207     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
208 static const int hviprio_index2rdzero[] = {
209     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
210 
211 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
212 {
213     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
214         return -EINVAL;
215     }
216 
217     if (out_irq) {
218         *out_irq = hviprio_index2irq[index];
219     }
220 
221     if (out_rdzero) {
222         *out_rdzero = hviprio_index2rdzero[index];
223     }
224 
225     return 0;
226 }
227 
228 /*
229  * Default priorities of local interrupts are defined in the
230  * RISC-V Advanced Interrupt Architecture specification.
231  *
232  * ----------------------------------------------------------------
233  *  Default  |
234  *  Priority | Major Interrupt Numbers
235  * ----------------------------------------------------------------
236  *  Highest  | 47, 23, 46, 45, 22, 44,
237  *           | 43, 21, 42, 41, 20, 40
238  *           |
239  *           | 11 (0b),  3 (03),  7 (07)
240  *           |  9 (09),  1 (01),  5 (05)
241  *           | 12 (0c)
242  *           | 10 (0a),  2 (02),  6 (06)
243  *           |
244  *           | 39, 19, 38, 37, 18, 36,
245  *  Lowest   | 35, 17, 34, 33, 16, 32
246  * ----------------------------------------------------------------
247  */
248 static const uint8_t default_iprio[64] = {
249     /* Custom interrupts 48 to 63 */
250     [63] = IPRIO_MMAXIPRIO,
251     [62] = IPRIO_MMAXIPRIO,
252     [61] = IPRIO_MMAXIPRIO,
253     [60] = IPRIO_MMAXIPRIO,
254     [59] = IPRIO_MMAXIPRIO,
255     [58] = IPRIO_MMAXIPRIO,
256     [57] = IPRIO_MMAXIPRIO,
257     [56] = IPRIO_MMAXIPRIO,
258     [55] = IPRIO_MMAXIPRIO,
259     [54] = IPRIO_MMAXIPRIO,
260     [53] = IPRIO_MMAXIPRIO,
261     [52] = IPRIO_MMAXIPRIO,
262     [51] = IPRIO_MMAXIPRIO,
263     [50] = IPRIO_MMAXIPRIO,
264     [49] = IPRIO_MMAXIPRIO,
265     [48] = IPRIO_MMAXIPRIO,
266 
267     /* Custom interrupts 24 to 31 */
268     [31] = IPRIO_MMAXIPRIO,
269     [30] = IPRIO_MMAXIPRIO,
270     [29] = IPRIO_MMAXIPRIO,
271     [28] = IPRIO_MMAXIPRIO,
272     [27] = IPRIO_MMAXIPRIO,
273     [26] = IPRIO_MMAXIPRIO,
274     [25] = IPRIO_MMAXIPRIO,
275     [24] = IPRIO_MMAXIPRIO,
276 
277     [47] = IPRIO_DEFAULT_UPPER,
278     [23] = IPRIO_DEFAULT_UPPER + 1,
279     [46] = IPRIO_DEFAULT_UPPER + 2,
280     [45] = IPRIO_DEFAULT_UPPER + 3,
281     [22] = IPRIO_DEFAULT_UPPER + 4,
282     [44] = IPRIO_DEFAULT_UPPER + 5,
283 
284     [43] = IPRIO_DEFAULT_UPPER + 6,
285     [21] = IPRIO_DEFAULT_UPPER + 7,
286     [42] = IPRIO_DEFAULT_UPPER + 8,
287     [41] = IPRIO_DEFAULT_UPPER + 9,
288     [20] = IPRIO_DEFAULT_UPPER + 10,
289     [40] = IPRIO_DEFAULT_UPPER + 11,
290 
291     [11] = IPRIO_DEFAULT_M,
292     [3]  = IPRIO_DEFAULT_M + 1,
293     [7]  = IPRIO_DEFAULT_M + 2,
294 
295     [9]  = IPRIO_DEFAULT_S,
296     [1]  = IPRIO_DEFAULT_S + 1,
297     [5]  = IPRIO_DEFAULT_S + 2,
298 
299     [12] = IPRIO_DEFAULT_SGEXT,
300 
301     [10] = IPRIO_DEFAULT_VS,
302     [2]  = IPRIO_DEFAULT_VS + 1,
303     [6]  = IPRIO_DEFAULT_VS + 2,
304 
305     [39] = IPRIO_DEFAULT_LOWER,
306     [19] = IPRIO_DEFAULT_LOWER + 1,
307     [38] = IPRIO_DEFAULT_LOWER + 2,
308     [37] = IPRIO_DEFAULT_LOWER + 3,
309     [18] = IPRIO_DEFAULT_LOWER + 4,
310     [36] = IPRIO_DEFAULT_LOWER + 5,
311 
312     [35] = IPRIO_DEFAULT_LOWER + 6,
313     [17] = IPRIO_DEFAULT_LOWER + 7,
314     [34] = IPRIO_DEFAULT_LOWER + 8,
315     [33] = IPRIO_DEFAULT_LOWER + 9,
316     [16] = IPRIO_DEFAULT_LOWER + 10,
317     [32] = IPRIO_DEFAULT_LOWER + 11,
318 };
319 
320 uint8_t riscv_cpu_default_priority(int irq)
321 {
322     if (irq < 0 || irq > 63) {
323         return IPRIO_MMAXIPRIO;
324     }
325 
326     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
327 };
328 
329 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
330                                     int extirq, unsigned int extirq_def_prio,
331                                     uint64_t pending, uint8_t *iprio)
332 {
333     int irq, best_irq = RISCV_EXCP_NONE;
334     unsigned int prio, best_prio = UINT_MAX;
335 
336     if (!pending) {
337         return RISCV_EXCP_NONE;
338     }
339 
340     irq = ctz64(pending);
341     if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
342                                   riscv_cpu_cfg(env)->ext_ssaia)) {
343         return irq;
344     }
345 
346     pending = pending >> irq;
347     while (pending) {
348         prio = iprio[irq];
349         if (!prio) {
350             if (irq == extirq) {
351                 prio = extirq_def_prio;
352             } else {
353                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
354                        1 : IPRIO_MMAXIPRIO;
355             }
356         }
357         if ((pending & 0x1) && (prio <= best_prio)) {
358             best_irq = irq;
359             best_prio = prio;
360         }
361         irq++;
362         pending = pending >> 1;
363     }
364 
365     return best_irq;
366 }
367 
368 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
369 {
370     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
371     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
372     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
373 
374     return (env->mip | vsgein | vstip) & env->mie;
375 }
376 
377 int riscv_cpu_mirq_pending(CPURISCVState *env)
378 {
379     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
380                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
381 
382     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
383                                     irqs, env->miprio);
384 }
385 
386 int riscv_cpu_sirq_pending(CPURISCVState *env)
387 {
388     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
389                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
390 
391     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
392                                     irqs, env->siprio);
393 }
394 
395 int riscv_cpu_vsirq_pending(CPURISCVState *env)
396 {
397     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
398                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
399 
400     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
401                                     irqs >> 1, env->hviprio);
402 }
403 
404 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
405 {
406     int virq;
407     uint64_t irqs, pending, mie, hsie, vsie;
408 
409     /* Determine interrupt enable state of all privilege modes */
410     if (env->virt_enabled) {
411         mie = 1;
412         hsie = 1;
413         vsie = (env->priv < PRV_S) ||
414                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
415     } else {
416         mie = (env->priv < PRV_M) ||
417               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
418         hsie = (env->priv < PRV_S) ||
419                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
420         vsie = 0;
421     }
422 
423     /* Determine all pending interrupts */
424     pending = riscv_cpu_all_pending(env);
425 
426     /* Check M-mode interrupts */
427     irqs = pending & ~env->mideleg & -mie;
428     if (irqs) {
429         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
430                                         irqs, env->miprio);
431     }
432 
433     /* Check HS-mode interrupts */
434     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
435     if (irqs) {
436         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
437                                         irqs, env->siprio);
438     }
439 
440     /* Check VS-mode interrupts */
441     irqs = pending & env->mideleg & env->hideleg & -vsie;
442     if (irqs) {
443         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
444                                         irqs >> 1, env->hviprio);
445         return (virq <= 0) ? virq : virq + 1;
446     }
447 
448     /* Indicate no pending interrupt */
449     return RISCV_EXCP_NONE;
450 }
451 
452 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
453 {
454     if (interrupt_request & CPU_INTERRUPT_HARD) {
455         RISCVCPU *cpu = RISCV_CPU(cs);
456         CPURISCVState *env = &cpu->env;
457         int interruptno = riscv_cpu_local_irq_pending(env);
458         if (interruptno >= 0) {
459             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
460             riscv_cpu_do_interrupt(cs);
461             return true;
462         }
463     }
464     return false;
465 }
466 
467 /* Return true is floating point support is currently enabled */
468 bool riscv_cpu_fp_enabled(CPURISCVState *env)
469 {
470     if (env->mstatus & MSTATUS_FS) {
471         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
472             return false;
473         }
474         return true;
475     }
476 
477     return false;
478 }
479 
480 /* Return true is vector support is currently enabled */
481 bool riscv_cpu_vector_enabled(CPURISCVState *env)
482 {
483     if (env->mstatus & MSTATUS_VS) {
484         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
485             return false;
486         }
487         return true;
488     }
489 
490     return false;
491 }
492 
493 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
494 {
495     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
496                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
497                             MSTATUS64_UXL | MSTATUS_VS;
498 
499     if (riscv_has_ext(env, RVF)) {
500         mstatus_mask |= MSTATUS_FS;
501     }
502     bool current_virt = env->virt_enabled;
503 
504     g_assert(riscv_has_ext(env, RVH));
505 
506     if (current_virt) {
507         /* Current V=1 and we are about to change to V=0 */
508         env->vsstatus = env->mstatus & mstatus_mask;
509         env->mstatus &= ~mstatus_mask;
510         env->mstatus |= env->mstatus_hs;
511 
512         env->vstvec = env->stvec;
513         env->stvec = env->stvec_hs;
514 
515         env->vsscratch = env->sscratch;
516         env->sscratch = env->sscratch_hs;
517 
518         env->vsepc = env->sepc;
519         env->sepc = env->sepc_hs;
520 
521         env->vscause = env->scause;
522         env->scause = env->scause_hs;
523 
524         env->vstval = env->stval;
525         env->stval = env->stval_hs;
526 
527         env->vsatp = env->satp;
528         env->satp = env->satp_hs;
529     } else {
530         /* Current V=0 and we are about to change to V=1 */
531         env->mstatus_hs = env->mstatus & mstatus_mask;
532         env->mstatus &= ~mstatus_mask;
533         env->mstatus |= env->vsstatus;
534 
535         env->stvec_hs = env->stvec;
536         env->stvec = env->vstvec;
537 
538         env->sscratch_hs = env->sscratch;
539         env->sscratch = env->vsscratch;
540 
541         env->sepc_hs = env->sepc;
542         env->sepc = env->vsepc;
543 
544         env->scause_hs = env->scause;
545         env->scause = env->vscause;
546 
547         env->stval_hs = env->stval;
548         env->stval = env->vstval;
549 
550         env->satp_hs = env->satp;
551         env->satp = env->vsatp;
552     }
553 }
554 
555 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
556 {
557     if (!riscv_has_ext(env, RVH)) {
558         return 0;
559     }
560 
561     return env->geilen;
562 }
563 
564 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
565 {
566     if (!riscv_has_ext(env, RVH)) {
567         return;
568     }
569 
570     if (geilen > (TARGET_LONG_BITS - 1)) {
571         return;
572     }
573 
574     env->geilen = geilen;
575 }
576 
577 /* This function can only be called to set virt when RVH is enabled */
578 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
579 {
580     /* Flush the TLB on all virt mode changes. */
581     if (env->virt_enabled != enable) {
582         tlb_flush(env_cpu(env));
583     }
584 
585     env->virt_enabled = enable;
586 
587     if (enable) {
588         /*
589          * The guest external interrupts from an interrupt controller are
590          * delivered only when the Guest/VM is running (i.e. V=1). This means
591          * any guest external interrupt which is triggered while the Guest/VM
592          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
593          * with sluggish response to serial console input and other I/O events.
594          *
595          * To solve this, we check and inject interrupt after setting V=1.
596          */
597         riscv_cpu_update_mip(env, 0, 0);
598     }
599 }
600 
601 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
602 {
603     CPURISCVState *env = &cpu->env;
604     if (env->miclaim & interrupts) {
605         return -1;
606     } else {
607         env->miclaim |= interrupts;
608         return 0;
609     }
610 }
611 
612 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
613                               uint64_t value)
614 {
615     CPUState *cs = env_cpu(env);
616     uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
617 
618     if (env->virt_enabled) {
619         gein = get_field(env->hstatus, HSTATUS_VGEIN);
620         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
621     }
622 
623     vstip = env->vstime_irq ? MIP_VSTIP : 0;
624 
625     QEMU_IOTHREAD_LOCK_GUARD();
626 
627     env->mip = (env->mip & ~mask) | (value & mask);
628 
629     if (env->mip | vsgein | vstip) {
630         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
631     } else {
632         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
633     }
634 
635     return old;
636 }
637 
638 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
639                              void *arg)
640 {
641     env->rdtime_fn = fn;
642     env->rdtime_fn_arg = arg;
643 }
644 
645 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
646                                    int (*rmw_fn)(void *arg,
647                                                  target_ulong reg,
648                                                  target_ulong *val,
649                                                  target_ulong new_val,
650                                                  target_ulong write_mask),
651                                    void *rmw_fn_arg)
652 {
653     if (priv <= PRV_M) {
654         env->aia_ireg_rmw_fn[priv] = rmw_fn;
655         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
656     }
657 }
658 
659 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
660 {
661     g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
662 
663     if (icount_enabled() && newpriv != env->priv) {
664         riscv_itrigger_update_priv(env);
665     }
666     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
667     env->priv = newpriv;
668     env->xl = cpu_recompute_xl(env);
669     riscv_cpu_update_mask(env);
670 
671     /*
672      * Clear the load reservation - otherwise a reservation placed in one
673      * context/process can be used by another, resulting in an SC succeeding
674      * incorrectly. Version 2.2 of the ISA specification explicitly requires
675      * this behaviour, while later revisions say that the kernel "should" use
676      * an SC instruction to force the yielding of a load reservation on a
677      * preemptive context switch. As a result, do both.
678      */
679     env->load_res = -1;
680 }
681 
682 /*
683  * get_physical_address_pmp - check PMP permission for this physical address
684  *
685  * Match the PMP region and check permission for this physical address and it's
686  * TLB page. Returns 0 if the permission checking was successful
687  *
688  * @env: CPURISCVState
689  * @prot: The returned protection attributes
690  * @tlb_size: TLB page size containing addr. It could be modified after PMP
691  *            permission checking. NULL if not set TLB page for addr.
692  * @addr: The physical address to be checked permission
693  * @access_type: The type of MMU access
694  * @mode: Indicates current privilege level.
695  */
696 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
697                                     target_ulong *tlb_size, hwaddr addr,
698                                     int size, MMUAccessType access_type,
699                                     int mode)
700 {
701     pmp_priv_t pmp_priv;
702     int pmp_index = -1;
703 
704     if (!riscv_cpu_cfg(env)->pmp) {
705         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
706         return TRANSLATE_SUCCESS;
707     }
708 
709     pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
710                                    &pmp_priv, mode);
711     if (pmp_index < 0) {
712         *prot = 0;
713         return TRANSLATE_PMP_FAIL;
714     }
715 
716     *prot = pmp_priv_to_page_prot(pmp_priv);
717     if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
718         target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
719         target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
720 
721         *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
722     }
723 
724     return TRANSLATE_SUCCESS;
725 }
726 
727 /*
728  * get_physical_address - get the physical address for this virtual address
729  *
730  * Do a page table walk to obtain the physical address corresponding to a
731  * virtual address. Returns 0 if the translation was successful
732  *
733  * Adapted from Spike's mmu_t::translate and mmu_t::walk
734  *
735  * @env: CPURISCVState
736  * @physical: This will be set to the calculated physical address
737  * @prot: The returned protection attributes
738  * @addr: The virtual address or guest physical address to be translated
739  * @fault_pte_addr: If not NULL, this will be set to fault pte address
740  *                  when a error occurs on pte address translation.
741  *                  This will already be shifted to match htval.
742  * @access_type: The type of MMU access
743  * @mmu_idx: Indicates current privilege level
744  * @first_stage: Are we in first stage translation?
745  *               Second stage is used for hypervisor guest translation
746  * @two_stage: Are we going to perform two stage translation
747  * @is_debug: Is this access from a debugger or the monitor?
748  */
749 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
750                                 int *ret_prot, vaddr addr,
751                                 target_ulong *fault_pte_addr,
752                                 int access_type, int mmu_idx,
753                                 bool first_stage, bool two_stage,
754                                 bool is_debug)
755 {
756     /*
757      * NOTE: the env->pc value visible here will not be
758      * correct, but the value visible to the exception handler
759      * (riscv_cpu_do_interrupt) is correct
760      */
761     MemTxResult res;
762     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
763     int mode = mmuidx_priv(mmu_idx);
764     bool use_background = false;
765     hwaddr ppn;
766     int napot_bits = 0;
767     target_ulong napot_mask;
768 
769     /*
770      * Check if we should use the background registers for the two
771      * stage translation. We don't need to check if we actually need
772      * two stage translation as that happened before this function
773      * was called. Background registers will be used if the guest has
774      * forced a two stage translation to be on (in HS or M mode).
775      */
776     if (!env->virt_enabled && two_stage) {
777         use_background = true;
778     }
779 
780     if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
781         *physical = addr;
782         *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
783         return TRANSLATE_SUCCESS;
784     }
785 
786     *ret_prot = 0;
787 
788     hwaddr base;
789     int levels, ptidxbits, ptesize, vm, widened;
790 
791     if (first_stage == true) {
792         if (use_background) {
793             if (riscv_cpu_mxl(env) == MXL_RV32) {
794                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
795                 vm = get_field(env->vsatp, SATP32_MODE);
796             } else {
797                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
798                 vm = get_field(env->vsatp, SATP64_MODE);
799             }
800         } else {
801             if (riscv_cpu_mxl(env) == MXL_RV32) {
802                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
803                 vm = get_field(env->satp, SATP32_MODE);
804             } else {
805                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
806                 vm = get_field(env->satp, SATP64_MODE);
807             }
808         }
809         widened = 0;
810     } else {
811         if (riscv_cpu_mxl(env) == MXL_RV32) {
812             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
813             vm = get_field(env->hgatp, SATP32_MODE);
814         } else {
815             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
816             vm = get_field(env->hgatp, SATP64_MODE);
817         }
818         widened = 2;
819     }
820 
821     switch (vm) {
822     case VM_1_10_SV32:
823       levels = 2; ptidxbits = 10; ptesize = 4; break;
824     case VM_1_10_SV39:
825       levels = 3; ptidxbits = 9; ptesize = 8; break;
826     case VM_1_10_SV48:
827       levels = 4; ptidxbits = 9; ptesize = 8; break;
828     case VM_1_10_SV57:
829       levels = 5; ptidxbits = 9; ptesize = 8; break;
830     case VM_1_10_MBARE:
831         *physical = addr;
832         *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
833         return TRANSLATE_SUCCESS;
834     default:
835       g_assert_not_reached();
836     }
837 
838     CPUState *cs = env_cpu(env);
839     int va_bits = PGSHIFT + levels * ptidxbits + widened;
840 
841     if (first_stage == true) {
842         target_ulong mask, masked_msbs;
843 
844         if (TARGET_LONG_BITS > (va_bits - 1)) {
845             mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
846         } else {
847             mask = 0;
848         }
849         masked_msbs = (addr >> (va_bits - 1)) & mask;
850 
851         if (masked_msbs != 0 && masked_msbs != mask) {
852             return TRANSLATE_FAIL;
853         }
854     } else {
855         if (vm != VM_1_10_SV32 && addr >> va_bits != 0) {
856             return TRANSLATE_FAIL;
857         }
858     }
859 
860     bool pbmte = env->menvcfg & MENVCFG_PBMTE;
861     bool hade = env->menvcfg & MENVCFG_HADE;
862 
863     if (first_stage && two_stage && env->virt_enabled) {
864         pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
865         hade = hade && (env->henvcfg & HENVCFG_HADE);
866     }
867 
868     int ptshift = (levels - 1) * ptidxbits;
869     target_ulong pte;
870     hwaddr pte_addr;
871     int i;
872 
873 #if !TCG_OVERSIZED_GUEST
874 restart:
875 #endif
876     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
877         target_ulong idx;
878         if (i == 0) {
879             idx = (addr >> (PGSHIFT + ptshift)) &
880                            ((1 << (ptidxbits + widened)) - 1);
881         } else {
882             idx = (addr >> (PGSHIFT + ptshift)) &
883                            ((1 << ptidxbits) - 1);
884         }
885 
886         /* check that physical address of PTE is legal */
887 
888         if (two_stage && first_stage) {
889             int vbase_prot;
890             hwaddr vbase;
891 
892             /* Do the second stage translation on the base PTE address. */
893             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
894                                                  base, NULL, MMU_DATA_LOAD,
895                                                  MMUIdx_U, false, true,
896                                                  is_debug);
897 
898             if (vbase_ret != TRANSLATE_SUCCESS) {
899                 if (fault_pte_addr) {
900                     *fault_pte_addr = (base + idx * ptesize) >> 2;
901                 }
902                 return TRANSLATE_G_STAGE_FAIL;
903             }
904 
905             pte_addr = vbase + idx * ptesize;
906         } else {
907             pte_addr = base + idx * ptesize;
908         }
909 
910         int pmp_prot;
911         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
912                                                sizeof(target_ulong),
913                                                MMU_DATA_LOAD, PRV_S);
914         if (pmp_ret != TRANSLATE_SUCCESS) {
915             return TRANSLATE_PMP_FAIL;
916         }
917 
918         if (riscv_cpu_mxl(env) == MXL_RV32) {
919             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
920         } else {
921             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
922         }
923 
924         if (res != MEMTX_OK) {
925             return TRANSLATE_FAIL;
926         }
927 
928         if (riscv_cpu_sxl(env) == MXL_RV32) {
929             ppn = pte >> PTE_PPN_SHIFT;
930         } else {
931             if (pte & PTE_RESERVED) {
932                 return TRANSLATE_FAIL;
933             }
934 
935             if (!pbmte && (pte & PTE_PBMT)) {
936                 return TRANSLATE_FAIL;
937             }
938 
939             if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
940                 return TRANSLATE_FAIL;
941             }
942 
943             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
944         }
945 
946         if (!(pte & PTE_V)) {
947             /* Invalid PTE */
948             return TRANSLATE_FAIL;
949         }
950         if (pte & (PTE_R | PTE_W | PTE_X)) {
951             goto leaf;
952         }
953 
954         /* Inner PTE, continue walking */
955         if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
956             return TRANSLATE_FAIL;
957         }
958         base = ppn << PGSHIFT;
959     }
960 
961     /* No leaf pte at any translation level. */
962     return TRANSLATE_FAIL;
963 
964  leaf:
965     if (ppn & ((1ULL << ptshift) - 1)) {
966         /* Misaligned PPN */
967         return TRANSLATE_FAIL;
968     }
969     if (!pbmte && (pte & PTE_PBMT)) {
970         /* Reserved without Svpbmt. */
971         return TRANSLATE_FAIL;
972     }
973 
974     /* Check for reserved combinations of RWX flags. */
975     switch (pte & (PTE_R | PTE_W | PTE_X)) {
976     case PTE_W:
977     case PTE_W | PTE_X:
978         return TRANSLATE_FAIL;
979     }
980 
981     int prot = 0;
982     if (pte & PTE_R) {
983         prot |= PAGE_READ;
984     }
985     if (pte & PTE_W) {
986         prot |= PAGE_WRITE;
987     }
988     if (pte & PTE_X) {
989         bool mxr;
990 
991         if (first_stage == true) {
992             mxr = get_field(env->mstatus, MSTATUS_MXR);
993         } else {
994             mxr = get_field(env->vsstatus, MSTATUS_MXR);
995         }
996         if (mxr) {
997             prot |= PAGE_READ;
998         }
999         prot |= PAGE_EXEC;
1000     }
1001 
1002     if (pte & PTE_U) {
1003         if (mode != PRV_U) {
1004             if (!mmuidx_sum(mmu_idx)) {
1005                 return TRANSLATE_FAIL;
1006             }
1007             /* SUM allows only read+write, not execute. */
1008             prot &= PAGE_READ | PAGE_WRITE;
1009         }
1010     } else if (mode != PRV_S) {
1011         /* Supervisor PTE flags when not S mode */
1012         return TRANSLATE_FAIL;
1013     }
1014 
1015     if (!((prot >> access_type) & 1)) {
1016         /* Access check failed */
1017         return TRANSLATE_FAIL;
1018     }
1019 
1020     /* If necessary, set accessed and dirty bits. */
1021     target_ulong updated_pte = pte | PTE_A |
1022                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
1023 
1024     /* Page table updates need to be atomic with MTTCG enabled */
1025     if (updated_pte != pte && !is_debug) {
1026         if (!hade) {
1027             return TRANSLATE_FAIL;
1028         }
1029 
1030         /*
1031          * - if accessed or dirty bits need updating, and the PTE is
1032          *   in RAM, then we do so atomically with a compare and swap.
1033          * - if the PTE is in IO space or ROM, then it can't be updated
1034          *   and we return TRANSLATE_FAIL.
1035          * - if the PTE changed by the time we went to update it, then
1036          *   it is no longer valid and we must re-walk the page table.
1037          */
1038         MemoryRegion *mr;
1039         hwaddr l = sizeof(target_ulong), addr1;
1040         mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1041                                      false, MEMTXATTRS_UNSPECIFIED);
1042         if (memory_region_is_ram(mr)) {
1043             target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1);
1044 #if TCG_OVERSIZED_GUEST
1045             /*
1046              * MTTCG is not enabled on oversized TCG guests so
1047              * page table updates do not need to be atomic
1048              */
1049             *pte_pa = pte = updated_pte;
1050 #else
1051             target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte);
1052             if (old_pte != pte) {
1053                 goto restart;
1054             }
1055             pte = updated_pte;
1056 #endif
1057         } else {
1058             /*
1059              * Misconfigured PTE in ROM (AD bits are not preset) or
1060              * PTE is in IO space and can't be updated atomically.
1061              */
1062             return TRANSLATE_FAIL;
1063         }
1064     }
1065 
1066     /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */
1067     target_ulong vpn = addr >> PGSHIFT;
1068 
1069     if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1070         napot_bits = ctzl(ppn) + 1;
1071         if ((i != (levels - 1)) || (napot_bits != 4)) {
1072             return TRANSLATE_FAIL;
1073         }
1074     }
1075 
1076     napot_mask = (1 << napot_bits) - 1;
1077     *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1078                   (vpn & (((target_ulong)1 << ptshift) - 1))
1079                  ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1080 
1081     /*
1082      * Remove write permission unless this is a store, or the page is
1083      * already dirty, so that we TLB miss on later writes to update
1084      * the dirty bit.
1085      */
1086     if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) {
1087         prot &= ~PAGE_WRITE;
1088     }
1089     *ret_prot = prot;
1090 
1091     return TRANSLATE_SUCCESS;
1092 }
1093 
1094 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1095                                 MMUAccessType access_type, bool pmp_violation,
1096                                 bool first_stage, bool two_stage,
1097                                 bool two_stage_indirect)
1098 {
1099     CPUState *cs = env_cpu(env);
1100     int page_fault_exceptions, vm;
1101     uint64_t stap_mode;
1102 
1103     if (riscv_cpu_mxl(env) == MXL_RV32) {
1104         stap_mode = SATP32_MODE;
1105     } else {
1106         stap_mode = SATP64_MODE;
1107     }
1108 
1109     if (first_stage) {
1110         vm = get_field(env->satp, stap_mode);
1111     } else {
1112         vm = get_field(env->hgatp, stap_mode);
1113     }
1114 
1115     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1116 
1117     switch (access_type) {
1118     case MMU_INST_FETCH:
1119         if (env->virt_enabled && !first_stage) {
1120             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1121         } else {
1122             cs->exception_index = page_fault_exceptions ?
1123                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1124         }
1125         break;
1126     case MMU_DATA_LOAD:
1127         if (two_stage && !first_stage) {
1128             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1129         } else {
1130             cs->exception_index = page_fault_exceptions ?
1131                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1132         }
1133         break;
1134     case MMU_DATA_STORE:
1135         if (two_stage && !first_stage) {
1136             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1137         } else {
1138             cs->exception_index = page_fault_exceptions ?
1139                 RISCV_EXCP_STORE_PAGE_FAULT :
1140                 RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1141         }
1142         break;
1143     default:
1144         g_assert_not_reached();
1145     }
1146     env->badaddr = address;
1147     env->two_stage_lookup = two_stage;
1148     env->two_stage_indirect_lookup = two_stage_indirect;
1149 }
1150 
1151 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1152 {
1153     RISCVCPU *cpu = RISCV_CPU(cs);
1154     CPURISCVState *env = &cpu->env;
1155     hwaddr phys_addr;
1156     int prot;
1157     int mmu_idx = cpu_mmu_index(&cpu->env, false);
1158 
1159     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1160                              true, env->virt_enabled, true)) {
1161         return -1;
1162     }
1163 
1164     if (env->virt_enabled) {
1165         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1166                                  0, mmu_idx, false, true, true)) {
1167             return -1;
1168         }
1169     }
1170 
1171     return phys_addr & TARGET_PAGE_MASK;
1172 }
1173 
1174 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1175                                      vaddr addr, unsigned size,
1176                                      MMUAccessType access_type,
1177                                      int mmu_idx, MemTxAttrs attrs,
1178                                      MemTxResult response, uintptr_t retaddr)
1179 {
1180     RISCVCPU *cpu = RISCV_CPU(cs);
1181     CPURISCVState *env = &cpu->env;
1182 
1183     if (access_type == MMU_DATA_STORE) {
1184         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1185     } else if (access_type == MMU_DATA_LOAD) {
1186         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1187     } else {
1188         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1189     }
1190 
1191     env->badaddr = addr;
1192     env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1193     env->two_stage_indirect_lookup = false;
1194     cpu_loop_exit_restore(cs, retaddr);
1195 }
1196 
1197 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1198                                    MMUAccessType access_type, int mmu_idx,
1199                                    uintptr_t retaddr)
1200 {
1201     RISCVCPU *cpu = RISCV_CPU(cs);
1202     CPURISCVState *env = &cpu->env;
1203     switch (access_type) {
1204     case MMU_INST_FETCH:
1205         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1206         break;
1207     case MMU_DATA_LOAD:
1208         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1209         break;
1210     case MMU_DATA_STORE:
1211         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1212         break;
1213     default:
1214         g_assert_not_reached();
1215     }
1216     env->badaddr = addr;
1217     env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1218     env->two_stage_indirect_lookup = false;
1219     cpu_loop_exit_restore(cs, retaddr);
1220 }
1221 
1222 
1223 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1224 {
1225     enum riscv_pmu_event_idx pmu_event_type;
1226 
1227     switch (access_type) {
1228     case MMU_INST_FETCH:
1229         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1230         break;
1231     case MMU_DATA_LOAD:
1232         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1233         break;
1234     case MMU_DATA_STORE:
1235         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1236         break;
1237     default:
1238         return;
1239     }
1240 
1241     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1242 }
1243 
1244 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1245                         MMUAccessType access_type, int mmu_idx,
1246                         bool probe, uintptr_t retaddr)
1247 {
1248     RISCVCPU *cpu = RISCV_CPU(cs);
1249     CPURISCVState *env = &cpu->env;
1250     vaddr im_address;
1251     hwaddr pa = 0;
1252     int prot, prot2, prot_pmp;
1253     bool pmp_violation = false;
1254     bool first_stage_error = true;
1255     bool two_stage_lookup = mmuidx_2stage(mmu_idx);
1256     bool two_stage_indirect_error = false;
1257     int ret = TRANSLATE_FAIL;
1258     int mode = mmu_idx;
1259     /* default TLB page size */
1260     target_ulong tlb_size = TARGET_PAGE_SIZE;
1261 
1262     env->guest_phys_fault_addr = 0;
1263 
1264     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1265                   __func__, address, access_type, mmu_idx);
1266 
1267     pmu_tlb_fill_incr_ctr(cpu, access_type);
1268     if (two_stage_lookup) {
1269         /* Two stage lookup */
1270         ret = get_physical_address(env, &pa, &prot, address,
1271                                    &env->guest_phys_fault_addr, access_type,
1272                                    mmu_idx, true, true, false);
1273 
1274         /*
1275          * A G-stage exception may be triggered during two state lookup.
1276          * And the env->guest_phys_fault_addr has already been set in
1277          * get_physical_address().
1278          */
1279         if (ret == TRANSLATE_G_STAGE_FAIL) {
1280             first_stage_error = false;
1281             two_stage_indirect_error = true;
1282             access_type = MMU_DATA_LOAD;
1283         }
1284 
1285         qemu_log_mask(CPU_LOG_MMU,
1286                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1287                       HWADDR_FMT_plx " prot %d\n",
1288                       __func__, address, ret, pa, prot);
1289 
1290         if (ret == TRANSLATE_SUCCESS) {
1291             /* Second stage lookup */
1292             im_address = pa;
1293 
1294             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1295                                        access_type, MMUIdx_U, false, true,
1296                                        false);
1297 
1298             qemu_log_mask(CPU_LOG_MMU,
1299                           "%s 2nd-stage address=%" VADDR_PRIx
1300                           " ret %d physical "
1301                           HWADDR_FMT_plx " prot %d\n",
1302                           __func__, im_address, ret, pa, prot2);
1303 
1304             prot &= prot2;
1305 
1306             if (ret == TRANSLATE_SUCCESS) {
1307                 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1308                                                size, access_type, mode);
1309 
1310                 qemu_log_mask(CPU_LOG_MMU,
1311                               "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1312                               " %d tlb_size " TARGET_FMT_lu "\n",
1313                               __func__, pa, ret, prot_pmp, tlb_size);
1314 
1315                 prot &= prot_pmp;
1316             }
1317 
1318             if (ret != TRANSLATE_SUCCESS) {
1319                 /*
1320                  * Guest physical address translation failed, this is a HS
1321                  * level exception
1322                  */
1323                 first_stage_error = false;
1324                 env->guest_phys_fault_addr = (im_address |
1325                                               (address &
1326                                                (TARGET_PAGE_SIZE - 1))) >> 2;
1327             }
1328         }
1329     } else {
1330         /* Single stage lookup */
1331         ret = get_physical_address(env, &pa, &prot, address, NULL,
1332                                    access_type, mmu_idx, true, false, false);
1333 
1334         qemu_log_mask(CPU_LOG_MMU,
1335                       "%s address=%" VADDR_PRIx " ret %d physical "
1336                       HWADDR_FMT_plx " prot %d\n",
1337                       __func__, address, ret, pa, prot);
1338 
1339         if (ret == TRANSLATE_SUCCESS) {
1340             ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1341                                            size, access_type, mode);
1342 
1343             qemu_log_mask(CPU_LOG_MMU,
1344                           "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1345                           " %d tlb_size " TARGET_FMT_lu "\n",
1346                           __func__, pa, ret, prot_pmp, tlb_size);
1347 
1348             prot &= prot_pmp;
1349         }
1350     }
1351 
1352     if (ret == TRANSLATE_PMP_FAIL) {
1353         pmp_violation = true;
1354     }
1355 
1356     if (ret == TRANSLATE_SUCCESS) {
1357         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1358                      prot, mmu_idx, tlb_size);
1359         return true;
1360     } else if (probe) {
1361         return false;
1362     } else {
1363         raise_mmu_exception(env, address, access_type, pmp_violation,
1364                             first_stage_error, two_stage_lookup,
1365                             two_stage_indirect_error);
1366         cpu_loop_exit_restore(cs, retaddr);
1367     }
1368 
1369     return true;
1370 }
1371 
1372 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1373                                            target_ulong insn,
1374                                            target_ulong taddr)
1375 {
1376     target_ulong xinsn = 0;
1377     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1378 
1379     /*
1380      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1381      * be uncompressed. The Quadrant 1 of RVC instruction space need
1382      * not be transformed because these instructions won't generate
1383      * any load/store trap.
1384      */
1385 
1386     if ((insn & 0x3) != 0x3) {
1387         /* Transform 16bit instruction into 32bit instruction */
1388         switch (GET_C_OP(insn)) {
1389         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1390             switch (GET_C_FUNC(insn)) {
1391             case OPC_RISC_C_FUNC_FLD_LQ:
1392                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1393                     xinsn = OPC_RISC_FLD;
1394                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1395                     access_rs1 = GET_C_RS1S(insn);
1396                     access_imm = GET_C_LD_IMM(insn);
1397                     access_size = 8;
1398                 }
1399                 break;
1400             case OPC_RISC_C_FUNC_LW: /* C.LW */
1401                 xinsn = OPC_RISC_LW;
1402                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1403                 access_rs1 = GET_C_RS1S(insn);
1404                 access_imm = GET_C_LW_IMM(insn);
1405                 access_size = 4;
1406                 break;
1407             case OPC_RISC_C_FUNC_FLW_LD:
1408                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1409                     xinsn = OPC_RISC_FLW;
1410                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1411                     access_rs1 = GET_C_RS1S(insn);
1412                     access_imm = GET_C_LW_IMM(insn);
1413                     access_size = 4;
1414                 } else { /* C.LD (RV64/RV128) */
1415                     xinsn = OPC_RISC_LD;
1416                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1417                     access_rs1 = GET_C_RS1S(insn);
1418                     access_imm = GET_C_LD_IMM(insn);
1419                     access_size = 8;
1420                 }
1421                 break;
1422             case OPC_RISC_C_FUNC_FSD_SQ:
1423                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1424                     xinsn = OPC_RISC_FSD;
1425                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1426                     access_rs1 = GET_C_RS1S(insn);
1427                     access_imm = GET_C_SD_IMM(insn);
1428                     access_size = 8;
1429                 }
1430                 break;
1431             case OPC_RISC_C_FUNC_SW: /* C.SW */
1432                 xinsn = OPC_RISC_SW;
1433                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1434                 access_rs1 = GET_C_RS1S(insn);
1435                 access_imm = GET_C_SW_IMM(insn);
1436                 access_size = 4;
1437                 break;
1438             case OPC_RISC_C_FUNC_FSW_SD:
1439                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1440                     xinsn = OPC_RISC_FSW;
1441                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1442                     access_rs1 = GET_C_RS1S(insn);
1443                     access_imm = GET_C_SW_IMM(insn);
1444                     access_size = 4;
1445                 } else { /* C.SD (RV64/RV128) */
1446                     xinsn = OPC_RISC_SD;
1447                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1448                     access_rs1 = GET_C_RS1S(insn);
1449                     access_imm = GET_C_SD_IMM(insn);
1450                     access_size = 8;
1451                 }
1452                 break;
1453             default:
1454                 break;
1455             }
1456             break;
1457         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1458             switch (GET_C_FUNC(insn)) {
1459             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1460                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1461                     xinsn = OPC_RISC_FLD;
1462                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1463                     access_rs1 = 2;
1464                     access_imm = GET_C_LDSP_IMM(insn);
1465                     access_size = 8;
1466                 }
1467                 break;
1468             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1469                 xinsn = OPC_RISC_LW;
1470                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1471                 access_rs1 = 2;
1472                 access_imm = GET_C_LWSP_IMM(insn);
1473                 access_size = 4;
1474                 break;
1475             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1476                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1477                     xinsn = OPC_RISC_FLW;
1478                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1479                     access_rs1 = 2;
1480                     access_imm = GET_C_LWSP_IMM(insn);
1481                     access_size = 4;
1482                 } else { /* C.LDSP (RV64/RV128) */
1483                     xinsn = OPC_RISC_LD;
1484                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1485                     access_rs1 = 2;
1486                     access_imm = GET_C_LDSP_IMM(insn);
1487                     access_size = 8;
1488                 }
1489                 break;
1490             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1491                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1492                     xinsn = OPC_RISC_FSD;
1493                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1494                     access_rs1 = 2;
1495                     access_imm = GET_C_SDSP_IMM(insn);
1496                     access_size = 8;
1497                 }
1498                 break;
1499             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1500                 xinsn = OPC_RISC_SW;
1501                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1502                 access_rs1 = 2;
1503                 access_imm = GET_C_SWSP_IMM(insn);
1504                 access_size = 4;
1505                 break;
1506             case 7:
1507                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1508                     xinsn = OPC_RISC_FSW;
1509                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1510                     access_rs1 = 2;
1511                     access_imm = GET_C_SWSP_IMM(insn);
1512                     access_size = 4;
1513                 } else { /* C.SDSP (RV64/RV128) */
1514                     xinsn = OPC_RISC_SD;
1515                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1516                     access_rs1 = 2;
1517                     access_imm = GET_C_SDSP_IMM(insn);
1518                     access_size = 8;
1519                 }
1520                 break;
1521             default:
1522                 break;
1523             }
1524             break;
1525         default:
1526             break;
1527         }
1528 
1529         /*
1530          * Clear Bit1 of transformed instruction to indicate that
1531          * original insruction was a 16bit instruction
1532          */
1533         xinsn &= ~((target_ulong)0x2);
1534     } else {
1535         /* Transform 32bit (or wider) instructions */
1536         switch (MASK_OP_MAJOR(insn)) {
1537         case OPC_RISC_ATOMIC:
1538             xinsn = insn;
1539             access_rs1 = GET_RS1(insn);
1540             access_size = 1 << GET_FUNCT3(insn);
1541             break;
1542         case OPC_RISC_LOAD:
1543         case OPC_RISC_FP_LOAD:
1544             xinsn = SET_I_IMM(insn, 0);
1545             access_rs1 = GET_RS1(insn);
1546             access_imm = GET_IMM(insn);
1547             access_size = 1 << GET_FUNCT3(insn);
1548             break;
1549         case OPC_RISC_STORE:
1550         case OPC_RISC_FP_STORE:
1551             xinsn = SET_S_IMM(insn, 0);
1552             access_rs1 = GET_RS1(insn);
1553             access_imm = GET_STORE_IMM(insn);
1554             access_size = 1 << GET_FUNCT3(insn);
1555             break;
1556         case OPC_RISC_SYSTEM:
1557             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1558                 xinsn = insn;
1559                 access_rs1 = GET_RS1(insn);
1560                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1561                 access_size = 1 << access_size;
1562             }
1563             break;
1564         default:
1565             break;
1566         }
1567     }
1568 
1569     if (access_size) {
1570         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1571                                (access_size - 1));
1572     }
1573 
1574     return xinsn;
1575 }
1576 #endif /* !CONFIG_USER_ONLY */
1577 
1578 /*
1579  * Handle Traps
1580  *
1581  * Adapted from Spike's processor_t::take_trap.
1582  *
1583  */
1584 void riscv_cpu_do_interrupt(CPUState *cs)
1585 {
1586 #if !defined(CONFIG_USER_ONLY)
1587 
1588     RISCVCPU *cpu = RISCV_CPU(cs);
1589     CPURISCVState *env = &cpu->env;
1590     bool write_gva = false;
1591     uint64_t s;
1592 
1593     /*
1594      * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1595      * so we mask off the MSB and separate into trap type and cause.
1596      */
1597     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1598     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1599     uint64_t deleg = async ? env->mideleg : env->medeleg;
1600     target_ulong tval = 0;
1601     target_ulong tinst = 0;
1602     target_ulong htval = 0;
1603     target_ulong mtval2 = 0;
1604 
1605     if  (cause == RISCV_EXCP_SEMIHOST) {
1606         do_common_semihosting(cs);
1607         env->pc += 4;
1608         return;
1609     }
1610 
1611     if (!async) {
1612         /* set tval to badaddr for traps with address information */
1613         switch (cause) {
1614         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1615         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1616         case RISCV_EXCP_LOAD_ADDR_MIS:
1617         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1618         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1619         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1620         case RISCV_EXCP_LOAD_PAGE_FAULT:
1621         case RISCV_EXCP_STORE_PAGE_FAULT:
1622             write_gva = env->two_stage_lookup;
1623             tval = env->badaddr;
1624             if (env->two_stage_indirect_lookup) {
1625                 /*
1626                  * special pseudoinstruction for G-stage fault taken while
1627                  * doing VS-stage page table walk.
1628                  */
1629                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1630             } else {
1631                 /*
1632                  * The "Addr. Offset" field in transformed instruction is
1633                  * non-zero only for misaligned access.
1634                  */
1635                 tinst = riscv_transformed_insn(env, env->bins, tval);
1636             }
1637             break;
1638         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1639         case RISCV_EXCP_INST_ADDR_MIS:
1640         case RISCV_EXCP_INST_ACCESS_FAULT:
1641         case RISCV_EXCP_INST_PAGE_FAULT:
1642             write_gva = env->two_stage_lookup;
1643             tval = env->badaddr;
1644             if (env->two_stage_indirect_lookup) {
1645                 /*
1646                  * special pseudoinstruction for G-stage fault taken while
1647                  * doing VS-stage page table walk.
1648                  */
1649                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1650             }
1651             break;
1652         case RISCV_EXCP_ILLEGAL_INST:
1653         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1654             tval = env->bins;
1655             break;
1656         case RISCV_EXCP_BREAKPOINT:
1657             if (cs->watchpoint_hit) {
1658                 tval = cs->watchpoint_hit->hitaddr;
1659                 cs->watchpoint_hit = NULL;
1660             }
1661             break;
1662         default:
1663             break;
1664         }
1665         /* ecall is dispatched as one cause so translate based on mode */
1666         if (cause == RISCV_EXCP_U_ECALL) {
1667             assert(env->priv <= 3);
1668 
1669             if (env->priv == PRV_M) {
1670                 cause = RISCV_EXCP_M_ECALL;
1671             } else if (env->priv == PRV_S && env->virt_enabled) {
1672                 cause = RISCV_EXCP_VS_ECALL;
1673             } else if (env->priv == PRV_S && !env->virt_enabled) {
1674                 cause = RISCV_EXCP_S_ECALL;
1675             } else if (env->priv == PRV_U) {
1676                 cause = RISCV_EXCP_U_ECALL;
1677             }
1678         }
1679     }
1680 
1681     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1682                      riscv_cpu_get_trap_name(cause, async));
1683 
1684     qemu_log_mask(CPU_LOG_INT,
1685                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1686                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1687                   __func__, env->mhartid, async, cause, env->pc, tval,
1688                   riscv_cpu_get_trap_name(cause, async));
1689 
1690     if (env->priv <= PRV_S &&
1691             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1692         /* handle the trap in S-mode */
1693         if (riscv_has_ext(env, RVH)) {
1694             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1695 
1696             if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
1697                 /* Trap to VS mode */
1698                 /*
1699                  * See if we need to adjust cause. Yes if its VS mode interrupt
1700                  * no if hypervisor has delegated one of hs mode's interrupt
1701                  */
1702                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1703                     cause == IRQ_VS_EXT) {
1704                     cause = cause - 1;
1705                 }
1706                 write_gva = false;
1707             } else if (env->virt_enabled) {
1708                 /* Trap into HS mode, from virt */
1709                 riscv_cpu_swap_hypervisor_regs(env);
1710                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1711                                          env->priv);
1712                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1713 
1714                 htval = env->guest_phys_fault_addr;
1715 
1716                 riscv_cpu_set_virt_enabled(env, 0);
1717             } else {
1718                 /* Trap into HS mode */
1719                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1720                 htval = env->guest_phys_fault_addr;
1721             }
1722             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1723         }
1724 
1725         s = env->mstatus;
1726         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1727         s = set_field(s, MSTATUS_SPP, env->priv);
1728         s = set_field(s, MSTATUS_SIE, 0);
1729         env->mstatus = s;
1730         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1731         env->sepc = env->pc;
1732         env->stval = tval;
1733         env->htval = htval;
1734         env->htinst = tinst;
1735         env->pc = (env->stvec >> 2 << 2) +
1736                   ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1737         riscv_cpu_set_mode(env, PRV_S);
1738     } else {
1739         /* handle the trap in M-mode */
1740         if (riscv_has_ext(env, RVH)) {
1741             if (env->virt_enabled) {
1742                 riscv_cpu_swap_hypervisor_regs(env);
1743             }
1744             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1745                                      env->virt_enabled);
1746             if (env->virt_enabled && tval) {
1747                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1748             }
1749 
1750             mtval2 = env->guest_phys_fault_addr;
1751 
1752             /* Trapping to M mode, virt is disabled */
1753             riscv_cpu_set_virt_enabled(env, 0);
1754         }
1755 
1756         s = env->mstatus;
1757         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1758         s = set_field(s, MSTATUS_MPP, env->priv);
1759         s = set_field(s, MSTATUS_MIE, 0);
1760         env->mstatus = s;
1761         env->mcause = cause | ~(((target_ulong)-1) >> async);
1762         env->mepc = env->pc;
1763         env->mtval = tval;
1764         env->mtval2 = mtval2;
1765         env->mtinst = tinst;
1766         env->pc = (env->mtvec >> 2 << 2) +
1767                   ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1768         riscv_cpu_set_mode(env, PRV_M);
1769     }
1770 
1771     /*
1772      * NOTE: it is not necessary to yield load reservations here. It is only
1773      * necessary for an SC from "another hart" to cause a load reservation
1774      * to be yielded. Refer to the memory consistency model section of the
1775      * RISC-V ISA Specification.
1776      */
1777 
1778     env->two_stage_lookup = false;
1779     env->two_stage_indirect_lookup = false;
1780 #endif
1781     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1782 }
1783