xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision 4acaa133)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "pmu.h"
25 #include "exec/exec-all.h"
26 #include "instmap.h"
27 #include "tcg/tcg-op.h"
28 #include "trace.h"
29 #include "semihosting/common-semi.h"
30 #include "sysemu/cpu-timers.h"
31 #include "cpu_bits.h"
32 #include "debug.h"
33 
34 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
35 {
36 #ifdef CONFIG_USER_ONLY
37     return 0;
38 #else
39     return env->priv;
40 #endif
41 }
42 
43 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
44                           target_ulong *cs_base, uint32_t *pflags)
45 {
46     CPUState *cs = env_cpu(env);
47     RISCVCPU *cpu = RISCV_CPU(cs);
48     RISCVExtStatus fs, vs;
49     uint32_t flags = 0;
50 
51     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
52     *cs_base = 0;
53 
54     if (cpu->cfg.ext_zve32f) {
55         /*
56          * If env->vl equals to VLMAX, we can use generic vector operation
57          * expanders (GVEC) to accerlate the vector operations.
58          * However, as LMUL could be a fractional number. The maximum
59          * vector size can be operated might be less than 8 bytes,
60          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
61          * only when maxsz >= 8 bytes.
62          */
63         uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
64         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
65         uint32_t maxsz = vlmax << sew;
66         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
67                            (maxsz >= 8);
68         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
69         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
70         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
71                            FIELD_EX64(env->vtype, VTYPE, VLMUL));
72         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
73         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
74                            FIELD_EX64(env->vtype, VTYPE, VTA));
75         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
76                            FIELD_EX64(env->vtype, VTYPE, VMA));
77         flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
78     } else {
79         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
80     }
81 
82 #ifdef CONFIG_USER_ONLY
83     fs = EXT_STATUS_DIRTY;
84     vs = EXT_STATUS_DIRTY;
85 #else
86     flags |= cpu_mmu_index(env, 0);
87     fs = get_field(env->mstatus, MSTATUS_FS);
88     vs = get_field(env->mstatus, MSTATUS_VS);
89 
90     if (riscv_has_ext(env, RVH)) {
91         if (env->priv == PRV_M ||
92             (env->priv == PRV_S && !env->virt_enabled) ||
93             (env->priv == PRV_U && !env->virt_enabled &&
94              get_field(env->hstatus, HSTATUS_HU))) {
95             flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
96         }
97 
98         if (env->virt_enabled) {
99             flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
100             /*
101              * Merge DISABLED and !DIRTY states using MIN.
102              * We will set both fields when dirtying.
103              */
104             fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
105             vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
106         }
107     }
108     if (cpu->cfg.debug && !icount_enabled()) {
109         flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
110     }
111 #endif
112 
113     flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
114     flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
115     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
116     if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
117         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
118     }
119     if (env->cur_pmbase != 0) {
120         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
121     }
122 
123     *pflags = flags;
124 }
125 
126 void riscv_cpu_update_mask(CPURISCVState *env)
127 {
128     target_ulong mask = -1, base = 0;
129     /*
130      * TODO: Current RVJ spec does not specify
131      * how the extension interacts with XLEN.
132      */
133 #ifndef CONFIG_USER_ONLY
134     if (riscv_has_ext(env, RVJ)) {
135         switch (env->priv) {
136         case PRV_M:
137             if (env->mmte & M_PM_ENABLE) {
138                 mask = env->mpmmask;
139                 base = env->mpmbase;
140             }
141             break;
142         case PRV_S:
143             if (env->mmte & S_PM_ENABLE) {
144                 mask = env->spmmask;
145                 base = env->spmbase;
146             }
147             break;
148         case PRV_U:
149             if (env->mmte & U_PM_ENABLE) {
150                 mask = env->upmmask;
151                 base = env->upmbase;
152             }
153             break;
154         default:
155             g_assert_not_reached();
156         }
157     }
158 #endif
159     if (env->xl == MXL_RV32) {
160         env->cur_pmmask = mask & UINT32_MAX;
161         env->cur_pmbase = base & UINT32_MAX;
162     } else {
163         env->cur_pmmask = mask;
164         env->cur_pmbase = base;
165     }
166 }
167 
168 #ifndef CONFIG_USER_ONLY
169 
170 /*
171  * The HS-mode is allowed to configure priority only for the
172  * following VS-mode local interrupts:
173  *
174  * 0  (Reserved interrupt, reads as zero)
175  * 1  Supervisor software interrupt
176  * 4  (Reserved interrupt, reads as zero)
177  * 5  Supervisor timer interrupt
178  * 8  (Reserved interrupt, reads as zero)
179  * 13 (Reserved interrupt)
180  * 14 "
181  * 15 "
182  * 16 "
183  * 17 "
184  * 18 "
185  * 19 "
186  * 20 "
187  * 21 "
188  * 22 "
189  * 23 "
190  */
191 
192 static const int hviprio_index2irq[] = {
193     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
194 static const int hviprio_index2rdzero[] = {
195     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
196 
197 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
198 {
199     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
200         return -EINVAL;
201     }
202 
203     if (out_irq) {
204         *out_irq = hviprio_index2irq[index];
205     }
206 
207     if (out_rdzero) {
208         *out_rdzero = hviprio_index2rdzero[index];
209     }
210 
211     return 0;
212 }
213 
214 /*
215  * Default priorities of local interrupts are defined in the
216  * RISC-V Advanced Interrupt Architecture specification.
217  *
218  * ----------------------------------------------------------------
219  *  Default  |
220  *  Priority | Major Interrupt Numbers
221  * ----------------------------------------------------------------
222  *  Highest  | 47, 23, 46, 45, 22, 44,
223  *           | 43, 21, 42, 41, 20, 40
224  *           |
225  *           | 11 (0b),  3 (03),  7 (07)
226  *           |  9 (09),  1 (01),  5 (05)
227  *           | 12 (0c)
228  *           | 10 (0a),  2 (02),  6 (06)
229  *           |
230  *           | 39, 19, 38, 37, 18, 36,
231  *  Lowest   | 35, 17, 34, 33, 16, 32
232  * ----------------------------------------------------------------
233  */
234 static const uint8_t default_iprio[64] = {
235     /* Custom interrupts 48 to 63 */
236     [63] = IPRIO_MMAXIPRIO,
237     [62] = IPRIO_MMAXIPRIO,
238     [61] = IPRIO_MMAXIPRIO,
239     [60] = IPRIO_MMAXIPRIO,
240     [59] = IPRIO_MMAXIPRIO,
241     [58] = IPRIO_MMAXIPRIO,
242     [57] = IPRIO_MMAXIPRIO,
243     [56] = IPRIO_MMAXIPRIO,
244     [55] = IPRIO_MMAXIPRIO,
245     [54] = IPRIO_MMAXIPRIO,
246     [53] = IPRIO_MMAXIPRIO,
247     [52] = IPRIO_MMAXIPRIO,
248     [51] = IPRIO_MMAXIPRIO,
249     [50] = IPRIO_MMAXIPRIO,
250     [49] = IPRIO_MMAXIPRIO,
251     [48] = IPRIO_MMAXIPRIO,
252 
253     /* Custom interrupts 24 to 31 */
254     [31] = IPRIO_MMAXIPRIO,
255     [30] = IPRIO_MMAXIPRIO,
256     [29] = IPRIO_MMAXIPRIO,
257     [28] = IPRIO_MMAXIPRIO,
258     [27] = IPRIO_MMAXIPRIO,
259     [26] = IPRIO_MMAXIPRIO,
260     [25] = IPRIO_MMAXIPRIO,
261     [24] = IPRIO_MMAXIPRIO,
262 
263     [47] = IPRIO_DEFAULT_UPPER,
264     [23] = IPRIO_DEFAULT_UPPER + 1,
265     [46] = IPRIO_DEFAULT_UPPER + 2,
266     [45] = IPRIO_DEFAULT_UPPER + 3,
267     [22] = IPRIO_DEFAULT_UPPER + 4,
268     [44] = IPRIO_DEFAULT_UPPER + 5,
269 
270     [43] = IPRIO_DEFAULT_UPPER + 6,
271     [21] = IPRIO_DEFAULT_UPPER + 7,
272     [42] = IPRIO_DEFAULT_UPPER + 8,
273     [41] = IPRIO_DEFAULT_UPPER + 9,
274     [20] = IPRIO_DEFAULT_UPPER + 10,
275     [40] = IPRIO_DEFAULT_UPPER + 11,
276 
277     [11] = IPRIO_DEFAULT_M,
278     [3]  = IPRIO_DEFAULT_M + 1,
279     [7]  = IPRIO_DEFAULT_M + 2,
280 
281     [9]  = IPRIO_DEFAULT_S,
282     [1]  = IPRIO_DEFAULT_S + 1,
283     [5]  = IPRIO_DEFAULT_S + 2,
284 
285     [12] = IPRIO_DEFAULT_SGEXT,
286 
287     [10] = IPRIO_DEFAULT_VS,
288     [2]  = IPRIO_DEFAULT_VS + 1,
289     [6]  = IPRIO_DEFAULT_VS + 2,
290 
291     [39] = IPRIO_DEFAULT_LOWER,
292     [19] = IPRIO_DEFAULT_LOWER + 1,
293     [38] = IPRIO_DEFAULT_LOWER + 2,
294     [37] = IPRIO_DEFAULT_LOWER + 3,
295     [18] = IPRIO_DEFAULT_LOWER + 4,
296     [36] = IPRIO_DEFAULT_LOWER + 5,
297 
298     [35] = IPRIO_DEFAULT_LOWER + 6,
299     [17] = IPRIO_DEFAULT_LOWER + 7,
300     [34] = IPRIO_DEFAULT_LOWER + 8,
301     [33] = IPRIO_DEFAULT_LOWER + 9,
302     [16] = IPRIO_DEFAULT_LOWER + 10,
303     [32] = IPRIO_DEFAULT_LOWER + 11,
304 };
305 
306 uint8_t riscv_cpu_default_priority(int irq)
307 {
308     if (irq < 0 || irq > 63) {
309         return IPRIO_MMAXIPRIO;
310     }
311 
312     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
313 };
314 
315 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
316                                     int extirq, unsigned int extirq_def_prio,
317                                     uint64_t pending, uint8_t *iprio)
318 {
319     int irq, best_irq = RISCV_EXCP_NONE;
320     unsigned int prio, best_prio = UINT_MAX;
321 
322     if (!pending) {
323         return RISCV_EXCP_NONE;
324     }
325 
326     irq = ctz64(pending);
327     if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
328                                   riscv_cpu_cfg(env)->ext_ssaia)) {
329         return irq;
330     }
331 
332     pending = pending >> irq;
333     while (pending) {
334         prio = iprio[irq];
335         if (!prio) {
336             if (irq == extirq) {
337                 prio = extirq_def_prio;
338             } else {
339                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
340                        1 : IPRIO_MMAXIPRIO;
341             }
342         }
343         if ((pending & 0x1) && (prio <= best_prio)) {
344             best_irq = irq;
345             best_prio = prio;
346         }
347         irq++;
348         pending = pending >> 1;
349     }
350 
351     return best_irq;
352 }
353 
354 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
355 {
356     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
357     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
358     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
359 
360     return (env->mip | vsgein | vstip) & env->mie;
361 }
362 
363 int riscv_cpu_mirq_pending(CPURISCVState *env)
364 {
365     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
366                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
367 
368     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
369                                     irqs, env->miprio);
370 }
371 
372 int riscv_cpu_sirq_pending(CPURISCVState *env)
373 {
374     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
375                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
376 
377     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
378                                     irqs, env->siprio);
379 }
380 
381 int riscv_cpu_vsirq_pending(CPURISCVState *env)
382 {
383     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
384                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
385 
386     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
387                                     irqs >> 1, env->hviprio);
388 }
389 
390 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
391 {
392     int virq;
393     uint64_t irqs, pending, mie, hsie, vsie;
394 
395     /* Determine interrupt enable state of all privilege modes */
396     if (env->virt_enabled) {
397         mie = 1;
398         hsie = 1;
399         vsie = (env->priv < PRV_S) ||
400                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
401     } else {
402         mie = (env->priv < PRV_M) ||
403               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
404         hsie = (env->priv < PRV_S) ||
405                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
406         vsie = 0;
407     }
408 
409     /* Determine all pending interrupts */
410     pending = riscv_cpu_all_pending(env);
411 
412     /* Check M-mode interrupts */
413     irqs = pending & ~env->mideleg & -mie;
414     if (irqs) {
415         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
416                                         irqs, env->miprio);
417     }
418 
419     /* Check HS-mode interrupts */
420     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
421     if (irqs) {
422         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
423                                         irqs, env->siprio);
424     }
425 
426     /* Check VS-mode interrupts */
427     irqs = pending & env->mideleg & env->hideleg & -vsie;
428     if (irqs) {
429         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
430                                         irqs >> 1, env->hviprio);
431         return (virq <= 0) ? virq : virq + 1;
432     }
433 
434     /* Indicate no pending interrupt */
435     return RISCV_EXCP_NONE;
436 }
437 
438 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
439 {
440     if (interrupt_request & CPU_INTERRUPT_HARD) {
441         RISCVCPU *cpu = RISCV_CPU(cs);
442         CPURISCVState *env = &cpu->env;
443         int interruptno = riscv_cpu_local_irq_pending(env);
444         if (interruptno >= 0) {
445             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
446             riscv_cpu_do_interrupt(cs);
447             return true;
448         }
449     }
450     return false;
451 }
452 
453 /* Return true is floating point support is currently enabled */
454 bool riscv_cpu_fp_enabled(CPURISCVState *env)
455 {
456     if (env->mstatus & MSTATUS_FS) {
457         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
458             return false;
459         }
460         return true;
461     }
462 
463     return false;
464 }
465 
466 /* Return true is vector support is currently enabled */
467 bool riscv_cpu_vector_enabled(CPURISCVState *env)
468 {
469     if (env->mstatus & MSTATUS_VS) {
470         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
471             return false;
472         }
473         return true;
474     }
475 
476     return false;
477 }
478 
479 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
480 {
481     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
482                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
483                             MSTATUS64_UXL | MSTATUS_VS;
484 
485     if (riscv_has_ext(env, RVF)) {
486         mstatus_mask |= MSTATUS_FS;
487     }
488     bool current_virt = env->virt_enabled;
489 
490     g_assert(riscv_has_ext(env, RVH));
491 
492     if (current_virt) {
493         /* Current V=1 and we are about to change to V=0 */
494         env->vsstatus = env->mstatus & mstatus_mask;
495         env->mstatus &= ~mstatus_mask;
496         env->mstatus |= env->mstatus_hs;
497 
498         env->vstvec = env->stvec;
499         env->stvec = env->stvec_hs;
500 
501         env->vsscratch = env->sscratch;
502         env->sscratch = env->sscratch_hs;
503 
504         env->vsepc = env->sepc;
505         env->sepc = env->sepc_hs;
506 
507         env->vscause = env->scause;
508         env->scause = env->scause_hs;
509 
510         env->vstval = env->stval;
511         env->stval = env->stval_hs;
512 
513         env->vsatp = env->satp;
514         env->satp = env->satp_hs;
515     } else {
516         /* Current V=0 and we are about to change to V=1 */
517         env->mstatus_hs = env->mstatus & mstatus_mask;
518         env->mstatus &= ~mstatus_mask;
519         env->mstatus |= env->vsstatus;
520 
521         env->stvec_hs = env->stvec;
522         env->stvec = env->vstvec;
523 
524         env->sscratch_hs = env->sscratch;
525         env->sscratch = env->vsscratch;
526 
527         env->sepc_hs = env->sepc;
528         env->sepc = env->vsepc;
529 
530         env->scause_hs = env->scause;
531         env->scause = env->vscause;
532 
533         env->stval_hs = env->stval;
534         env->stval = env->vstval;
535 
536         env->satp_hs = env->satp;
537         env->satp = env->vsatp;
538     }
539 }
540 
541 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
542 {
543     if (!riscv_has_ext(env, RVH)) {
544         return 0;
545     }
546 
547     return env->geilen;
548 }
549 
550 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
551 {
552     if (!riscv_has_ext(env, RVH)) {
553         return;
554     }
555 
556     if (geilen > (TARGET_LONG_BITS - 1)) {
557         return;
558     }
559 
560     env->geilen = geilen;
561 }
562 
563 /* This function can only be called to set virt when RVH is enabled */
564 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
565 {
566     /* Flush the TLB on all virt mode changes. */
567     if (env->virt_enabled != enable) {
568         tlb_flush(env_cpu(env));
569     }
570 
571     env->virt_enabled = enable;
572 
573     if (enable) {
574         /*
575          * The guest external interrupts from an interrupt controller are
576          * delivered only when the Guest/VM is running (i.e. V=1). This means
577          * any guest external interrupt which is triggered while the Guest/VM
578          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
579          * with sluggish response to serial console input and other I/O events.
580          *
581          * To solve this, we check and inject interrupt after setting V=1.
582          */
583         riscv_cpu_update_mip(env, 0, 0);
584     }
585 }
586 
587 bool riscv_cpu_two_stage_lookup(int mmu_idx)
588 {
589     return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
590 }
591 
592 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
593 {
594     CPURISCVState *env = &cpu->env;
595     if (env->miclaim & interrupts) {
596         return -1;
597     } else {
598         env->miclaim |= interrupts;
599         return 0;
600     }
601 }
602 
603 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
604                               uint64_t value)
605 {
606     CPUState *cs = env_cpu(env);
607     uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
608 
609     if (env->virt_enabled) {
610         gein = get_field(env->hstatus, HSTATUS_VGEIN);
611         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
612     }
613 
614     vstip = env->vstime_irq ? MIP_VSTIP : 0;
615 
616     QEMU_IOTHREAD_LOCK_GUARD();
617 
618     env->mip = (env->mip & ~mask) | (value & mask);
619 
620     if (env->mip | vsgein | vstip) {
621         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
622     } else {
623         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
624     }
625 
626     return old;
627 }
628 
629 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
630                              void *arg)
631 {
632     env->rdtime_fn = fn;
633     env->rdtime_fn_arg = arg;
634 }
635 
636 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
637                                    int (*rmw_fn)(void *arg,
638                                                  target_ulong reg,
639                                                  target_ulong *val,
640                                                  target_ulong new_val,
641                                                  target_ulong write_mask),
642                                    void *rmw_fn_arg)
643 {
644     if (priv <= PRV_M) {
645         env->aia_ireg_rmw_fn[priv] = rmw_fn;
646         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
647     }
648 }
649 
650 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
651 {
652     g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
653 
654     if (icount_enabled() && newpriv != env->priv) {
655         riscv_itrigger_update_priv(env);
656     }
657     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
658     env->priv = newpriv;
659     env->xl = cpu_recompute_xl(env);
660     riscv_cpu_update_mask(env);
661 
662     /*
663      * Clear the load reservation - otherwise a reservation placed in one
664      * context/process can be used by another, resulting in an SC succeeding
665      * incorrectly. Version 2.2 of the ISA specification explicitly requires
666      * this behaviour, while later revisions say that the kernel "should" use
667      * an SC instruction to force the yielding of a load reservation on a
668      * preemptive context switch. As a result, do both.
669      */
670     env->load_res = -1;
671 }
672 
673 /*
674  * get_physical_address_pmp - check PMP permission for this physical address
675  *
676  * Match the PMP region and check permission for this physical address and it's
677  * TLB page. Returns 0 if the permission checking was successful
678  *
679  * @env: CPURISCVState
680  * @prot: The returned protection attributes
681  * @tlb_size: TLB page size containing addr. It could be modified after PMP
682  *            permission checking. NULL if not set TLB page for addr.
683  * @addr: The physical address to be checked permission
684  * @access_type: The type of MMU access
685  * @mode: Indicates current privilege level.
686  */
687 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
688                                     target_ulong *tlb_size, hwaddr addr,
689                                     int size, MMUAccessType access_type,
690                                     int mode)
691 {
692     pmp_priv_t pmp_priv;
693     int pmp_index = -1;
694 
695     if (!riscv_cpu_cfg(env)->pmp) {
696         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
697         return TRANSLATE_SUCCESS;
698     }
699 
700     pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
701                                    &pmp_priv, mode);
702     if (pmp_index < 0) {
703         *prot = 0;
704         return TRANSLATE_PMP_FAIL;
705     }
706 
707     *prot = pmp_priv_to_page_prot(pmp_priv);
708     if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
709         target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
710         target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
711 
712         *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
713     }
714 
715     return TRANSLATE_SUCCESS;
716 }
717 
718 /*
719  * get_physical_address - get the physical address for this virtual address
720  *
721  * Do a page table walk to obtain the physical address corresponding to a
722  * virtual address. Returns 0 if the translation was successful
723  *
724  * Adapted from Spike's mmu_t::translate and mmu_t::walk
725  *
726  * @env: CPURISCVState
727  * @physical: This will be set to the calculated physical address
728  * @prot: The returned protection attributes
729  * @addr: The virtual address or guest physical address to be translated
730  * @fault_pte_addr: If not NULL, this will be set to fault pte address
731  *                  when a error occurs on pte address translation.
732  *                  This will already be shifted to match htval.
733  * @access_type: The type of MMU access
734  * @mmu_idx: Indicates current privilege level
735  * @first_stage: Are we in first stage translation?
736  *               Second stage is used for hypervisor guest translation
737  * @two_stage: Are we going to perform two stage translation
738  * @is_debug: Is this access from a debugger or the monitor?
739  */
740 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
741                                 int *prot, vaddr addr,
742                                 target_ulong *fault_pte_addr,
743                                 int access_type, int mmu_idx,
744                                 bool first_stage, bool two_stage,
745                                 bool is_debug)
746 {
747     /*
748      * NOTE: the env->pc value visible here will not be
749      * correct, but the value visible to the exception handler
750      * (riscv_cpu_do_interrupt) is correct
751      */
752     MemTxResult res;
753     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
754     int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
755     bool use_background = false;
756     hwaddr ppn;
757     int napot_bits = 0;
758     target_ulong napot_mask;
759 
760     /*
761      * Check if we should use the background registers for the two
762      * stage translation. We don't need to check if we actually need
763      * two stage translation as that happened before this function
764      * was called. Background registers will be used if the guest has
765      * forced a two stage translation to be on (in HS or M mode).
766      */
767     if (!env->virt_enabled && two_stage) {
768         use_background = true;
769     }
770 
771     /*
772      * MPRV does not affect the virtual-machine load/store
773      * instructions, HLV, HLVX, and HSV.
774      */
775     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
776         mode = get_field(env->hstatus, HSTATUS_SPVP);
777     } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
778         if (get_field(env->mstatus, MSTATUS_MPRV)) {
779             mode = get_field(env->mstatus, MSTATUS_MPP);
780         }
781     }
782 
783     if (first_stage == false) {
784         /*
785          * We are in stage 2 translation, this is similar to stage 1.
786          * Stage 2 is always taken as U-mode
787          */
788         mode = PRV_U;
789     }
790 
791     if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
792         *physical = addr;
793         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
794         return TRANSLATE_SUCCESS;
795     }
796 
797     *prot = 0;
798 
799     hwaddr base;
800     int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
801 
802     if (first_stage == true) {
803         mxr = get_field(env->mstatus, MSTATUS_MXR);
804     } else {
805         mxr = get_field(env->vsstatus, MSTATUS_MXR);
806     }
807 
808     if (first_stage == true) {
809         if (use_background) {
810             if (riscv_cpu_mxl(env) == MXL_RV32) {
811                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
812                 vm = get_field(env->vsatp, SATP32_MODE);
813             } else {
814                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
815                 vm = get_field(env->vsatp, SATP64_MODE);
816             }
817         } else {
818             if (riscv_cpu_mxl(env) == MXL_RV32) {
819                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
820                 vm = get_field(env->satp, SATP32_MODE);
821             } else {
822                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
823                 vm = get_field(env->satp, SATP64_MODE);
824             }
825         }
826         widened = 0;
827     } else {
828         if (riscv_cpu_mxl(env) == MXL_RV32) {
829             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
830             vm = get_field(env->hgatp, SATP32_MODE);
831         } else {
832             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
833             vm = get_field(env->hgatp, SATP64_MODE);
834         }
835         widened = 2;
836     }
837     /* status.SUM will be ignored if execute on background */
838     sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
839     switch (vm) {
840     case VM_1_10_SV32:
841       levels = 2; ptidxbits = 10; ptesize = 4; break;
842     case VM_1_10_SV39:
843       levels = 3; ptidxbits = 9; ptesize = 8; break;
844     case VM_1_10_SV48:
845       levels = 4; ptidxbits = 9; ptesize = 8; break;
846     case VM_1_10_SV57:
847       levels = 5; ptidxbits = 9; ptesize = 8; break;
848     case VM_1_10_MBARE:
849         *physical = addr;
850         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
851         return TRANSLATE_SUCCESS;
852     default:
853       g_assert_not_reached();
854     }
855 
856     CPUState *cs = env_cpu(env);
857     int va_bits = PGSHIFT + levels * ptidxbits + widened;
858     target_ulong mask, masked_msbs;
859 
860     if (TARGET_LONG_BITS > (va_bits - 1)) {
861         mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
862     } else {
863         mask = 0;
864     }
865     masked_msbs = (addr >> (va_bits - 1)) & mask;
866 
867     if (masked_msbs != 0 && masked_msbs != mask) {
868         return TRANSLATE_FAIL;
869     }
870 
871     int ptshift = (levels - 1) * ptidxbits;
872     int i;
873 
874 #if !TCG_OVERSIZED_GUEST
875 restart:
876 #endif
877     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
878         target_ulong idx;
879         if (i == 0) {
880             idx = (addr >> (PGSHIFT + ptshift)) &
881                            ((1 << (ptidxbits + widened)) - 1);
882         } else {
883             idx = (addr >> (PGSHIFT + ptshift)) &
884                            ((1 << ptidxbits) - 1);
885         }
886 
887         /* check that physical address of PTE is legal */
888         hwaddr pte_addr;
889 
890         if (two_stage && first_stage) {
891             int vbase_prot;
892             hwaddr vbase;
893 
894             /* Do the second stage translation on the base PTE address. */
895             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
896                                                  base, NULL, MMU_DATA_LOAD,
897                                                  mmu_idx, false, true,
898                                                  is_debug);
899 
900             if (vbase_ret != TRANSLATE_SUCCESS) {
901                 if (fault_pte_addr) {
902                     *fault_pte_addr = (base + idx * ptesize) >> 2;
903                 }
904                 return TRANSLATE_G_STAGE_FAIL;
905             }
906 
907             pte_addr = vbase + idx * ptesize;
908         } else {
909             pte_addr = base + idx * ptesize;
910         }
911 
912         int pmp_prot;
913         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
914                                                sizeof(target_ulong),
915                                                MMU_DATA_LOAD, PRV_S);
916         if (pmp_ret != TRANSLATE_SUCCESS) {
917             return TRANSLATE_PMP_FAIL;
918         }
919 
920         target_ulong pte;
921         if (riscv_cpu_mxl(env) == MXL_RV32) {
922             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
923         } else {
924             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
925         }
926 
927         if (res != MEMTX_OK) {
928             return TRANSLATE_FAIL;
929         }
930 
931         bool pbmte = env->menvcfg & MENVCFG_PBMTE;
932         bool hade = env->menvcfg & MENVCFG_HADE;
933 
934         if (first_stage && two_stage && env->virt_enabled) {
935             pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
936             hade = hade && (env->henvcfg & HENVCFG_HADE);
937         }
938 
939         if (riscv_cpu_sxl(env) == MXL_RV32) {
940             ppn = pte >> PTE_PPN_SHIFT;
941         } else if (pbmte || riscv_cpu_cfg(env)->ext_svnapot) {
942             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
943         } else {
944             ppn = pte >> PTE_PPN_SHIFT;
945             if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
946                 return TRANSLATE_FAIL;
947             }
948         }
949 
950         if (!(pte & PTE_V)) {
951             /* Invalid PTE */
952             return TRANSLATE_FAIL;
953         } else if (!pbmte && (pte & PTE_PBMT)) {
954             return TRANSLATE_FAIL;
955         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
956             /* Inner PTE, continue walking */
957             if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
958                 return TRANSLATE_FAIL;
959             }
960             base = ppn << PGSHIFT;
961         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
962             /* Reserved leaf PTE flags: PTE_W */
963             return TRANSLATE_FAIL;
964         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
965             /* Reserved leaf PTE flags: PTE_W + PTE_X */
966             return TRANSLATE_FAIL;
967         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
968                    (!sum || access_type == MMU_INST_FETCH))) {
969             /* User PTE flags when not U mode and mstatus.SUM is not set,
970                or the access type is an instruction fetch */
971             return TRANSLATE_FAIL;
972         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
973             /* Supervisor PTE flags when not S mode */
974             return TRANSLATE_FAIL;
975         } else if (ppn & ((1ULL << ptshift) - 1)) {
976             /* Misaligned PPN */
977             return TRANSLATE_FAIL;
978         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
979                    ((pte & PTE_X) && mxr))) {
980             /* Read access check failed */
981             return TRANSLATE_FAIL;
982         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
983             /* Write access check failed */
984             return TRANSLATE_FAIL;
985         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
986             /* Fetch access check failed */
987             return TRANSLATE_FAIL;
988         } else {
989             /* if necessary, set accessed and dirty bits. */
990             target_ulong updated_pte = pte | PTE_A |
991                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
992 
993             /* Page table updates need to be atomic with MTTCG enabled */
994             if (updated_pte != pte) {
995                 if (!hade) {
996                     return TRANSLATE_FAIL;
997                 }
998 
999                 /*
1000                  * - if accessed or dirty bits need updating, and the PTE is
1001                  *   in RAM, then we do so atomically with a compare and swap.
1002                  * - if the PTE is in IO space or ROM, then it can't be updated
1003                  *   and we return TRANSLATE_FAIL.
1004                  * - if the PTE changed by the time we went to update it, then
1005                  *   it is no longer valid and we must re-walk the page table.
1006                  */
1007                 MemoryRegion *mr;
1008                 hwaddr l = sizeof(target_ulong), addr1;
1009                 mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1010                                              false, MEMTXATTRS_UNSPECIFIED);
1011                 if (memory_region_is_ram(mr)) {
1012                     target_ulong *pte_pa =
1013                         qemu_map_ram_ptr(mr->ram_block, addr1);
1014 #if TCG_OVERSIZED_GUEST
1015                     /*
1016                      * MTTCG is not enabled on oversized TCG guests so
1017                      * page table updates do not need to be atomic
1018                      */
1019                     *pte_pa = pte = updated_pte;
1020 #else
1021                     target_ulong old_pte =
1022                         qatomic_cmpxchg(pte_pa, pte, updated_pte);
1023                     if (old_pte != pte) {
1024                         goto restart;
1025                     } else {
1026                         pte = updated_pte;
1027                     }
1028 #endif
1029                 } else {
1030                     /*
1031                      * misconfigured PTE in ROM (AD bits are not preset) or
1032                      * PTE is in IO space and can't be updated atomically
1033                      */
1034                     return TRANSLATE_FAIL;
1035                 }
1036             }
1037 
1038             /*
1039              * for superpage mappings, make a fake leaf PTE for the TLB's
1040              * benefit.
1041              */
1042             target_ulong vpn = addr >> PGSHIFT;
1043 
1044             if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1045                 napot_bits = ctzl(ppn) + 1;
1046                 if ((i != (levels - 1)) || (napot_bits != 4)) {
1047                     return TRANSLATE_FAIL;
1048                 }
1049             }
1050 
1051             napot_mask = (1 << napot_bits) - 1;
1052             *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1053                           (vpn & (((target_ulong)1 << ptshift) - 1))
1054                          ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1055 
1056             /* set permissions on the TLB entry */
1057             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
1058                 *prot |= PAGE_READ;
1059             }
1060             if (pte & PTE_X) {
1061                 *prot |= PAGE_EXEC;
1062             }
1063             /*
1064              * add write permission on stores or if the page is already dirty,
1065              * so that we TLB miss on later writes to update the dirty bit
1066              */
1067             if ((pte & PTE_W) &&
1068                 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1069                 *prot |= PAGE_WRITE;
1070             }
1071             return TRANSLATE_SUCCESS;
1072         }
1073     }
1074     return TRANSLATE_FAIL;
1075 }
1076 
1077 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1078                                 MMUAccessType access_type, bool pmp_violation,
1079                                 bool first_stage, bool two_stage,
1080                                 bool two_stage_indirect)
1081 {
1082     CPUState *cs = env_cpu(env);
1083     int page_fault_exceptions, vm;
1084     uint64_t stap_mode;
1085 
1086     if (riscv_cpu_mxl(env) == MXL_RV32) {
1087         stap_mode = SATP32_MODE;
1088     } else {
1089         stap_mode = SATP64_MODE;
1090     }
1091 
1092     if (first_stage) {
1093         vm = get_field(env->satp, stap_mode);
1094     } else {
1095         vm = get_field(env->hgatp, stap_mode);
1096     }
1097 
1098     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1099 
1100     switch (access_type) {
1101     case MMU_INST_FETCH:
1102         if (env->virt_enabled && !first_stage) {
1103             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1104         } else {
1105             cs->exception_index = page_fault_exceptions ?
1106                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1107         }
1108         break;
1109     case MMU_DATA_LOAD:
1110         if (two_stage && !first_stage) {
1111             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1112         } else {
1113             cs->exception_index = page_fault_exceptions ?
1114                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1115         }
1116         break;
1117     case MMU_DATA_STORE:
1118         if (two_stage && !first_stage) {
1119             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1120         } else {
1121             cs->exception_index = page_fault_exceptions ?
1122                 RISCV_EXCP_STORE_PAGE_FAULT :
1123                 RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1124         }
1125         break;
1126     default:
1127         g_assert_not_reached();
1128     }
1129     env->badaddr = address;
1130     env->two_stage_lookup = two_stage;
1131     env->two_stage_indirect_lookup = two_stage_indirect;
1132 }
1133 
1134 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1135 {
1136     RISCVCPU *cpu = RISCV_CPU(cs);
1137     CPURISCVState *env = &cpu->env;
1138     hwaddr phys_addr;
1139     int prot;
1140     int mmu_idx = cpu_mmu_index(&cpu->env, false);
1141 
1142     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1143                              true, env->virt_enabled, true)) {
1144         return -1;
1145     }
1146 
1147     if (env->virt_enabled) {
1148         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1149                                  0, mmu_idx, false, true, true)) {
1150             return -1;
1151         }
1152     }
1153 
1154     return phys_addr & TARGET_PAGE_MASK;
1155 }
1156 
1157 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1158                                      vaddr addr, unsigned size,
1159                                      MMUAccessType access_type,
1160                                      int mmu_idx, MemTxAttrs attrs,
1161                                      MemTxResult response, uintptr_t retaddr)
1162 {
1163     RISCVCPU *cpu = RISCV_CPU(cs);
1164     CPURISCVState *env = &cpu->env;
1165 
1166     if (access_type == MMU_DATA_STORE) {
1167         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1168     } else if (access_type == MMU_DATA_LOAD) {
1169         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1170     } else {
1171         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1172     }
1173 
1174     env->badaddr = addr;
1175     env->two_stage_lookup = env->virt_enabled ||
1176                             riscv_cpu_two_stage_lookup(mmu_idx);
1177     env->two_stage_indirect_lookup = false;
1178     cpu_loop_exit_restore(cs, retaddr);
1179 }
1180 
1181 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1182                                    MMUAccessType access_type, int mmu_idx,
1183                                    uintptr_t retaddr)
1184 {
1185     RISCVCPU *cpu = RISCV_CPU(cs);
1186     CPURISCVState *env = &cpu->env;
1187     switch (access_type) {
1188     case MMU_INST_FETCH:
1189         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1190         break;
1191     case MMU_DATA_LOAD:
1192         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1193         break;
1194     case MMU_DATA_STORE:
1195         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1196         break;
1197     default:
1198         g_assert_not_reached();
1199     }
1200     env->badaddr = addr;
1201     env->two_stage_lookup = env->virt_enabled ||
1202                             riscv_cpu_two_stage_lookup(mmu_idx);
1203     env->two_stage_indirect_lookup = false;
1204     cpu_loop_exit_restore(cs, retaddr);
1205 }
1206 
1207 
1208 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1209 {
1210     enum riscv_pmu_event_idx pmu_event_type;
1211 
1212     switch (access_type) {
1213     case MMU_INST_FETCH:
1214         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1215         break;
1216     case MMU_DATA_LOAD:
1217         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1218         break;
1219     case MMU_DATA_STORE:
1220         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1221         break;
1222     default:
1223         return;
1224     }
1225 
1226     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1227 }
1228 
1229 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1230                         MMUAccessType access_type, int mmu_idx,
1231                         bool probe, uintptr_t retaddr)
1232 {
1233     RISCVCPU *cpu = RISCV_CPU(cs);
1234     CPURISCVState *env = &cpu->env;
1235     vaddr im_address;
1236     hwaddr pa = 0;
1237     int prot, prot2, prot_pmp;
1238     bool pmp_violation = false;
1239     bool first_stage_error = true;
1240     bool two_stage_lookup = false;
1241     bool two_stage_indirect_error = false;
1242     int ret = TRANSLATE_FAIL;
1243     int mode = mmu_idx;
1244     /* default TLB page size */
1245     target_ulong tlb_size = TARGET_PAGE_SIZE;
1246 
1247     env->guest_phys_fault_addr = 0;
1248 
1249     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1250                   __func__, address, access_type, mmu_idx);
1251 
1252     /*
1253      * MPRV does not affect the virtual-machine load/store
1254      * instructions, HLV, HLVX, and HSV.
1255      */
1256     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1257         mode = get_field(env->hstatus, HSTATUS_SPVP);
1258     } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1259                get_field(env->mstatus, MSTATUS_MPRV)) {
1260         mode = get_field(env->mstatus, MSTATUS_MPP);
1261         if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1262             two_stage_lookup = true;
1263         }
1264     }
1265 
1266     pmu_tlb_fill_incr_ctr(cpu, access_type);
1267     if (env->virt_enabled ||
1268         ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1269          access_type != MMU_INST_FETCH)) {
1270         /* Two stage lookup */
1271         ret = get_physical_address(env, &pa, &prot, address,
1272                                    &env->guest_phys_fault_addr, access_type,
1273                                    mmu_idx, true, true, false);
1274 
1275         /*
1276          * A G-stage exception may be triggered during two state lookup.
1277          * And the env->guest_phys_fault_addr has already been set in
1278          * get_physical_address().
1279          */
1280         if (ret == TRANSLATE_G_STAGE_FAIL) {
1281             first_stage_error = false;
1282             two_stage_indirect_error = true;
1283             access_type = MMU_DATA_LOAD;
1284         }
1285 
1286         qemu_log_mask(CPU_LOG_MMU,
1287                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1288                       HWADDR_FMT_plx " prot %d\n",
1289                       __func__, address, ret, pa, prot);
1290 
1291         if (ret == TRANSLATE_SUCCESS) {
1292             /* Second stage lookup */
1293             im_address = pa;
1294 
1295             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1296                                        access_type, mmu_idx, false, true,
1297                                        false);
1298 
1299             qemu_log_mask(CPU_LOG_MMU,
1300                           "%s 2nd-stage address=%" VADDR_PRIx
1301                           " ret %d physical "
1302                           HWADDR_FMT_plx " prot %d\n",
1303                           __func__, im_address, ret, pa, prot2);
1304 
1305             prot &= prot2;
1306 
1307             if (ret == TRANSLATE_SUCCESS) {
1308                 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1309                                                size, access_type, mode);
1310 
1311                 qemu_log_mask(CPU_LOG_MMU,
1312                               "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1313                               " %d tlb_size " TARGET_FMT_lu "\n",
1314                               __func__, pa, ret, prot_pmp, tlb_size);
1315 
1316                 prot &= prot_pmp;
1317             }
1318 
1319             if (ret != TRANSLATE_SUCCESS) {
1320                 /*
1321                  * Guest physical address translation failed, this is a HS
1322                  * level exception
1323                  */
1324                 first_stage_error = false;
1325                 env->guest_phys_fault_addr = (im_address |
1326                                               (address &
1327                                                (TARGET_PAGE_SIZE - 1))) >> 2;
1328             }
1329         }
1330     } else {
1331         /* Single stage lookup */
1332         ret = get_physical_address(env, &pa, &prot, address, NULL,
1333                                    access_type, mmu_idx, true, false, false);
1334 
1335         qemu_log_mask(CPU_LOG_MMU,
1336                       "%s address=%" VADDR_PRIx " ret %d physical "
1337                       HWADDR_FMT_plx " prot %d\n",
1338                       __func__, address, ret, pa, prot);
1339 
1340         if (ret == TRANSLATE_SUCCESS) {
1341             ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1342                                            size, access_type, mode);
1343 
1344             qemu_log_mask(CPU_LOG_MMU,
1345                           "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1346                           " %d tlb_size " TARGET_FMT_lu "\n",
1347                           __func__, pa, ret, prot_pmp, tlb_size);
1348 
1349             prot &= prot_pmp;
1350         }
1351     }
1352 
1353     if (ret == TRANSLATE_PMP_FAIL) {
1354         pmp_violation = true;
1355     }
1356 
1357     if (ret == TRANSLATE_SUCCESS) {
1358         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1359                      prot, mmu_idx, tlb_size);
1360         return true;
1361     } else if (probe) {
1362         return false;
1363     } else {
1364         raise_mmu_exception(env, address, access_type, pmp_violation,
1365                             first_stage_error,
1366                             env->virt_enabled ||
1367                                 riscv_cpu_two_stage_lookup(mmu_idx),
1368                             two_stage_indirect_error);
1369         cpu_loop_exit_restore(cs, retaddr);
1370     }
1371 
1372     return true;
1373 }
1374 
1375 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1376                                            target_ulong insn,
1377                                            target_ulong taddr)
1378 {
1379     target_ulong xinsn = 0;
1380     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1381 
1382     /*
1383      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1384      * be uncompressed. The Quadrant 1 of RVC instruction space need
1385      * not be transformed because these instructions won't generate
1386      * any load/store trap.
1387      */
1388 
1389     if ((insn & 0x3) != 0x3) {
1390         /* Transform 16bit instruction into 32bit instruction */
1391         switch (GET_C_OP(insn)) {
1392         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1393             switch (GET_C_FUNC(insn)) {
1394             case OPC_RISC_C_FUNC_FLD_LQ:
1395                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1396                     xinsn = OPC_RISC_FLD;
1397                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1398                     access_rs1 = GET_C_RS1S(insn);
1399                     access_imm = GET_C_LD_IMM(insn);
1400                     access_size = 8;
1401                 }
1402                 break;
1403             case OPC_RISC_C_FUNC_LW: /* C.LW */
1404                 xinsn = OPC_RISC_LW;
1405                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1406                 access_rs1 = GET_C_RS1S(insn);
1407                 access_imm = GET_C_LW_IMM(insn);
1408                 access_size = 4;
1409                 break;
1410             case OPC_RISC_C_FUNC_FLW_LD:
1411                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1412                     xinsn = OPC_RISC_FLW;
1413                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1414                     access_rs1 = GET_C_RS1S(insn);
1415                     access_imm = GET_C_LW_IMM(insn);
1416                     access_size = 4;
1417                 } else { /* C.LD (RV64/RV128) */
1418                     xinsn = OPC_RISC_LD;
1419                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1420                     access_rs1 = GET_C_RS1S(insn);
1421                     access_imm = GET_C_LD_IMM(insn);
1422                     access_size = 8;
1423                 }
1424                 break;
1425             case OPC_RISC_C_FUNC_FSD_SQ:
1426                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1427                     xinsn = OPC_RISC_FSD;
1428                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1429                     access_rs1 = GET_C_RS1S(insn);
1430                     access_imm = GET_C_SD_IMM(insn);
1431                     access_size = 8;
1432                 }
1433                 break;
1434             case OPC_RISC_C_FUNC_SW: /* C.SW */
1435                 xinsn = OPC_RISC_SW;
1436                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1437                 access_rs1 = GET_C_RS1S(insn);
1438                 access_imm = GET_C_SW_IMM(insn);
1439                 access_size = 4;
1440                 break;
1441             case OPC_RISC_C_FUNC_FSW_SD:
1442                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1443                     xinsn = OPC_RISC_FSW;
1444                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1445                     access_rs1 = GET_C_RS1S(insn);
1446                     access_imm = GET_C_SW_IMM(insn);
1447                     access_size = 4;
1448                 } else { /* C.SD (RV64/RV128) */
1449                     xinsn = OPC_RISC_SD;
1450                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1451                     access_rs1 = GET_C_RS1S(insn);
1452                     access_imm = GET_C_SD_IMM(insn);
1453                     access_size = 8;
1454                 }
1455                 break;
1456             default:
1457                 break;
1458             }
1459             break;
1460         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1461             switch (GET_C_FUNC(insn)) {
1462             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1463                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1464                     xinsn = OPC_RISC_FLD;
1465                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1466                     access_rs1 = 2;
1467                     access_imm = GET_C_LDSP_IMM(insn);
1468                     access_size = 8;
1469                 }
1470                 break;
1471             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1472                 xinsn = OPC_RISC_LW;
1473                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1474                 access_rs1 = 2;
1475                 access_imm = GET_C_LWSP_IMM(insn);
1476                 access_size = 4;
1477                 break;
1478             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1479                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1480                     xinsn = OPC_RISC_FLW;
1481                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1482                     access_rs1 = 2;
1483                     access_imm = GET_C_LWSP_IMM(insn);
1484                     access_size = 4;
1485                 } else { /* C.LDSP (RV64/RV128) */
1486                     xinsn = OPC_RISC_LD;
1487                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1488                     access_rs1 = 2;
1489                     access_imm = GET_C_LDSP_IMM(insn);
1490                     access_size = 8;
1491                 }
1492                 break;
1493             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1494                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1495                     xinsn = OPC_RISC_FSD;
1496                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1497                     access_rs1 = 2;
1498                     access_imm = GET_C_SDSP_IMM(insn);
1499                     access_size = 8;
1500                 }
1501                 break;
1502             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1503                 xinsn = OPC_RISC_SW;
1504                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1505                 access_rs1 = 2;
1506                 access_imm = GET_C_SWSP_IMM(insn);
1507                 access_size = 4;
1508                 break;
1509             case 7:
1510                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1511                     xinsn = OPC_RISC_FSW;
1512                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1513                     access_rs1 = 2;
1514                     access_imm = GET_C_SWSP_IMM(insn);
1515                     access_size = 4;
1516                 } else { /* C.SDSP (RV64/RV128) */
1517                     xinsn = OPC_RISC_SD;
1518                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1519                     access_rs1 = 2;
1520                     access_imm = GET_C_SDSP_IMM(insn);
1521                     access_size = 8;
1522                 }
1523                 break;
1524             default:
1525                 break;
1526             }
1527             break;
1528         default:
1529             break;
1530         }
1531 
1532         /*
1533          * Clear Bit1 of transformed instruction to indicate that
1534          * original insruction was a 16bit instruction
1535          */
1536         xinsn &= ~((target_ulong)0x2);
1537     } else {
1538         /* Transform 32bit (or wider) instructions */
1539         switch (MASK_OP_MAJOR(insn)) {
1540         case OPC_RISC_ATOMIC:
1541             xinsn = insn;
1542             access_rs1 = GET_RS1(insn);
1543             access_size = 1 << GET_FUNCT3(insn);
1544             break;
1545         case OPC_RISC_LOAD:
1546         case OPC_RISC_FP_LOAD:
1547             xinsn = SET_I_IMM(insn, 0);
1548             access_rs1 = GET_RS1(insn);
1549             access_imm = GET_IMM(insn);
1550             access_size = 1 << GET_FUNCT3(insn);
1551             break;
1552         case OPC_RISC_STORE:
1553         case OPC_RISC_FP_STORE:
1554             xinsn = SET_S_IMM(insn, 0);
1555             access_rs1 = GET_RS1(insn);
1556             access_imm = GET_STORE_IMM(insn);
1557             access_size = 1 << GET_FUNCT3(insn);
1558             break;
1559         case OPC_RISC_SYSTEM:
1560             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1561                 xinsn = insn;
1562                 access_rs1 = GET_RS1(insn);
1563                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1564                 access_size = 1 << access_size;
1565             }
1566             break;
1567         default:
1568             break;
1569         }
1570     }
1571 
1572     if (access_size) {
1573         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1574                                (access_size - 1));
1575     }
1576 
1577     return xinsn;
1578 }
1579 #endif /* !CONFIG_USER_ONLY */
1580 
1581 /*
1582  * Handle Traps
1583  *
1584  * Adapted from Spike's processor_t::take_trap.
1585  *
1586  */
1587 void riscv_cpu_do_interrupt(CPUState *cs)
1588 {
1589 #if !defined(CONFIG_USER_ONLY)
1590 
1591     RISCVCPU *cpu = RISCV_CPU(cs);
1592     CPURISCVState *env = &cpu->env;
1593     bool write_gva = false;
1594     uint64_t s;
1595 
1596     /*
1597      * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1598      * so we mask off the MSB and separate into trap type and cause.
1599      */
1600     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1601     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1602     uint64_t deleg = async ? env->mideleg : env->medeleg;
1603     target_ulong tval = 0;
1604     target_ulong tinst = 0;
1605     target_ulong htval = 0;
1606     target_ulong mtval2 = 0;
1607 
1608     if  (cause == RISCV_EXCP_SEMIHOST) {
1609         do_common_semihosting(cs);
1610         env->pc += 4;
1611         return;
1612     }
1613 
1614     if (!async) {
1615         /* set tval to badaddr for traps with address information */
1616         switch (cause) {
1617         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1618         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1619         case RISCV_EXCP_LOAD_ADDR_MIS:
1620         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1621         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1622         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1623         case RISCV_EXCP_LOAD_PAGE_FAULT:
1624         case RISCV_EXCP_STORE_PAGE_FAULT:
1625             write_gva = env->two_stage_lookup;
1626             tval = env->badaddr;
1627             if (env->two_stage_indirect_lookup) {
1628                 /*
1629                  * special pseudoinstruction for G-stage fault taken while
1630                  * doing VS-stage page table walk.
1631                  */
1632                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1633             } else {
1634                 /*
1635                  * The "Addr. Offset" field in transformed instruction is
1636                  * non-zero only for misaligned access.
1637                  */
1638                 tinst = riscv_transformed_insn(env, env->bins, tval);
1639             }
1640             break;
1641         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1642         case RISCV_EXCP_INST_ADDR_MIS:
1643         case RISCV_EXCP_INST_ACCESS_FAULT:
1644         case RISCV_EXCP_INST_PAGE_FAULT:
1645             write_gva = env->two_stage_lookup;
1646             tval = env->badaddr;
1647             if (env->two_stage_indirect_lookup) {
1648                 /*
1649                  * special pseudoinstruction for G-stage fault taken while
1650                  * doing VS-stage page table walk.
1651                  */
1652                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1653             }
1654             break;
1655         case RISCV_EXCP_ILLEGAL_INST:
1656         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1657             tval = env->bins;
1658             break;
1659         case RISCV_EXCP_BREAKPOINT:
1660             if (cs->watchpoint_hit) {
1661                 tval = cs->watchpoint_hit->hitaddr;
1662                 cs->watchpoint_hit = NULL;
1663             }
1664             break;
1665         default:
1666             break;
1667         }
1668         /* ecall is dispatched as one cause so translate based on mode */
1669         if (cause == RISCV_EXCP_U_ECALL) {
1670             assert(env->priv <= 3);
1671 
1672             if (env->priv == PRV_M) {
1673                 cause = RISCV_EXCP_M_ECALL;
1674             } else if (env->priv == PRV_S && env->virt_enabled) {
1675                 cause = RISCV_EXCP_VS_ECALL;
1676             } else if (env->priv == PRV_S && !env->virt_enabled) {
1677                 cause = RISCV_EXCP_S_ECALL;
1678             } else if (env->priv == PRV_U) {
1679                 cause = RISCV_EXCP_U_ECALL;
1680             }
1681         }
1682     }
1683 
1684     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1685                      riscv_cpu_get_trap_name(cause, async));
1686 
1687     qemu_log_mask(CPU_LOG_INT,
1688                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1689                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1690                   __func__, env->mhartid, async, cause, env->pc, tval,
1691                   riscv_cpu_get_trap_name(cause, async));
1692 
1693     if (env->priv <= PRV_S &&
1694             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1695         /* handle the trap in S-mode */
1696         if (riscv_has_ext(env, RVH)) {
1697             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1698 
1699             if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
1700                 /* Trap to VS mode */
1701                 /*
1702                  * See if we need to adjust cause. Yes if its VS mode interrupt
1703                  * no if hypervisor has delegated one of hs mode's interrupt
1704                  */
1705                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1706                     cause == IRQ_VS_EXT) {
1707                     cause = cause - 1;
1708                 }
1709                 write_gva = false;
1710             } else if (env->virt_enabled) {
1711                 /* Trap into HS mode, from virt */
1712                 riscv_cpu_swap_hypervisor_regs(env);
1713                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1714                                          env->priv);
1715                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1716 
1717                 htval = env->guest_phys_fault_addr;
1718 
1719                 riscv_cpu_set_virt_enabled(env, 0);
1720             } else {
1721                 /* Trap into HS mode */
1722                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1723                 htval = env->guest_phys_fault_addr;
1724             }
1725             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1726         }
1727 
1728         s = env->mstatus;
1729         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1730         s = set_field(s, MSTATUS_SPP, env->priv);
1731         s = set_field(s, MSTATUS_SIE, 0);
1732         env->mstatus = s;
1733         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1734         env->sepc = env->pc;
1735         env->stval = tval;
1736         env->htval = htval;
1737         env->htinst = tinst;
1738         env->pc = (env->stvec >> 2 << 2) +
1739                   ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1740         riscv_cpu_set_mode(env, PRV_S);
1741     } else {
1742         /* handle the trap in M-mode */
1743         if (riscv_has_ext(env, RVH)) {
1744             if (env->virt_enabled) {
1745                 riscv_cpu_swap_hypervisor_regs(env);
1746             }
1747             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1748                                      env->virt_enabled);
1749             if (env->virt_enabled && tval) {
1750                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1751             }
1752 
1753             mtval2 = env->guest_phys_fault_addr;
1754 
1755             /* Trapping to M mode, virt is disabled */
1756             riscv_cpu_set_virt_enabled(env, 0);
1757         }
1758 
1759         s = env->mstatus;
1760         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1761         s = set_field(s, MSTATUS_MPP, env->priv);
1762         s = set_field(s, MSTATUS_MIE, 0);
1763         env->mstatus = s;
1764         env->mcause = cause | ~(((target_ulong)-1) >> async);
1765         env->mepc = env->pc;
1766         env->mtval = tval;
1767         env->mtval2 = mtval2;
1768         env->mtinst = tinst;
1769         env->pc = (env->mtvec >> 2 << 2) +
1770                   ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1771         riscv_cpu_set_mode(env, PRV_M);
1772     }
1773 
1774     /*
1775      * NOTE: it is not necessary to yield load reservations here. It is only
1776      * necessary for an SC from "another hart" to cause a load reservation
1777      * to be yielded. Refer to the memory consistency model section of the
1778      * RISC-V ISA Specification.
1779      */
1780 
1781     env->two_stage_lookup = false;
1782     env->two_stage_indirect_lookup = false;
1783 #endif
1784     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1785 }
1786