1 /* 2 * RISC-V CPU helpers for qemu. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/main-loop.h" 23 #include "cpu.h" 24 #include "internals.h" 25 #include "pmu.h" 26 #include "exec/exec-all.h" 27 #include "instmap.h" 28 #include "tcg/tcg-op.h" 29 #include "trace.h" 30 #include "semihosting/common-semi.h" 31 #include "sysemu/cpu-timers.h" 32 #include "cpu_bits.h" 33 #include "debug.h" 34 #include "tcg/oversized-guest.h" 35 36 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch) 37 { 38 #ifdef CONFIG_USER_ONLY 39 return 0; 40 #else 41 bool virt = env->virt_enabled; 42 int mode = env->priv; 43 44 /* All priv -> mmu_idx mapping are here */ 45 if (!ifetch) { 46 uint64_t status = env->mstatus; 47 48 if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) { 49 mode = get_field(env->mstatus, MSTATUS_MPP); 50 virt = get_field(env->mstatus, MSTATUS_MPV) && 51 (mode != PRV_M); 52 if (virt) { 53 status = env->vsstatus; 54 } 55 } 56 if (mode == PRV_S && get_field(status, MSTATUS_SUM)) { 57 mode = MMUIdx_S_SUM; 58 } 59 } 60 61 return mode | (virt ? MMU_2STAGE_BIT : 0); 62 #endif 63 } 64 65 void cpu_get_tb_cpu_state(CPURISCVState *env, vaddr *pc, 66 uint64_t *cs_base, uint32_t *pflags) 67 { 68 RISCVCPU *cpu = env_archcpu(env); 69 RISCVExtStatus fs, vs; 70 uint32_t flags = 0; 71 72 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc; 73 *cs_base = 0; 74 75 if (cpu->cfg.ext_zve32f) { 76 /* 77 * If env->vl equals to VLMAX, we can use generic vector operation 78 * expanders (GVEC) to accerlate the vector operations. 79 * However, as LMUL could be a fractional number. The maximum 80 * vector size can be operated might be less than 8 bytes, 81 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true 82 * only when maxsz >= 8 bytes. 83 */ 84 uint32_t vlmax = vext_get_vlmax(cpu, env->vtype); 85 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW); 86 uint32_t maxsz = vlmax << sew; 87 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) && 88 (maxsz >= 8); 89 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill); 90 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew); 91 flags = FIELD_DP32(flags, TB_FLAGS, LMUL, 92 FIELD_EX64(env->vtype, VTYPE, VLMUL)); 93 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax); 94 flags = FIELD_DP32(flags, TB_FLAGS, VTA, 95 FIELD_EX64(env->vtype, VTYPE, VTA)); 96 flags = FIELD_DP32(flags, TB_FLAGS, VMA, 97 FIELD_EX64(env->vtype, VTYPE, VMA)); 98 flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0); 99 } else { 100 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1); 101 } 102 103 #ifdef CONFIG_USER_ONLY 104 fs = EXT_STATUS_DIRTY; 105 vs = EXT_STATUS_DIRTY; 106 #else 107 flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv); 108 109 flags |= cpu_mmu_index(env, 0); 110 fs = get_field(env->mstatus, MSTATUS_FS); 111 vs = get_field(env->mstatus, MSTATUS_VS); 112 113 if (env->virt_enabled) { 114 flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1); 115 /* 116 * Merge DISABLED and !DIRTY states using MIN. 117 * We will set both fields when dirtying. 118 */ 119 fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS)); 120 vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS)); 121 } 122 123 /* With Zfinx, floating point is enabled/disabled by Smstateen. */ 124 if (!riscv_has_ext(env, RVF)) { 125 fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE) 126 ? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED; 127 } 128 129 if (cpu->cfg.debug && !icount_enabled()) { 130 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled); 131 } 132 #endif 133 134 flags = FIELD_DP32(flags, TB_FLAGS, FS, fs); 135 flags = FIELD_DP32(flags, TB_FLAGS, VS, vs); 136 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl); 137 flags = FIELD_DP32(flags, TB_FLAGS, AXL, cpu_address_xl(env)); 138 if (env->cur_pmmask != 0) { 139 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1); 140 } 141 if (env->cur_pmbase != 0) { 142 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1); 143 } 144 145 *pflags = flags; 146 } 147 148 void riscv_cpu_update_mask(CPURISCVState *env) 149 { 150 target_ulong mask = 0, base = 0; 151 RISCVMXL xl = env->xl; 152 /* 153 * TODO: Current RVJ spec does not specify 154 * how the extension interacts with XLEN. 155 */ 156 #ifndef CONFIG_USER_ONLY 157 int mode = cpu_address_mode(env); 158 xl = cpu_get_xl(env, mode); 159 if (riscv_has_ext(env, RVJ)) { 160 switch (mode) { 161 case PRV_M: 162 if (env->mmte & M_PM_ENABLE) { 163 mask = env->mpmmask; 164 base = env->mpmbase; 165 } 166 break; 167 case PRV_S: 168 if (env->mmte & S_PM_ENABLE) { 169 mask = env->spmmask; 170 base = env->spmbase; 171 } 172 break; 173 case PRV_U: 174 if (env->mmte & U_PM_ENABLE) { 175 mask = env->upmmask; 176 base = env->upmbase; 177 } 178 break; 179 default: 180 g_assert_not_reached(); 181 } 182 } 183 #endif 184 if (xl == MXL_RV32) { 185 env->cur_pmmask = mask & UINT32_MAX; 186 env->cur_pmbase = base & UINT32_MAX; 187 } else { 188 env->cur_pmmask = mask; 189 env->cur_pmbase = base; 190 } 191 } 192 193 #ifndef CONFIG_USER_ONLY 194 195 /* 196 * The HS-mode is allowed to configure priority only for the 197 * following VS-mode local interrupts: 198 * 199 * 0 (Reserved interrupt, reads as zero) 200 * 1 Supervisor software interrupt 201 * 4 (Reserved interrupt, reads as zero) 202 * 5 Supervisor timer interrupt 203 * 8 (Reserved interrupt, reads as zero) 204 * 13 (Reserved interrupt) 205 * 14 " 206 * 15 " 207 * 16 " 208 * 17 " 209 * 18 " 210 * 19 " 211 * 20 " 212 * 21 " 213 * 22 " 214 * 23 " 215 */ 216 217 static const int hviprio_index2irq[] = { 218 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 }; 219 static const int hviprio_index2rdzero[] = { 220 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 221 222 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero) 223 { 224 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) { 225 return -EINVAL; 226 } 227 228 if (out_irq) { 229 *out_irq = hviprio_index2irq[index]; 230 } 231 232 if (out_rdzero) { 233 *out_rdzero = hviprio_index2rdzero[index]; 234 } 235 236 return 0; 237 } 238 239 /* 240 * Default priorities of local interrupts are defined in the 241 * RISC-V Advanced Interrupt Architecture specification. 242 * 243 * ---------------------------------------------------------------- 244 * Default | 245 * Priority | Major Interrupt Numbers 246 * ---------------------------------------------------------------- 247 * Highest | 47, 23, 46, 45, 22, 44, 248 * | 43, 21, 42, 41, 20, 40 249 * | 250 * | 11 (0b), 3 (03), 7 (07) 251 * | 9 (09), 1 (01), 5 (05) 252 * | 12 (0c) 253 * | 10 (0a), 2 (02), 6 (06) 254 * | 255 * | 39, 19, 38, 37, 18, 36, 256 * Lowest | 35, 17, 34, 33, 16, 32 257 * ---------------------------------------------------------------- 258 */ 259 static const uint8_t default_iprio[64] = { 260 /* Custom interrupts 48 to 63 */ 261 [63] = IPRIO_MMAXIPRIO, 262 [62] = IPRIO_MMAXIPRIO, 263 [61] = IPRIO_MMAXIPRIO, 264 [60] = IPRIO_MMAXIPRIO, 265 [59] = IPRIO_MMAXIPRIO, 266 [58] = IPRIO_MMAXIPRIO, 267 [57] = IPRIO_MMAXIPRIO, 268 [56] = IPRIO_MMAXIPRIO, 269 [55] = IPRIO_MMAXIPRIO, 270 [54] = IPRIO_MMAXIPRIO, 271 [53] = IPRIO_MMAXIPRIO, 272 [52] = IPRIO_MMAXIPRIO, 273 [51] = IPRIO_MMAXIPRIO, 274 [50] = IPRIO_MMAXIPRIO, 275 [49] = IPRIO_MMAXIPRIO, 276 [48] = IPRIO_MMAXIPRIO, 277 278 /* Custom interrupts 24 to 31 */ 279 [31] = IPRIO_MMAXIPRIO, 280 [30] = IPRIO_MMAXIPRIO, 281 [29] = IPRIO_MMAXIPRIO, 282 [28] = IPRIO_MMAXIPRIO, 283 [27] = IPRIO_MMAXIPRIO, 284 [26] = IPRIO_MMAXIPRIO, 285 [25] = IPRIO_MMAXIPRIO, 286 [24] = IPRIO_MMAXIPRIO, 287 288 [47] = IPRIO_DEFAULT_UPPER, 289 [23] = IPRIO_DEFAULT_UPPER + 1, 290 [46] = IPRIO_DEFAULT_UPPER + 2, 291 [45] = IPRIO_DEFAULT_UPPER + 3, 292 [22] = IPRIO_DEFAULT_UPPER + 4, 293 [44] = IPRIO_DEFAULT_UPPER + 5, 294 295 [43] = IPRIO_DEFAULT_UPPER + 6, 296 [21] = IPRIO_DEFAULT_UPPER + 7, 297 [42] = IPRIO_DEFAULT_UPPER + 8, 298 [41] = IPRIO_DEFAULT_UPPER + 9, 299 [20] = IPRIO_DEFAULT_UPPER + 10, 300 [40] = IPRIO_DEFAULT_UPPER + 11, 301 302 [11] = IPRIO_DEFAULT_M, 303 [3] = IPRIO_DEFAULT_M + 1, 304 [7] = IPRIO_DEFAULT_M + 2, 305 306 [9] = IPRIO_DEFAULT_S, 307 [1] = IPRIO_DEFAULT_S + 1, 308 [5] = IPRIO_DEFAULT_S + 2, 309 310 [12] = IPRIO_DEFAULT_SGEXT, 311 312 [10] = IPRIO_DEFAULT_VS, 313 [2] = IPRIO_DEFAULT_VS + 1, 314 [6] = IPRIO_DEFAULT_VS + 2, 315 316 [39] = IPRIO_DEFAULT_LOWER, 317 [19] = IPRIO_DEFAULT_LOWER + 1, 318 [38] = IPRIO_DEFAULT_LOWER + 2, 319 [37] = IPRIO_DEFAULT_LOWER + 3, 320 [18] = IPRIO_DEFAULT_LOWER + 4, 321 [36] = IPRIO_DEFAULT_LOWER + 5, 322 323 [35] = IPRIO_DEFAULT_LOWER + 6, 324 [17] = IPRIO_DEFAULT_LOWER + 7, 325 [34] = IPRIO_DEFAULT_LOWER + 8, 326 [33] = IPRIO_DEFAULT_LOWER + 9, 327 [16] = IPRIO_DEFAULT_LOWER + 10, 328 [32] = IPRIO_DEFAULT_LOWER + 11, 329 }; 330 331 uint8_t riscv_cpu_default_priority(int irq) 332 { 333 if (irq < 0 || irq > 63) { 334 return IPRIO_MMAXIPRIO; 335 } 336 337 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO; 338 }; 339 340 static int riscv_cpu_pending_to_irq(CPURISCVState *env, 341 int extirq, unsigned int extirq_def_prio, 342 uint64_t pending, uint8_t *iprio) 343 { 344 int irq, best_irq = RISCV_EXCP_NONE; 345 unsigned int prio, best_prio = UINT_MAX; 346 347 if (!pending) { 348 return RISCV_EXCP_NONE; 349 } 350 351 irq = ctz64(pending); 352 if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia : 353 riscv_cpu_cfg(env)->ext_ssaia)) { 354 return irq; 355 } 356 357 pending = pending >> irq; 358 while (pending) { 359 prio = iprio[irq]; 360 if (!prio) { 361 if (irq == extirq) { 362 prio = extirq_def_prio; 363 } else { 364 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ? 365 1 : IPRIO_MMAXIPRIO; 366 } 367 } 368 if ((pending & 0x1) && (prio <= best_prio)) { 369 best_irq = irq; 370 best_prio = prio; 371 } 372 irq++; 373 pending = pending >> 1; 374 } 375 376 return best_irq; 377 } 378 379 /* 380 * Doesn't report interrupts inserted using mvip from M-mode firmware or 381 * using hvip bits 13:63 from HS-mode. Those are returned in 382 * riscv_cpu_sirq_pending() and riscv_cpu_vsirq_pending(). 383 */ 384 uint64_t riscv_cpu_all_pending(CPURISCVState *env) 385 { 386 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN); 387 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 388 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0; 389 390 return (env->mip | vsgein | vstip) & env->mie; 391 } 392 393 int riscv_cpu_mirq_pending(CPURISCVState *env) 394 { 395 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg & 396 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 397 398 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 399 irqs, env->miprio); 400 } 401 402 int riscv_cpu_sirq_pending(CPURISCVState *env) 403 { 404 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & 405 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 406 uint64_t irqs_f = env->mvip & env->mvien & ~env->mideleg & env->sie; 407 408 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 409 irqs | irqs_f, env->siprio); 410 } 411 412 int riscv_cpu_vsirq_pending(CPURISCVState *env) 413 { 414 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & env->hideleg; 415 uint64_t irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie; 416 uint64_t vsbits; 417 418 /* Bring VS-level bits to correct position */ 419 vsbits = irqs & VS_MODE_INTERRUPTS; 420 irqs &= ~VS_MODE_INTERRUPTS; 421 irqs |= vsbits >> 1; 422 423 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 424 (irqs | irqs_f_vs), env->hviprio); 425 } 426 427 static int riscv_cpu_local_irq_pending(CPURISCVState *env) 428 { 429 uint64_t irqs, pending, mie, hsie, vsie, irqs_f, irqs_f_vs; 430 uint64_t vsbits, irq_delegated; 431 int virq; 432 433 /* Determine interrupt enable state of all privilege modes */ 434 if (env->virt_enabled) { 435 mie = 1; 436 hsie = 1; 437 vsie = (env->priv < PRV_S) || 438 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 439 } else { 440 mie = (env->priv < PRV_M) || 441 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE)); 442 hsie = (env->priv < PRV_S) || 443 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 444 vsie = 0; 445 } 446 447 /* Determine all pending interrupts */ 448 pending = riscv_cpu_all_pending(env); 449 450 /* Check M-mode interrupts */ 451 irqs = pending & ~env->mideleg & -mie; 452 if (irqs) { 453 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 454 irqs, env->miprio); 455 } 456 457 /* Check for virtual S-mode interrupts. */ 458 irqs_f = env->mvip & (env->mvien & ~env->mideleg) & env->sie; 459 460 /* Check HS-mode interrupts */ 461 irqs = ((pending & env->mideleg & ~env->hideleg) | irqs_f) & -hsie; 462 if (irqs) { 463 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 464 irqs, env->siprio); 465 } 466 467 /* Check for virtual VS-mode interrupts. */ 468 irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie; 469 470 /* Check VS-mode interrupts */ 471 irq_delegated = pending & env->mideleg & env->hideleg; 472 473 /* Bring VS-level bits to correct position */ 474 vsbits = irq_delegated & VS_MODE_INTERRUPTS; 475 irq_delegated &= ~VS_MODE_INTERRUPTS; 476 irq_delegated |= vsbits >> 1; 477 478 irqs = (irq_delegated | irqs_f_vs) & -vsie; 479 if (irqs) { 480 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 481 irqs, env->hviprio); 482 if (virq <= 0 || (virq > 12 && virq <= 63)) { 483 return virq; 484 } else { 485 return virq + 1; 486 } 487 } 488 489 /* Indicate no pending interrupt */ 490 return RISCV_EXCP_NONE; 491 } 492 493 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 494 { 495 if (interrupt_request & CPU_INTERRUPT_HARD) { 496 RISCVCPU *cpu = RISCV_CPU(cs); 497 CPURISCVState *env = &cpu->env; 498 int interruptno = riscv_cpu_local_irq_pending(env); 499 if (interruptno >= 0) { 500 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; 501 riscv_cpu_do_interrupt(cs); 502 return true; 503 } 504 } 505 return false; 506 } 507 508 /* Return true is floating point support is currently enabled */ 509 bool riscv_cpu_fp_enabled(CPURISCVState *env) 510 { 511 if (env->mstatus & MSTATUS_FS) { 512 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) { 513 return false; 514 } 515 return true; 516 } 517 518 return false; 519 } 520 521 /* Return true is vector support is currently enabled */ 522 bool riscv_cpu_vector_enabled(CPURISCVState *env) 523 { 524 if (env->mstatus & MSTATUS_VS) { 525 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) { 526 return false; 527 } 528 return true; 529 } 530 531 return false; 532 } 533 534 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) 535 { 536 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | 537 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE | 538 MSTATUS64_UXL | MSTATUS_VS; 539 540 if (riscv_has_ext(env, RVF)) { 541 mstatus_mask |= MSTATUS_FS; 542 } 543 bool current_virt = env->virt_enabled; 544 545 g_assert(riscv_has_ext(env, RVH)); 546 547 if (current_virt) { 548 /* Current V=1 and we are about to change to V=0 */ 549 env->vsstatus = env->mstatus & mstatus_mask; 550 env->mstatus &= ~mstatus_mask; 551 env->mstatus |= env->mstatus_hs; 552 553 env->vstvec = env->stvec; 554 env->stvec = env->stvec_hs; 555 556 env->vsscratch = env->sscratch; 557 env->sscratch = env->sscratch_hs; 558 559 env->vsepc = env->sepc; 560 env->sepc = env->sepc_hs; 561 562 env->vscause = env->scause; 563 env->scause = env->scause_hs; 564 565 env->vstval = env->stval; 566 env->stval = env->stval_hs; 567 568 env->vsatp = env->satp; 569 env->satp = env->satp_hs; 570 } else { 571 /* Current V=0 and we are about to change to V=1 */ 572 env->mstatus_hs = env->mstatus & mstatus_mask; 573 env->mstatus &= ~mstatus_mask; 574 env->mstatus |= env->vsstatus; 575 576 env->stvec_hs = env->stvec; 577 env->stvec = env->vstvec; 578 579 env->sscratch_hs = env->sscratch; 580 env->sscratch = env->vsscratch; 581 582 env->sepc_hs = env->sepc; 583 env->sepc = env->vsepc; 584 585 env->scause_hs = env->scause; 586 env->scause = env->vscause; 587 588 env->stval_hs = env->stval; 589 env->stval = env->vstval; 590 591 env->satp_hs = env->satp; 592 env->satp = env->vsatp; 593 } 594 } 595 596 target_ulong riscv_cpu_get_geilen(CPURISCVState *env) 597 { 598 if (!riscv_has_ext(env, RVH)) { 599 return 0; 600 } 601 602 return env->geilen; 603 } 604 605 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen) 606 { 607 if (!riscv_has_ext(env, RVH)) { 608 return; 609 } 610 611 if (geilen > (TARGET_LONG_BITS - 1)) { 612 return; 613 } 614 615 env->geilen = geilen; 616 } 617 618 /* This function can only be called to set virt when RVH is enabled */ 619 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable) 620 { 621 /* Flush the TLB on all virt mode changes. */ 622 if (env->virt_enabled != enable) { 623 tlb_flush(env_cpu(env)); 624 } 625 626 env->virt_enabled = enable; 627 628 if (enable) { 629 /* 630 * The guest external interrupts from an interrupt controller are 631 * delivered only when the Guest/VM is running (i.e. V=1). This means 632 * any guest external interrupt which is triggered while the Guest/VM 633 * is not running (i.e. V=0) will be missed on QEMU resulting in guest 634 * with sluggish response to serial console input and other I/O events. 635 * 636 * To solve this, we check and inject interrupt after setting V=1. 637 */ 638 riscv_cpu_update_mip(env, 0, 0); 639 } 640 } 641 642 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts) 643 { 644 CPURISCVState *env = &cpu->env; 645 if (env->miclaim & interrupts) { 646 return -1; 647 } else { 648 env->miclaim |= interrupts; 649 return 0; 650 } 651 } 652 653 void riscv_cpu_interrupt(CPURISCVState *env) 654 { 655 uint64_t gein, vsgein = 0, vstip = 0, irqf = 0; 656 CPUState *cs = env_cpu(env); 657 658 BQL_LOCK_GUARD(); 659 660 if (env->virt_enabled) { 661 gein = get_field(env->hstatus, HSTATUS_VGEIN); 662 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 663 irqf = env->hvien & env->hvip & env->vsie; 664 } else { 665 irqf = env->mvien & env->mvip & env->sie; 666 } 667 668 vstip = env->vstime_irq ? MIP_VSTIP : 0; 669 670 if (env->mip | vsgein | vstip | irqf) { 671 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 672 } else { 673 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 674 } 675 } 676 677 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask, uint64_t value) 678 { 679 uint64_t old = env->mip; 680 681 /* No need to update mip for VSTIP */ 682 mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask; 683 684 BQL_LOCK_GUARD(); 685 686 env->mip = (env->mip & ~mask) | (value & mask); 687 688 riscv_cpu_interrupt(env); 689 690 return old; 691 } 692 693 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *), 694 void *arg) 695 { 696 env->rdtime_fn = fn; 697 env->rdtime_fn_arg = arg; 698 } 699 700 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv, 701 int (*rmw_fn)(void *arg, 702 target_ulong reg, 703 target_ulong *val, 704 target_ulong new_val, 705 target_ulong write_mask), 706 void *rmw_fn_arg) 707 { 708 if (priv <= PRV_M) { 709 env->aia_ireg_rmw_fn[priv] = rmw_fn; 710 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg; 711 } 712 } 713 714 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) 715 { 716 g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED); 717 718 if (icount_enabled() && newpriv != env->priv) { 719 riscv_itrigger_update_priv(env); 720 } 721 /* tlb_flush is unnecessary as mode is contained in mmu_idx */ 722 env->priv = newpriv; 723 env->xl = cpu_recompute_xl(env); 724 riscv_cpu_update_mask(env); 725 726 /* 727 * Clear the load reservation - otherwise a reservation placed in one 728 * context/process can be used by another, resulting in an SC succeeding 729 * incorrectly. Version 2.2 of the ISA specification explicitly requires 730 * this behaviour, while later revisions say that the kernel "should" use 731 * an SC instruction to force the yielding of a load reservation on a 732 * preemptive context switch. As a result, do both. 733 */ 734 env->load_res = -1; 735 } 736 737 /* 738 * get_physical_address_pmp - check PMP permission for this physical address 739 * 740 * Match the PMP region and check permission for this physical address and it's 741 * TLB page. Returns 0 if the permission checking was successful 742 * 743 * @env: CPURISCVState 744 * @prot: The returned protection attributes 745 * @addr: The physical address to be checked permission 746 * @access_type: The type of MMU access 747 * @mode: Indicates current privilege level. 748 */ 749 static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr, 750 int size, MMUAccessType access_type, 751 int mode) 752 { 753 pmp_priv_t pmp_priv; 754 bool pmp_has_privs; 755 756 if (!riscv_cpu_cfg(env)->pmp) { 757 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 758 return TRANSLATE_SUCCESS; 759 } 760 761 pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type, 762 &pmp_priv, mode); 763 if (!pmp_has_privs) { 764 *prot = 0; 765 return TRANSLATE_PMP_FAIL; 766 } 767 768 *prot = pmp_priv_to_page_prot(pmp_priv); 769 770 return TRANSLATE_SUCCESS; 771 } 772 773 /* 774 * get_physical_address - get the physical address for this virtual address 775 * 776 * Do a page table walk to obtain the physical address corresponding to a 777 * virtual address. Returns 0 if the translation was successful 778 * 779 * Adapted from Spike's mmu_t::translate and mmu_t::walk 780 * 781 * @env: CPURISCVState 782 * @physical: This will be set to the calculated physical address 783 * @prot: The returned protection attributes 784 * @addr: The virtual address or guest physical address to be translated 785 * @fault_pte_addr: If not NULL, this will be set to fault pte address 786 * when a error occurs on pte address translation. 787 * This will already be shifted to match htval. 788 * @access_type: The type of MMU access 789 * @mmu_idx: Indicates current privilege level 790 * @first_stage: Are we in first stage translation? 791 * Second stage is used for hypervisor guest translation 792 * @two_stage: Are we going to perform two stage translation 793 * @is_debug: Is this access from a debugger or the monitor? 794 */ 795 static int get_physical_address(CPURISCVState *env, hwaddr *physical, 796 int *ret_prot, vaddr addr, 797 target_ulong *fault_pte_addr, 798 int access_type, int mmu_idx, 799 bool first_stage, bool two_stage, 800 bool is_debug) 801 { 802 /* 803 * NOTE: the env->pc value visible here will not be 804 * correct, but the value visible to the exception handler 805 * (riscv_cpu_do_interrupt) is correct 806 */ 807 MemTxResult res; 808 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 809 int mode = mmuidx_priv(mmu_idx); 810 bool use_background = false; 811 hwaddr ppn; 812 int napot_bits = 0; 813 target_ulong napot_mask; 814 815 /* 816 * Check if we should use the background registers for the two 817 * stage translation. We don't need to check if we actually need 818 * two stage translation as that happened before this function 819 * was called. Background registers will be used if the guest has 820 * forced a two stage translation to be on (in HS or M mode). 821 */ 822 if (!env->virt_enabled && two_stage) { 823 use_background = true; 824 } 825 826 if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) { 827 *physical = addr; 828 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 829 return TRANSLATE_SUCCESS; 830 } 831 832 *ret_prot = 0; 833 834 hwaddr base; 835 int levels, ptidxbits, ptesize, vm, widened; 836 837 if (first_stage == true) { 838 if (use_background) { 839 if (riscv_cpu_mxl(env) == MXL_RV32) { 840 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT; 841 vm = get_field(env->vsatp, SATP32_MODE); 842 } else { 843 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT; 844 vm = get_field(env->vsatp, SATP64_MODE); 845 } 846 } else { 847 if (riscv_cpu_mxl(env) == MXL_RV32) { 848 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT; 849 vm = get_field(env->satp, SATP32_MODE); 850 } else { 851 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT; 852 vm = get_field(env->satp, SATP64_MODE); 853 } 854 } 855 widened = 0; 856 } else { 857 if (riscv_cpu_mxl(env) == MXL_RV32) { 858 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT; 859 vm = get_field(env->hgatp, SATP32_MODE); 860 } else { 861 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT; 862 vm = get_field(env->hgatp, SATP64_MODE); 863 } 864 widened = 2; 865 } 866 867 switch (vm) { 868 case VM_1_10_SV32: 869 levels = 2; ptidxbits = 10; ptesize = 4; break; 870 case VM_1_10_SV39: 871 levels = 3; ptidxbits = 9; ptesize = 8; break; 872 case VM_1_10_SV48: 873 levels = 4; ptidxbits = 9; ptesize = 8; break; 874 case VM_1_10_SV57: 875 levels = 5; ptidxbits = 9; ptesize = 8; break; 876 case VM_1_10_MBARE: 877 *physical = addr; 878 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 879 return TRANSLATE_SUCCESS; 880 default: 881 g_assert_not_reached(); 882 } 883 884 CPUState *cs = env_cpu(env); 885 int va_bits = PGSHIFT + levels * ptidxbits + widened; 886 887 if (first_stage == true) { 888 target_ulong mask, masked_msbs; 889 890 if (TARGET_LONG_BITS > (va_bits - 1)) { 891 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; 892 } else { 893 mask = 0; 894 } 895 masked_msbs = (addr >> (va_bits - 1)) & mask; 896 897 if (masked_msbs != 0 && masked_msbs != mask) { 898 return TRANSLATE_FAIL; 899 } 900 } else { 901 if (vm != VM_1_10_SV32 && addr >> va_bits != 0) { 902 return TRANSLATE_FAIL; 903 } 904 } 905 906 bool pbmte = env->menvcfg & MENVCFG_PBMTE; 907 bool adue = env->menvcfg & MENVCFG_ADUE; 908 909 if (first_stage && two_stage && env->virt_enabled) { 910 pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE); 911 adue = adue && (env->henvcfg & HENVCFG_ADUE); 912 } 913 914 int ptshift = (levels - 1) * ptidxbits; 915 target_ulong pte; 916 hwaddr pte_addr; 917 int i; 918 919 #if !TCG_OVERSIZED_GUEST 920 restart: 921 #endif 922 for (i = 0; i < levels; i++, ptshift -= ptidxbits) { 923 target_ulong idx; 924 if (i == 0) { 925 idx = (addr >> (PGSHIFT + ptshift)) & 926 ((1 << (ptidxbits + widened)) - 1); 927 } else { 928 idx = (addr >> (PGSHIFT + ptshift)) & 929 ((1 << ptidxbits) - 1); 930 } 931 932 /* check that physical address of PTE is legal */ 933 934 if (two_stage && first_stage) { 935 int vbase_prot; 936 hwaddr vbase; 937 938 /* Do the second stage translation on the base PTE address. */ 939 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, 940 base, NULL, MMU_DATA_LOAD, 941 MMUIdx_U, false, true, 942 is_debug); 943 944 if (vbase_ret != TRANSLATE_SUCCESS) { 945 if (fault_pte_addr) { 946 *fault_pte_addr = (base + idx * ptesize) >> 2; 947 } 948 return TRANSLATE_G_STAGE_FAIL; 949 } 950 951 pte_addr = vbase + idx * ptesize; 952 } else { 953 pte_addr = base + idx * ptesize; 954 } 955 956 int pmp_prot; 957 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr, 958 sizeof(target_ulong), 959 MMU_DATA_LOAD, PRV_S); 960 if (pmp_ret != TRANSLATE_SUCCESS) { 961 return TRANSLATE_PMP_FAIL; 962 } 963 964 if (riscv_cpu_mxl(env) == MXL_RV32) { 965 pte = address_space_ldl(cs->as, pte_addr, attrs, &res); 966 } else { 967 pte = address_space_ldq(cs->as, pte_addr, attrs, &res); 968 } 969 970 if (res != MEMTX_OK) { 971 return TRANSLATE_FAIL; 972 } 973 974 if (riscv_cpu_sxl(env) == MXL_RV32) { 975 ppn = pte >> PTE_PPN_SHIFT; 976 } else { 977 if (pte & PTE_RESERVED) { 978 return TRANSLATE_FAIL; 979 } 980 981 if (!pbmte && (pte & PTE_PBMT)) { 982 return TRANSLATE_FAIL; 983 } 984 985 if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) { 986 return TRANSLATE_FAIL; 987 } 988 989 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT; 990 } 991 992 if (!(pte & PTE_V)) { 993 /* Invalid PTE */ 994 return TRANSLATE_FAIL; 995 } 996 if (pte & (PTE_R | PTE_W | PTE_X)) { 997 goto leaf; 998 } 999 1000 /* Inner PTE, continue walking */ 1001 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) { 1002 return TRANSLATE_FAIL; 1003 } 1004 base = ppn << PGSHIFT; 1005 } 1006 1007 /* No leaf pte at any translation level. */ 1008 return TRANSLATE_FAIL; 1009 1010 leaf: 1011 if (ppn & ((1ULL << ptshift) - 1)) { 1012 /* Misaligned PPN */ 1013 return TRANSLATE_FAIL; 1014 } 1015 if (!pbmte && (pte & PTE_PBMT)) { 1016 /* Reserved without Svpbmt. */ 1017 return TRANSLATE_FAIL; 1018 } 1019 1020 /* Check for reserved combinations of RWX flags. */ 1021 switch (pte & (PTE_R | PTE_W | PTE_X)) { 1022 case PTE_W: 1023 case PTE_W | PTE_X: 1024 return TRANSLATE_FAIL; 1025 } 1026 1027 int prot = 0; 1028 if (pte & PTE_R) { 1029 prot |= PAGE_READ; 1030 } 1031 if (pte & PTE_W) { 1032 prot |= PAGE_WRITE; 1033 } 1034 if (pte & PTE_X) { 1035 bool mxr = false; 1036 1037 /* 1038 * Use mstatus for first stage or for the second stage without 1039 * virt_enabled (MPRV+MPV) 1040 */ 1041 if (first_stage || !env->virt_enabled) { 1042 mxr = get_field(env->mstatus, MSTATUS_MXR); 1043 } 1044 1045 /* MPRV+MPV case, check VSSTATUS */ 1046 if (first_stage && two_stage && !env->virt_enabled) { 1047 mxr |= get_field(env->vsstatus, MSTATUS_MXR); 1048 } 1049 1050 /* 1051 * Setting MXR at HS-level overrides both VS-stage and G-stage 1052 * execute-only permissions 1053 */ 1054 if (env->virt_enabled) { 1055 mxr |= get_field(env->mstatus_hs, MSTATUS_MXR); 1056 } 1057 1058 if (mxr) { 1059 prot |= PAGE_READ; 1060 } 1061 prot |= PAGE_EXEC; 1062 } 1063 1064 if (pte & PTE_U) { 1065 if (mode != PRV_U) { 1066 if (!mmuidx_sum(mmu_idx)) { 1067 return TRANSLATE_FAIL; 1068 } 1069 /* SUM allows only read+write, not execute. */ 1070 prot &= PAGE_READ | PAGE_WRITE; 1071 } 1072 } else if (mode != PRV_S) { 1073 /* Supervisor PTE flags when not S mode */ 1074 return TRANSLATE_FAIL; 1075 } 1076 1077 if (!((prot >> access_type) & 1)) { 1078 /* Access check failed */ 1079 return TRANSLATE_FAIL; 1080 } 1081 1082 /* If necessary, set accessed and dirty bits. */ 1083 target_ulong updated_pte = pte | PTE_A | 1084 (access_type == MMU_DATA_STORE ? PTE_D : 0); 1085 1086 /* Page table updates need to be atomic with MTTCG enabled */ 1087 if (updated_pte != pte && !is_debug) { 1088 if (!adue) { 1089 return TRANSLATE_FAIL; 1090 } 1091 1092 /* 1093 * - if accessed or dirty bits need updating, and the PTE is 1094 * in RAM, then we do so atomically with a compare and swap. 1095 * - if the PTE is in IO space or ROM, then it can't be updated 1096 * and we return TRANSLATE_FAIL. 1097 * - if the PTE changed by the time we went to update it, then 1098 * it is no longer valid and we must re-walk the page table. 1099 */ 1100 MemoryRegion *mr; 1101 hwaddr l = sizeof(target_ulong), addr1; 1102 mr = address_space_translate(cs->as, pte_addr, &addr1, &l, 1103 false, MEMTXATTRS_UNSPECIFIED); 1104 if (memory_region_is_ram(mr)) { 1105 target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1); 1106 #if TCG_OVERSIZED_GUEST 1107 /* 1108 * MTTCG is not enabled on oversized TCG guests so 1109 * page table updates do not need to be atomic 1110 */ 1111 *pte_pa = pte = updated_pte; 1112 #else 1113 target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte); 1114 if (old_pte != pte) { 1115 goto restart; 1116 } 1117 pte = updated_pte; 1118 #endif 1119 } else { 1120 /* 1121 * Misconfigured PTE in ROM (AD bits are not preset) or 1122 * PTE is in IO space and can't be updated atomically. 1123 */ 1124 return TRANSLATE_FAIL; 1125 } 1126 } 1127 1128 /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */ 1129 target_ulong vpn = addr >> PGSHIFT; 1130 1131 if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) { 1132 napot_bits = ctzl(ppn) + 1; 1133 if ((i != (levels - 1)) || (napot_bits != 4)) { 1134 return TRANSLATE_FAIL; 1135 } 1136 } 1137 1138 napot_mask = (1 << napot_bits) - 1; 1139 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) | 1140 (vpn & (((target_ulong)1 << ptshift) - 1)) 1141 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK); 1142 1143 /* 1144 * Remove write permission unless this is a store, or the page is 1145 * already dirty, so that we TLB miss on later writes to update 1146 * the dirty bit. 1147 */ 1148 if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) { 1149 prot &= ~PAGE_WRITE; 1150 } 1151 *ret_prot = prot; 1152 1153 return TRANSLATE_SUCCESS; 1154 } 1155 1156 static void raise_mmu_exception(CPURISCVState *env, target_ulong address, 1157 MMUAccessType access_type, bool pmp_violation, 1158 bool first_stage, bool two_stage, 1159 bool two_stage_indirect) 1160 { 1161 CPUState *cs = env_cpu(env); 1162 1163 switch (access_type) { 1164 case MMU_INST_FETCH: 1165 if (env->virt_enabled && !first_stage) { 1166 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; 1167 } else { 1168 cs->exception_index = pmp_violation ? 1169 RISCV_EXCP_INST_ACCESS_FAULT : RISCV_EXCP_INST_PAGE_FAULT; 1170 } 1171 break; 1172 case MMU_DATA_LOAD: 1173 if (two_stage && !first_stage) { 1174 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; 1175 } else { 1176 cs->exception_index = pmp_violation ? 1177 RISCV_EXCP_LOAD_ACCESS_FAULT : RISCV_EXCP_LOAD_PAGE_FAULT; 1178 } 1179 break; 1180 case MMU_DATA_STORE: 1181 if (two_stage && !first_stage) { 1182 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; 1183 } else { 1184 cs->exception_index = pmp_violation ? 1185 RISCV_EXCP_STORE_AMO_ACCESS_FAULT : 1186 RISCV_EXCP_STORE_PAGE_FAULT; 1187 } 1188 break; 1189 default: 1190 g_assert_not_reached(); 1191 } 1192 env->badaddr = address; 1193 env->two_stage_lookup = two_stage; 1194 env->two_stage_indirect_lookup = two_stage_indirect; 1195 } 1196 1197 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 1198 { 1199 RISCVCPU *cpu = RISCV_CPU(cs); 1200 CPURISCVState *env = &cpu->env; 1201 hwaddr phys_addr; 1202 int prot; 1203 int mmu_idx = cpu_mmu_index(&cpu->env, false); 1204 1205 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx, 1206 true, env->virt_enabled, true)) { 1207 return -1; 1208 } 1209 1210 if (env->virt_enabled) { 1211 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL, 1212 0, mmu_idx, false, true, true)) { 1213 return -1; 1214 } 1215 } 1216 1217 return phys_addr & TARGET_PAGE_MASK; 1218 } 1219 1220 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 1221 vaddr addr, unsigned size, 1222 MMUAccessType access_type, 1223 int mmu_idx, MemTxAttrs attrs, 1224 MemTxResult response, uintptr_t retaddr) 1225 { 1226 RISCVCPU *cpu = RISCV_CPU(cs); 1227 CPURISCVState *env = &cpu->env; 1228 1229 if (access_type == MMU_DATA_STORE) { 1230 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1231 } else if (access_type == MMU_DATA_LOAD) { 1232 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 1233 } else { 1234 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT; 1235 } 1236 1237 env->badaddr = addr; 1238 env->two_stage_lookup = mmuidx_2stage(mmu_idx); 1239 env->two_stage_indirect_lookup = false; 1240 cpu_loop_exit_restore(cs, retaddr); 1241 } 1242 1243 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 1244 MMUAccessType access_type, int mmu_idx, 1245 uintptr_t retaddr) 1246 { 1247 RISCVCPU *cpu = RISCV_CPU(cs); 1248 CPURISCVState *env = &cpu->env; 1249 switch (access_type) { 1250 case MMU_INST_FETCH: 1251 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; 1252 break; 1253 case MMU_DATA_LOAD: 1254 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; 1255 break; 1256 case MMU_DATA_STORE: 1257 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; 1258 break; 1259 default: 1260 g_assert_not_reached(); 1261 } 1262 env->badaddr = addr; 1263 env->two_stage_lookup = mmuidx_2stage(mmu_idx); 1264 env->two_stage_indirect_lookup = false; 1265 cpu_loop_exit_restore(cs, retaddr); 1266 } 1267 1268 1269 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type) 1270 { 1271 enum riscv_pmu_event_idx pmu_event_type; 1272 1273 switch (access_type) { 1274 case MMU_INST_FETCH: 1275 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS; 1276 break; 1277 case MMU_DATA_LOAD: 1278 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS; 1279 break; 1280 case MMU_DATA_STORE: 1281 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS; 1282 break; 1283 default: 1284 return; 1285 } 1286 1287 riscv_pmu_incr_ctr(cpu, pmu_event_type); 1288 } 1289 1290 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 1291 MMUAccessType access_type, int mmu_idx, 1292 bool probe, uintptr_t retaddr) 1293 { 1294 RISCVCPU *cpu = RISCV_CPU(cs); 1295 CPURISCVState *env = &cpu->env; 1296 vaddr im_address; 1297 hwaddr pa = 0; 1298 int prot, prot2, prot_pmp; 1299 bool pmp_violation = false; 1300 bool first_stage_error = true; 1301 bool two_stage_lookup = mmuidx_2stage(mmu_idx); 1302 bool two_stage_indirect_error = false; 1303 int ret = TRANSLATE_FAIL; 1304 int mode = mmu_idx; 1305 /* default TLB page size */ 1306 target_ulong tlb_size = TARGET_PAGE_SIZE; 1307 1308 env->guest_phys_fault_addr = 0; 1309 1310 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", 1311 __func__, address, access_type, mmu_idx); 1312 1313 pmu_tlb_fill_incr_ctr(cpu, access_type); 1314 if (two_stage_lookup) { 1315 /* Two stage lookup */ 1316 ret = get_physical_address(env, &pa, &prot, address, 1317 &env->guest_phys_fault_addr, access_type, 1318 mmu_idx, true, true, false); 1319 1320 /* 1321 * A G-stage exception may be triggered during two state lookup. 1322 * And the env->guest_phys_fault_addr has already been set in 1323 * get_physical_address(). 1324 */ 1325 if (ret == TRANSLATE_G_STAGE_FAIL) { 1326 first_stage_error = false; 1327 two_stage_indirect_error = true; 1328 } 1329 1330 qemu_log_mask(CPU_LOG_MMU, 1331 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " 1332 HWADDR_FMT_plx " prot %d\n", 1333 __func__, address, ret, pa, prot); 1334 1335 if (ret == TRANSLATE_SUCCESS) { 1336 /* Second stage lookup */ 1337 im_address = pa; 1338 1339 ret = get_physical_address(env, &pa, &prot2, im_address, NULL, 1340 access_type, MMUIdx_U, false, true, 1341 false); 1342 1343 qemu_log_mask(CPU_LOG_MMU, 1344 "%s 2nd-stage address=%" VADDR_PRIx 1345 " ret %d physical " 1346 HWADDR_FMT_plx " prot %d\n", 1347 __func__, im_address, ret, pa, prot2); 1348 1349 prot &= prot2; 1350 1351 if (ret == TRANSLATE_SUCCESS) { 1352 ret = get_physical_address_pmp(env, &prot_pmp, pa, 1353 size, access_type, mode); 1354 tlb_size = pmp_get_tlb_size(env, pa); 1355 1356 qemu_log_mask(CPU_LOG_MMU, 1357 "%s PMP address=" HWADDR_FMT_plx " ret %d prot" 1358 " %d tlb_size " TARGET_FMT_lu "\n", 1359 __func__, pa, ret, prot_pmp, tlb_size); 1360 1361 prot &= prot_pmp; 1362 } 1363 1364 if (ret != TRANSLATE_SUCCESS) { 1365 /* 1366 * Guest physical address translation failed, this is a HS 1367 * level exception 1368 */ 1369 first_stage_error = false; 1370 env->guest_phys_fault_addr = (im_address | 1371 (address & 1372 (TARGET_PAGE_SIZE - 1))) >> 2; 1373 } 1374 } 1375 } else { 1376 /* Single stage lookup */ 1377 ret = get_physical_address(env, &pa, &prot, address, NULL, 1378 access_type, mmu_idx, true, false, false); 1379 1380 qemu_log_mask(CPU_LOG_MMU, 1381 "%s address=%" VADDR_PRIx " ret %d physical " 1382 HWADDR_FMT_plx " prot %d\n", 1383 __func__, address, ret, pa, prot); 1384 1385 if (ret == TRANSLATE_SUCCESS) { 1386 ret = get_physical_address_pmp(env, &prot_pmp, pa, 1387 size, access_type, mode); 1388 tlb_size = pmp_get_tlb_size(env, pa); 1389 1390 qemu_log_mask(CPU_LOG_MMU, 1391 "%s PMP address=" HWADDR_FMT_plx " ret %d prot" 1392 " %d tlb_size " TARGET_FMT_lu "\n", 1393 __func__, pa, ret, prot_pmp, tlb_size); 1394 1395 prot &= prot_pmp; 1396 } 1397 } 1398 1399 if (ret == TRANSLATE_PMP_FAIL) { 1400 pmp_violation = true; 1401 } 1402 1403 if (ret == TRANSLATE_SUCCESS) { 1404 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), 1405 prot, mmu_idx, tlb_size); 1406 return true; 1407 } else if (probe) { 1408 return false; 1409 } else { 1410 raise_mmu_exception(env, address, access_type, pmp_violation, 1411 first_stage_error, two_stage_lookup, 1412 two_stage_indirect_error); 1413 cpu_loop_exit_restore(cs, retaddr); 1414 } 1415 1416 return true; 1417 } 1418 1419 static target_ulong riscv_transformed_insn(CPURISCVState *env, 1420 target_ulong insn, 1421 target_ulong taddr) 1422 { 1423 target_ulong xinsn = 0; 1424 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0; 1425 1426 /* 1427 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to 1428 * be uncompressed. The Quadrant 1 of RVC instruction space need 1429 * not be transformed because these instructions won't generate 1430 * any load/store trap. 1431 */ 1432 1433 if ((insn & 0x3) != 0x3) { 1434 /* Transform 16bit instruction into 32bit instruction */ 1435 switch (GET_C_OP(insn)) { 1436 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */ 1437 switch (GET_C_FUNC(insn)) { 1438 case OPC_RISC_C_FUNC_FLD_LQ: 1439 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */ 1440 xinsn = OPC_RISC_FLD; 1441 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1442 access_rs1 = GET_C_RS1S(insn); 1443 access_imm = GET_C_LD_IMM(insn); 1444 access_size = 8; 1445 } 1446 break; 1447 case OPC_RISC_C_FUNC_LW: /* C.LW */ 1448 xinsn = OPC_RISC_LW; 1449 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1450 access_rs1 = GET_C_RS1S(insn); 1451 access_imm = GET_C_LW_IMM(insn); 1452 access_size = 4; 1453 break; 1454 case OPC_RISC_C_FUNC_FLW_LD: 1455 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */ 1456 xinsn = OPC_RISC_FLW; 1457 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1458 access_rs1 = GET_C_RS1S(insn); 1459 access_imm = GET_C_LW_IMM(insn); 1460 access_size = 4; 1461 } else { /* C.LD (RV64/RV128) */ 1462 xinsn = OPC_RISC_LD; 1463 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1464 access_rs1 = GET_C_RS1S(insn); 1465 access_imm = GET_C_LD_IMM(insn); 1466 access_size = 8; 1467 } 1468 break; 1469 case OPC_RISC_C_FUNC_FSD_SQ: 1470 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */ 1471 xinsn = OPC_RISC_FSD; 1472 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1473 access_rs1 = GET_C_RS1S(insn); 1474 access_imm = GET_C_SD_IMM(insn); 1475 access_size = 8; 1476 } 1477 break; 1478 case OPC_RISC_C_FUNC_SW: /* C.SW */ 1479 xinsn = OPC_RISC_SW; 1480 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1481 access_rs1 = GET_C_RS1S(insn); 1482 access_imm = GET_C_SW_IMM(insn); 1483 access_size = 4; 1484 break; 1485 case OPC_RISC_C_FUNC_FSW_SD: 1486 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */ 1487 xinsn = OPC_RISC_FSW; 1488 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1489 access_rs1 = GET_C_RS1S(insn); 1490 access_imm = GET_C_SW_IMM(insn); 1491 access_size = 4; 1492 } else { /* C.SD (RV64/RV128) */ 1493 xinsn = OPC_RISC_SD; 1494 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1495 access_rs1 = GET_C_RS1S(insn); 1496 access_imm = GET_C_SD_IMM(insn); 1497 access_size = 8; 1498 } 1499 break; 1500 default: 1501 break; 1502 } 1503 break; 1504 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */ 1505 switch (GET_C_FUNC(insn)) { 1506 case OPC_RISC_C_FUNC_FLDSP_LQSP: 1507 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */ 1508 xinsn = OPC_RISC_FLD; 1509 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1510 access_rs1 = 2; 1511 access_imm = GET_C_LDSP_IMM(insn); 1512 access_size = 8; 1513 } 1514 break; 1515 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */ 1516 xinsn = OPC_RISC_LW; 1517 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1518 access_rs1 = 2; 1519 access_imm = GET_C_LWSP_IMM(insn); 1520 access_size = 4; 1521 break; 1522 case OPC_RISC_C_FUNC_FLWSP_LDSP: 1523 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */ 1524 xinsn = OPC_RISC_FLW; 1525 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1526 access_rs1 = 2; 1527 access_imm = GET_C_LWSP_IMM(insn); 1528 access_size = 4; 1529 } else { /* C.LDSP (RV64/RV128) */ 1530 xinsn = OPC_RISC_LD; 1531 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1532 access_rs1 = 2; 1533 access_imm = GET_C_LDSP_IMM(insn); 1534 access_size = 8; 1535 } 1536 break; 1537 case OPC_RISC_C_FUNC_FSDSP_SQSP: 1538 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */ 1539 xinsn = OPC_RISC_FSD; 1540 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1541 access_rs1 = 2; 1542 access_imm = GET_C_SDSP_IMM(insn); 1543 access_size = 8; 1544 } 1545 break; 1546 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */ 1547 xinsn = OPC_RISC_SW; 1548 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1549 access_rs1 = 2; 1550 access_imm = GET_C_SWSP_IMM(insn); 1551 access_size = 4; 1552 break; 1553 case 7: 1554 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */ 1555 xinsn = OPC_RISC_FSW; 1556 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1557 access_rs1 = 2; 1558 access_imm = GET_C_SWSP_IMM(insn); 1559 access_size = 4; 1560 } else { /* C.SDSP (RV64/RV128) */ 1561 xinsn = OPC_RISC_SD; 1562 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1563 access_rs1 = 2; 1564 access_imm = GET_C_SDSP_IMM(insn); 1565 access_size = 8; 1566 } 1567 break; 1568 default: 1569 break; 1570 } 1571 break; 1572 default: 1573 break; 1574 } 1575 1576 /* 1577 * Clear Bit1 of transformed instruction to indicate that 1578 * original insruction was a 16bit instruction 1579 */ 1580 xinsn &= ~((target_ulong)0x2); 1581 } else { 1582 /* Transform 32bit (or wider) instructions */ 1583 switch (MASK_OP_MAJOR(insn)) { 1584 case OPC_RISC_ATOMIC: 1585 xinsn = insn; 1586 access_rs1 = GET_RS1(insn); 1587 access_size = 1 << GET_FUNCT3(insn); 1588 break; 1589 case OPC_RISC_LOAD: 1590 case OPC_RISC_FP_LOAD: 1591 xinsn = SET_I_IMM(insn, 0); 1592 access_rs1 = GET_RS1(insn); 1593 access_imm = GET_IMM(insn); 1594 access_size = 1 << GET_FUNCT3(insn); 1595 break; 1596 case OPC_RISC_STORE: 1597 case OPC_RISC_FP_STORE: 1598 xinsn = SET_S_IMM(insn, 0); 1599 access_rs1 = GET_RS1(insn); 1600 access_imm = GET_STORE_IMM(insn); 1601 access_size = 1 << GET_FUNCT3(insn); 1602 break; 1603 case OPC_RISC_SYSTEM: 1604 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) { 1605 xinsn = insn; 1606 access_rs1 = GET_RS1(insn); 1607 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3); 1608 access_size = 1 << access_size; 1609 } 1610 break; 1611 default: 1612 break; 1613 } 1614 } 1615 1616 if (access_size) { 1617 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) & 1618 (access_size - 1)); 1619 } 1620 1621 return xinsn; 1622 } 1623 #endif /* !CONFIG_USER_ONLY */ 1624 1625 /* 1626 * Handle Traps 1627 * 1628 * Adapted from Spike's processor_t::take_trap. 1629 * 1630 */ 1631 void riscv_cpu_do_interrupt(CPUState *cs) 1632 { 1633 #if !defined(CONFIG_USER_ONLY) 1634 1635 RISCVCPU *cpu = RISCV_CPU(cs); 1636 CPURISCVState *env = &cpu->env; 1637 bool write_gva = false; 1638 uint64_t s; 1639 1640 /* 1641 * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide 1642 * so we mask off the MSB and separate into trap type and cause. 1643 */ 1644 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); 1645 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; 1646 uint64_t deleg = async ? env->mideleg : env->medeleg; 1647 bool s_injected = env->mvip & (1 << cause) & env->mvien && 1648 !(env->mip & (1 << cause)); 1649 bool vs_injected = env->hvip & (1 << cause) & env->hvien && 1650 !(env->mip & (1 << cause)); 1651 target_ulong tval = 0; 1652 target_ulong tinst = 0; 1653 target_ulong htval = 0; 1654 target_ulong mtval2 = 0; 1655 1656 if (!async) { 1657 /* set tval to badaddr for traps with address information */ 1658 switch (cause) { 1659 case RISCV_EXCP_SEMIHOST: 1660 do_common_semihosting(cs); 1661 env->pc += 4; 1662 return; 1663 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: 1664 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: 1665 case RISCV_EXCP_LOAD_ADDR_MIS: 1666 case RISCV_EXCP_STORE_AMO_ADDR_MIS: 1667 case RISCV_EXCP_LOAD_ACCESS_FAULT: 1668 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: 1669 case RISCV_EXCP_LOAD_PAGE_FAULT: 1670 case RISCV_EXCP_STORE_PAGE_FAULT: 1671 write_gva = env->two_stage_lookup; 1672 tval = env->badaddr; 1673 if (env->two_stage_indirect_lookup) { 1674 /* 1675 * special pseudoinstruction for G-stage fault taken while 1676 * doing VS-stage page table walk. 1677 */ 1678 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; 1679 } else { 1680 /* 1681 * The "Addr. Offset" field in transformed instruction is 1682 * non-zero only for misaligned access. 1683 */ 1684 tinst = riscv_transformed_insn(env, env->bins, tval); 1685 } 1686 break; 1687 case RISCV_EXCP_INST_GUEST_PAGE_FAULT: 1688 case RISCV_EXCP_INST_ADDR_MIS: 1689 case RISCV_EXCP_INST_ACCESS_FAULT: 1690 case RISCV_EXCP_INST_PAGE_FAULT: 1691 write_gva = env->two_stage_lookup; 1692 tval = env->badaddr; 1693 if (env->two_stage_indirect_lookup) { 1694 /* 1695 * special pseudoinstruction for G-stage fault taken while 1696 * doing VS-stage page table walk. 1697 */ 1698 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; 1699 } 1700 break; 1701 case RISCV_EXCP_ILLEGAL_INST: 1702 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT: 1703 tval = env->bins; 1704 break; 1705 case RISCV_EXCP_BREAKPOINT: 1706 if (cs->watchpoint_hit) { 1707 tval = cs->watchpoint_hit->hitaddr; 1708 cs->watchpoint_hit = NULL; 1709 } 1710 break; 1711 default: 1712 break; 1713 } 1714 /* ecall is dispatched as one cause so translate based on mode */ 1715 if (cause == RISCV_EXCP_U_ECALL) { 1716 assert(env->priv <= 3); 1717 1718 if (env->priv == PRV_M) { 1719 cause = RISCV_EXCP_M_ECALL; 1720 } else if (env->priv == PRV_S && env->virt_enabled) { 1721 cause = RISCV_EXCP_VS_ECALL; 1722 } else if (env->priv == PRV_S && !env->virt_enabled) { 1723 cause = RISCV_EXCP_S_ECALL; 1724 } else if (env->priv == PRV_U) { 1725 cause = RISCV_EXCP_U_ECALL; 1726 } 1727 } 1728 } 1729 1730 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, 1731 riscv_cpu_get_trap_name(cause, async)); 1732 1733 qemu_log_mask(CPU_LOG_INT, 1734 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", " 1735 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n", 1736 __func__, env->mhartid, async, cause, env->pc, tval, 1737 riscv_cpu_get_trap_name(cause, async)); 1738 1739 if (env->priv <= PRV_S && cause < 64 && 1740 (((deleg >> cause) & 1) || s_injected || vs_injected)) { 1741 /* handle the trap in S-mode */ 1742 if (riscv_has_ext(env, RVH)) { 1743 uint64_t hdeleg = async ? env->hideleg : env->hedeleg; 1744 1745 if (env->virt_enabled && 1746 (((hdeleg >> cause) & 1) || vs_injected)) { 1747 /* Trap to VS mode */ 1748 /* 1749 * See if we need to adjust cause. Yes if its VS mode interrupt 1750 * no if hypervisor has delegated one of hs mode's interrupt 1751 */ 1752 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || 1753 cause == IRQ_VS_EXT) { 1754 cause = cause - 1; 1755 } 1756 write_gva = false; 1757 } else if (env->virt_enabled) { 1758 /* Trap into HS mode, from virt */ 1759 riscv_cpu_swap_hypervisor_regs(env); 1760 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, 1761 env->priv); 1762 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true); 1763 1764 htval = env->guest_phys_fault_addr; 1765 1766 riscv_cpu_set_virt_enabled(env, 0); 1767 } else { 1768 /* Trap into HS mode */ 1769 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false); 1770 htval = env->guest_phys_fault_addr; 1771 } 1772 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva); 1773 } 1774 1775 s = env->mstatus; 1776 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); 1777 s = set_field(s, MSTATUS_SPP, env->priv); 1778 s = set_field(s, MSTATUS_SIE, 0); 1779 env->mstatus = s; 1780 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); 1781 env->sepc = env->pc; 1782 env->stval = tval; 1783 env->htval = htval; 1784 env->htinst = tinst; 1785 env->pc = (env->stvec >> 2 << 2) + 1786 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); 1787 riscv_cpu_set_mode(env, PRV_S); 1788 } else { 1789 /* handle the trap in M-mode */ 1790 if (riscv_has_ext(env, RVH)) { 1791 if (env->virt_enabled) { 1792 riscv_cpu_swap_hypervisor_regs(env); 1793 } 1794 env->mstatus = set_field(env->mstatus, MSTATUS_MPV, 1795 env->virt_enabled); 1796 if (env->virt_enabled && tval) { 1797 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); 1798 } 1799 1800 mtval2 = env->guest_phys_fault_addr; 1801 1802 /* Trapping to M mode, virt is disabled */ 1803 riscv_cpu_set_virt_enabled(env, 0); 1804 } 1805 1806 s = env->mstatus; 1807 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); 1808 s = set_field(s, MSTATUS_MPP, env->priv); 1809 s = set_field(s, MSTATUS_MIE, 0); 1810 env->mstatus = s; 1811 env->mcause = cause | ~(((target_ulong)-1) >> async); 1812 env->mepc = env->pc; 1813 env->mtval = tval; 1814 env->mtval2 = mtval2; 1815 env->mtinst = tinst; 1816 env->pc = (env->mtvec >> 2 << 2) + 1817 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); 1818 riscv_cpu_set_mode(env, PRV_M); 1819 } 1820 1821 /* 1822 * NOTE: it is not necessary to yield load reservations here. It is only 1823 * necessary for an SC from "another hart" to cause a load reservation 1824 * to be yielded. Refer to the memory consistency model section of the 1825 * RISC-V ISA Specification. 1826 */ 1827 1828 env->two_stage_lookup = false; 1829 env->two_stage_indirect_lookup = false; 1830 #endif 1831 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */ 1832 } 1833