1 /* 2 * RISC-V CPU helpers for qemu. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/main-loop.h" 23 #include "cpu.h" 24 #include "internals.h" 25 #include "pmu.h" 26 #include "exec/exec-all.h" 27 #include "instmap.h" 28 #include "tcg/tcg-op.h" 29 #include "trace.h" 30 #include "semihosting/common-semi.h" 31 #include "sysemu/cpu-timers.h" 32 #include "cpu_bits.h" 33 #include "debug.h" 34 35 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch) 36 { 37 #ifdef CONFIG_USER_ONLY 38 return 0; 39 #else 40 bool virt = env->virt_enabled; 41 int mode = env->priv; 42 43 /* All priv -> mmu_idx mapping are here */ 44 if (!ifetch) { 45 uint64_t status = env->mstatus; 46 47 if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) { 48 mode = get_field(env->mstatus, MSTATUS_MPP); 49 virt = get_field(env->mstatus, MSTATUS_MPV); 50 if (virt) { 51 status = env->vsstatus; 52 } 53 } 54 if (mode == PRV_S && get_field(status, MSTATUS_SUM)) { 55 mode = MMUIdx_S_SUM; 56 } 57 } 58 59 return mode | (virt ? MMU_2STAGE_BIT : 0); 60 #endif 61 } 62 63 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc, 64 target_ulong *cs_base, uint32_t *pflags) 65 { 66 CPUState *cs = env_cpu(env); 67 RISCVCPU *cpu = RISCV_CPU(cs); 68 RISCVExtStatus fs, vs; 69 uint32_t flags = 0; 70 71 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc; 72 *cs_base = 0; 73 74 if (cpu->cfg.ext_zve32f) { 75 /* 76 * If env->vl equals to VLMAX, we can use generic vector operation 77 * expanders (GVEC) to accerlate the vector operations. 78 * However, as LMUL could be a fractional number. The maximum 79 * vector size can be operated might be less than 8 bytes, 80 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true 81 * only when maxsz >= 8 bytes. 82 */ 83 uint32_t vlmax = vext_get_vlmax(cpu, env->vtype); 84 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW); 85 uint32_t maxsz = vlmax << sew; 86 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) && 87 (maxsz >= 8); 88 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill); 89 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew); 90 flags = FIELD_DP32(flags, TB_FLAGS, LMUL, 91 FIELD_EX64(env->vtype, VTYPE, VLMUL)); 92 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax); 93 flags = FIELD_DP32(flags, TB_FLAGS, VTA, 94 FIELD_EX64(env->vtype, VTYPE, VTA)); 95 flags = FIELD_DP32(flags, TB_FLAGS, VMA, 96 FIELD_EX64(env->vtype, VTYPE, VMA)); 97 flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0); 98 } else { 99 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1); 100 } 101 102 #ifdef CONFIG_USER_ONLY 103 fs = EXT_STATUS_DIRTY; 104 vs = EXT_STATUS_DIRTY; 105 #else 106 flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv); 107 108 flags |= cpu_mmu_index(env, 0); 109 fs = get_field(env->mstatus, MSTATUS_FS); 110 vs = get_field(env->mstatus, MSTATUS_VS); 111 112 if (env->virt_enabled) { 113 flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1); 114 /* 115 * Merge DISABLED and !DIRTY states using MIN. 116 * We will set both fields when dirtying. 117 */ 118 fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS)); 119 vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS)); 120 } 121 122 if (cpu->cfg.debug && !icount_enabled()) { 123 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled); 124 } 125 #endif 126 127 flags = FIELD_DP32(flags, TB_FLAGS, FS, fs); 128 flags = FIELD_DP32(flags, TB_FLAGS, VS, vs); 129 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl); 130 if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) { 131 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1); 132 } 133 if (env->cur_pmbase != 0) { 134 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1); 135 } 136 137 *pflags = flags; 138 } 139 140 void riscv_cpu_update_mask(CPURISCVState *env) 141 { 142 target_ulong mask = -1, base = 0; 143 /* 144 * TODO: Current RVJ spec does not specify 145 * how the extension interacts with XLEN. 146 */ 147 #ifndef CONFIG_USER_ONLY 148 if (riscv_has_ext(env, RVJ)) { 149 switch (env->priv) { 150 case PRV_M: 151 if (env->mmte & M_PM_ENABLE) { 152 mask = env->mpmmask; 153 base = env->mpmbase; 154 } 155 break; 156 case PRV_S: 157 if (env->mmte & S_PM_ENABLE) { 158 mask = env->spmmask; 159 base = env->spmbase; 160 } 161 break; 162 case PRV_U: 163 if (env->mmte & U_PM_ENABLE) { 164 mask = env->upmmask; 165 base = env->upmbase; 166 } 167 break; 168 default: 169 g_assert_not_reached(); 170 } 171 } 172 #endif 173 if (env->xl == MXL_RV32) { 174 env->cur_pmmask = mask & UINT32_MAX; 175 env->cur_pmbase = base & UINT32_MAX; 176 } else { 177 env->cur_pmmask = mask; 178 env->cur_pmbase = base; 179 } 180 } 181 182 #ifndef CONFIG_USER_ONLY 183 184 /* 185 * The HS-mode is allowed to configure priority only for the 186 * following VS-mode local interrupts: 187 * 188 * 0 (Reserved interrupt, reads as zero) 189 * 1 Supervisor software interrupt 190 * 4 (Reserved interrupt, reads as zero) 191 * 5 Supervisor timer interrupt 192 * 8 (Reserved interrupt, reads as zero) 193 * 13 (Reserved interrupt) 194 * 14 " 195 * 15 " 196 * 16 " 197 * 17 " 198 * 18 " 199 * 19 " 200 * 20 " 201 * 21 " 202 * 22 " 203 * 23 " 204 */ 205 206 static const int hviprio_index2irq[] = { 207 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 }; 208 static const int hviprio_index2rdzero[] = { 209 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 210 211 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero) 212 { 213 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) { 214 return -EINVAL; 215 } 216 217 if (out_irq) { 218 *out_irq = hviprio_index2irq[index]; 219 } 220 221 if (out_rdzero) { 222 *out_rdzero = hviprio_index2rdzero[index]; 223 } 224 225 return 0; 226 } 227 228 /* 229 * Default priorities of local interrupts are defined in the 230 * RISC-V Advanced Interrupt Architecture specification. 231 * 232 * ---------------------------------------------------------------- 233 * Default | 234 * Priority | Major Interrupt Numbers 235 * ---------------------------------------------------------------- 236 * Highest | 47, 23, 46, 45, 22, 44, 237 * | 43, 21, 42, 41, 20, 40 238 * | 239 * | 11 (0b), 3 (03), 7 (07) 240 * | 9 (09), 1 (01), 5 (05) 241 * | 12 (0c) 242 * | 10 (0a), 2 (02), 6 (06) 243 * | 244 * | 39, 19, 38, 37, 18, 36, 245 * Lowest | 35, 17, 34, 33, 16, 32 246 * ---------------------------------------------------------------- 247 */ 248 static const uint8_t default_iprio[64] = { 249 /* Custom interrupts 48 to 63 */ 250 [63] = IPRIO_MMAXIPRIO, 251 [62] = IPRIO_MMAXIPRIO, 252 [61] = IPRIO_MMAXIPRIO, 253 [60] = IPRIO_MMAXIPRIO, 254 [59] = IPRIO_MMAXIPRIO, 255 [58] = IPRIO_MMAXIPRIO, 256 [57] = IPRIO_MMAXIPRIO, 257 [56] = IPRIO_MMAXIPRIO, 258 [55] = IPRIO_MMAXIPRIO, 259 [54] = IPRIO_MMAXIPRIO, 260 [53] = IPRIO_MMAXIPRIO, 261 [52] = IPRIO_MMAXIPRIO, 262 [51] = IPRIO_MMAXIPRIO, 263 [50] = IPRIO_MMAXIPRIO, 264 [49] = IPRIO_MMAXIPRIO, 265 [48] = IPRIO_MMAXIPRIO, 266 267 /* Custom interrupts 24 to 31 */ 268 [31] = IPRIO_MMAXIPRIO, 269 [30] = IPRIO_MMAXIPRIO, 270 [29] = IPRIO_MMAXIPRIO, 271 [28] = IPRIO_MMAXIPRIO, 272 [27] = IPRIO_MMAXIPRIO, 273 [26] = IPRIO_MMAXIPRIO, 274 [25] = IPRIO_MMAXIPRIO, 275 [24] = IPRIO_MMAXIPRIO, 276 277 [47] = IPRIO_DEFAULT_UPPER, 278 [23] = IPRIO_DEFAULT_UPPER + 1, 279 [46] = IPRIO_DEFAULT_UPPER + 2, 280 [45] = IPRIO_DEFAULT_UPPER + 3, 281 [22] = IPRIO_DEFAULT_UPPER + 4, 282 [44] = IPRIO_DEFAULT_UPPER + 5, 283 284 [43] = IPRIO_DEFAULT_UPPER + 6, 285 [21] = IPRIO_DEFAULT_UPPER + 7, 286 [42] = IPRIO_DEFAULT_UPPER + 8, 287 [41] = IPRIO_DEFAULT_UPPER + 9, 288 [20] = IPRIO_DEFAULT_UPPER + 10, 289 [40] = IPRIO_DEFAULT_UPPER + 11, 290 291 [11] = IPRIO_DEFAULT_M, 292 [3] = IPRIO_DEFAULT_M + 1, 293 [7] = IPRIO_DEFAULT_M + 2, 294 295 [9] = IPRIO_DEFAULT_S, 296 [1] = IPRIO_DEFAULT_S + 1, 297 [5] = IPRIO_DEFAULT_S + 2, 298 299 [12] = IPRIO_DEFAULT_SGEXT, 300 301 [10] = IPRIO_DEFAULT_VS, 302 [2] = IPRIO_DEFAULT_VS + 1, 303 [6] = IPRIO_DEFAULT_VS + 2, 304 305 [39] = IPRIO_DEFAULT_LOWER, 306 [19] = IPRIO_DEFAULT_LOWER + 1, 307 [38] = IPRIO_DEFAULT_LOWER + 2, 308 [37] = IPRIO_DEFAULT_LOWER + 3, 309 [18] = IPRIO_DEFAULT_LOWER + 4, 310 [36] = IPRIO_DEFAULT_LOWER + 5, 311 312 [35] = IPRIO_DEFAULT_LOWER + 6, 313 [17] = IPRIO_DEFAULT_LOWER + 7, 314 [34] = IPRIO_DEFAULT_LOWER + 8, 315 [33] = IPRIO_DEFAULT_LOWER + 9, 316 [16] = IPRIO_DEFAULT_LOWER + 10, 317 [32] = IPRIO_DEFAULT_LOWER + 11, 318 }; 319 320 uint8_t riscv_cpu_default_priority(int irq) 321 { 322 if (irq < 0 || irq > 63) { 323 return IPRIO_MMAXIPRIO; 324 } 325 326 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO; 327 }; 328 329 static int riscv_cpu_pending_to_irq(CPURISCVState *env, 330 int extirq, unsigned int extirq_def_prio, 331 uint64_t pending, uint8_t *iprio) 332 { 333 int irq, best_irq = RISCV_EXCP_NONE; 334 unsigned int prio, best_prio = UINT_MAX; 335 336 if (!pending) { 337 return RISCV_EXCP_NONE; 338 } 339 340 irq = ctz64(pending); 341 if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia : 342 riscv_cpu_cfg(env)->ext_ssaia)) { 343 return irq; 344 } 345 346 pending = pending >> irq; 347 while (pending) { 348 prio = iprio[irq]; 349 if (!prio) { 350 if (irq == extirq) { 351 prio = extirq_def_prio; 352 } else { 353 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ? 354 1 : IPRIO_MMAXIPRIO; 355 } 356 } 357 if ((pending & 0x1) && (prio <= best_prio)) { 358 best_irq = irq; 359 best_prio = prio; 360 } 361 irq++; 362 pending = pending >> 1; 363 } 364 365 return best_irq; 366 } 367 368 uint64_t riscv_cpu_all_pending(CPURISCVState *env) 369 { 370 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN); 371 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 372 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0; 373 374 return (env->mip | vsgein | vstip) & env->mie; 375 } 376 377 int riscv_cpu_mirq_pending(CPURISCVState *env) 378 { 379 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg & 380 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 381 382 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 383 irqs, env->miprio); 384 } 385 386 int riscv_cpu_sirq_pending(CPURISCVState *env) 387 { 388 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & 389 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 390 391 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 392 irqs, env->siprio); 393 } 394 395 int riscv_cpu_vsirq_pending(CPURISCVState *env) 396 { 397 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & 398 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 399 400 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 401 irqs >> 1, env->hviprio); 402 } 403 404 static int riscv_cpu_local_irq_pending(CPURISCVState *env) 405 { 406 int virq; 407 uint64_t irqs, pending, mie, hsie, vsie; 408 409 /* Determine interrupt enable state of all privilege modes */ 410 if (env->virt_enabled) { 411 mie = 1; 412 hsie = 1; 413 vsie = (env->priv < PRV_S) || 414 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 415 } else { 416 mie = (env->priv < PRV_M) || 417 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE)); 418 hsie = (env->priv < PRV_S) || 419 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 420 vsie = 0; 421 } 422 423 /* Determine all pending interrupts */ 424 pending = riscv_cpu_all_pending(env); 425 426 /* Check M-mode interrupts */ 427 irqs = pending & ~env->mideleg & -mie; 428 if (irqs) { 429 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 430 irqs, env->miprio); 431 } 432 433 /* Check HS-mode interrupts */ 434 irqs = pending & env->mideleg & ~env->hideleg & -hsie; 435 if (irqs) { 436 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 437 irqs, env->siprio); 438 } 439 440 /* Check VS-mode interrupts */ 441 irqs = pending & env->mideleg & env->hideleg & -vsie; 442 if (irqs) { 443 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 444 irqs >> 1, env->hviprio); 445 return (virq <= 0) ? virq : virq + 1; 446 } 447 448 /* Indicate no pending interrupt */ 449 return RISCV_EXCP_NONE; 450 } 451 452 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 453 { 454 if (interrupt_request & CPU_INTERRUPT_HARD) { 455 RISCVCPU *cpu = RISCV_CPU(cs); 456 CPURISCVState *env = &cpu->env; 457 int interruptno = riscv_cpu_local_irq_pending(env); 458 if (interruptno >= 0) { 459 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; 460 riscv_cpu_do_interrupt(cs); 461 return true; 462 } 463 } 464 return false; 465 } 466 467 /* Return true is floating point support is currently enabled */ 468 bool riscv_cpu_fp_enabled(CPURISCVState *env) 469 { 470 if (env->mstatus & MSTATUS_FS) { 471 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) { 472 return false; 473 } 474 return true; 475 } 476 477 return false; 478 } 479 480 /* Return true is vector support is currently enabled */ 481 bool riscv_cpu_vector_enabled(CPURISCVState *env) 482 { 483 if (env->mstatus & MSTATUS_VS) { 484 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) { 485 return false; 486 } 487 return true; 488 } 489 490 return false; 491 } 492 493 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) 494 { 495 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | 496 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE | 497 MSTATUS64_UXL | MSTATUS_VS; 498 499 if (riscv_has_ext(env, RVF)) { 500 mstatus_mask |= MSTATUS_FS; 501 } 502 bool current_virt = env->virt_enabled; 503 504 g_assert(riscv_has_ext(env, RVH)); 505 506 if (current_virt) { 507 /* Current V=1 and we are about to change to V=0 */ 508 env->vsstatus = env->mstatus & mstatus_mask; 509 env->mstatus &= ~mstatus_mask; 510 env->mstatus |= env->mstatus_hs; 511 512 env->vstvec = env->stvec; 513 env->stvec = env->stvec_hs; 514 515 env->vsscratch = env->sscratch; 516 env->sscratch = env->sscratch_hs; 517 518 env->vsepc = env->sepc; 519 env->sepc = env->sepc_hs; 520 521 env->vscause = env->scause; 522 env->scause = env->scause_hs; 523 524 env->vstval = env->stval; 525 env->stval = env->stval_hs; 526 527 env->vsatp = env->satp; 528 env->satp = env->satp_hs; 529 } else { 530 /* Current V=0 and we are about to change to V=1 */ 531 env->mstatus_hs = env->mstatus & mstatus_mask; 532 env->mstatus &= ~mstatus_mask; 533 env->mstatus |= env->vsstatus; 534 535 env->stvec_hs = env->stvec; 536 env->stvec = env->vstvec; 537 538 env->sscratch_hs = env->sscratch; 539 env->sscratch = env->vsscratch; 540 541 env->sepc_hs = env->sepc; 542 env->sepc = env->vsepc; 543 544 env->scause_hs = env->scause; 545 env->scause = env->vscause; 546 547 env->stval_hs = env->stval; 548 env->stval = env->vstval; 549 550 env->satp_hs = env->satp; 551 env->satp = env->vsatp; 552 } 553 } 554 555 target_ulong riscv_cpu_get_geilen(CPURISCVState *env) 556 { 557 if (!riscv_has_ext(env, RVH)) { 558 return 0; 559 } 560 561 return env->geilen; 562 } 563 564 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen) 565 { 566 if (!riscv_has_ext(env, RVH)) { 567 return; 568 } 569 570 if (geilen > (TARGET_LONG_BITS - 1)) { 571 return; 572 } 573 574 env->geilen = geilen; 575 } 576 577 /* This function can only be called to set virt when RVH is enabled */ 578 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable) 579 { 580 /* Flush the TLB on all virt mode changes. */ 581 if (env->virt_enabled != enable) { 582 tlb_flush(env_cpu(env)); 583 } 584 585 env->virt_enabled = enable; 586 587 if (enable) { 588 /* 589 * The guest external interrupts from an interrupt controller are 590 * delivered only when the Guest/VM is running (i.e. V=1). This means 591 * any guest external interrupt which is triggered while the Guest/VM 592 * is not running (i.e. V=0) will be missed on QEMU resulting in guest 593 * with sluggish response to serial console input and other I/O events. 594 * 595 * To solve this, we check and inject interrupt after setting V=1. 596 */ 597 riscv_cpu_update_mip(env, 0, 0); 598 } 599 } 600 601 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts) 602 { 603 CPURISCVState *env = &cpu->env; 604 if (env->miclaim & interrupts) { 605 return -1; 606 } else { 607 env->miclaim |= interrupts; 608 return 0; 609 } 610 } 611 612 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask, 613 uint64_t value) 614 { 615 CPUState *cs = env_cpu(env); 616 uint64_t gein, vsgein = 0, vstip = 0, old = env->mip; 617 618 if (env->virt_enabled) { 619 gein = get_field(env->hstatus, HSTATUS_VGEIN); 620 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 621 } 622 623 vstip = env->vstime_irq ? MIP_VSTIP : 0; 624 625 QEMU_IOTHREAD_LOCK_GUARD(); 626 627 env->mip = (env->mip & ~mask) | (value & mask); 628 629 if (env->mip | vsgein | vstip) { 630 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 631 } else { 632 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 633 } 634 635 return old; 636 } 637 638 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *), 639 void *arg) 640 { 641 env->rdtime_fn = fn; 642 env->rdtime_fn_arg = arg; 643 } 644 645 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv, 646 int (*rmw_fn)(void *arg, 647 target_ulong reg, 648 target_ulong *val, 649 target_ulong new_val, 650 target_ulong write_mask), 651 void *rmw_fn_arg) 652 { 653 if (priv <= PRV_M) { 654 env->aia_ireg_rmw_fn[priv] = rmw_fn; 655 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg; 656 } 657 } 658 659 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) 660 { 661 g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED); 662 663 if (icount_enabled() && newpriv != env->priv) { 664 riscv_itrigger_update_priv(env); 665 } 666 /* tlb_flush is unnecessary as mode is contained in mmu_idx */ 667 env->priv = newpriv; 668 env->xl = cpu_recompute_xl(env); 669 riscv_cpu_update_mask(env); 670 671 /* 672 * Clear the load reservation - otherwise a reservation placed in one 673 * context/process can be used by another, resulting in an SC succeeding 674 * incorrectly. Version 2.2 of the ISA specification explicitly requires 675 * this behaviour, while later revisions say that the kernel "should" use 676 * an SC instruction to force the yielding of a load reservation on a 677 * preemptive context switch. As a result, do both. 678 */ 679 env->load_res = -1; 680 } 681 682 /* 683 * get_physical_address_pmp - check PMP permission for this physical address 684 * 685 * Match the PMP region and check permission for this physical address and it's 686 * TLB page. Returns 0 if the permission checking was successful 687 * 688 * @env: CPURISCVState 689 * @prot: The returned protection attributes 690 * @tlb_size: TLB page size containing addr. It could be modified after PMP 691 * permission checking. NULL if not set TLB page for addr. 692 * @addr: The physical address to be checked permission 693 * @access_type: The type of MMU access 694 * @mode: Indicates current privilege level. 695 */ 696 static int get_physical_address_pmp(CPURISCVState *env, int *prot, 697 target_ulong *tlb_size, hwaddr addr, 698 int size, MMUAccessType access_type, 699 int mode) 700 { 701 pmp_priv_t pmp_priv; 702 int pmp_index = -1; 703 704 if (!riscv_cpu_cfg(env)->pmp) { 705 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 706 return TRANSLATE_SUCCESS; 707 } 708 709 pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type, 710 &pmp_priv, mode); 711 if (pmp_index < 0) { 712 *prot = 0; 713 return TRANSLATE_PMP_FAIL; 714 } 715 716 *prot = pmp_priv_to_page_prot(pmp_priv); 717 if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) { 718 target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1); 719 target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1; 720 721 *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea); 722 } 723 724 return TRANSLATE_SUCCESS; 725 } 726 727 /* 728 * get_physical_address - get the physical address for this virtual address 729 * 730 * Do a page table walk to obtain the physical address corresponding to a 731 * virtual address. Returns 0 if the translation was successful 732 * 733 * Adapted from Spike's mmu_t::translate and mmu_t::walk 734 * 735 * @env: CPURISCVState 736 * @physical: This will be set to the calculated physical address 737 * @prot: The returned protection attributes 738 * @addr: The virtual address or guest physical address to be translated 739 * @fault_pte_addr: If not NULL, this will be set to fault pte address 740 * when a error occurs on pte address translation. 741 * This will already be shifted to match htval. 742 * @access_type: The type of MMU access 743 * @mmu_idx: Indicates current privilege level 744 * @first_stage: Are we in first stage translation? 745 * Second stage is used for hypervisor guest translation 746 * @two_stage: Are we going to perform two stage translation 747 * @is_debug: Is this access from a debugger or the monitor? 748 */ 749 static int get_physical_address(CPURISCVState *env, hwaddr *physical, 750 int *prot, vaddr addr, 751 target_ulong *fault_pte_addr, 752 int access_type, int mmu_idx, 753 bool first_stage, bool two_stage, 754 bool is_debug) 755 { 756 /* 757 * NOTE: the env->pc value visible here will not be 758 * correct, but the value visible to the exception handler 759 * (riscv_cpu_do_interrupt) is correct 760 */ 761 MemTxResult res; 762 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 763 int mode = mmuidx_priv(mmu_idx); 764 bool use_background = false; 765 hwaddr ppn; 766 int napot_bits = 0; 767 target_ulong napot_mask; 768 769 /* 770 * Check if we should use the background registers for the two 771 * stage translation. We don't need to check if we actually need 772 * two stage translation as that happened before this function 773 * was called. Background registers will be used if the guest has 774 * forced a two stage translation to be on (in HS or M mode). 775 */ 776 if (!env->virt_enabled && two_stage) { 777 use_background = true; 778 } 779 780 if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) { 781 *physical = addr; 782 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 783 return TRANSLATE_SUCCESS; 784 } 785 786 *prot = 0; 787 788 hwaddr base; 789 int levels, ptidxbits, ptesize, vm, sum, mxr, widened; 790 791 if (first_stage == true) { 792 mxr = get_field(env->mstatus, MSTATUS_MXR); 793 } else { 794 mxr = get_field(env->vsstatus, MSTATUS_MXR); 795 } 796 797 if (first_stage == true) { 798 if (use_background) { 799 if (riscv_cpu_mxl(env) == MXL_RV32) { 800 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT; 801 vm = get_field(env->vsatp, SATP32_MODE); 802 } else { 803 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT; 804 vm = get_field(env->vsatp, SATP64_MODE); 805 } 806 } else { 807 if (riscv_cpu_mxl(env) == MXL_RV32) { 808 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT; 809 vm = get_field(env->satp, SATP32_MODE); 810 } else { 811 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT; 812 vm = get_field(env->satp, SATP64_MODE); 813 } 814 } 815 widened = 0; 816 } else { 817 if (riscv_cpu_mxl(env) == MXL_RV32) { 818 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT; 819 vm = get_field(env->hgatp, SATP32_MODE); 820 } else { 821 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT; 822 vm = get_field(env->hgatp, SATP64_MODE); 823 } 824 widened = 2; 825 } 826 sum = mmuidx_sum(mmu_idx); 827 switch (vm) { 828 case VM_1_10_SV32: 829 levels = 2; ptidxbits = 10; ptesize = 4; break; 830 case VM_1_10_SV39: 831 levels = 3; ptidxbits = 9; ptesize = 8; break; 832 case VM_1_10_SV48: 833 levels = 4; ptidxbits = 9; ptesize = 8; break; 834 case VM_1_10_SV57: 835 levels = 5; ptidxbits = 9; ptesize = 8; break; 836 case VM_1_10_MBARE: 837 *physical = addr; 838 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 839 return TRANSLATE_SUCCESS; 840 default: 841 g_assert_not_reached(); 842 } 843 844 CPUState *cs = env_cpu(env); 845 int va_bits = PGSHIFT + levels * ptidxbits + widened; 846 target_ulong mask, masked_msbs; 847 848 if (TARGET_LONG_BITS > (va_bits - 1)) { 849 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; 850 } else { 851 mask = 0; 852 } 853 masked_msbs = (addr >> (va_bits - 1)) & mask; 854 855 if (masked_msbs != 0 && masked_msbs != mask) { 856 return TRANSLATE_FAIL; 857 } 858 859 bool pbmte = env->menvcfg & MENVCFG_PBMTE; 860 bool hade = env->menvcfg & MENVCFG_HADE; 861 862 if (first_stage && two_stage && env->virt_enabled) { 863 pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE); 864 hade = hade && (env->henvcfg & HENVCFG_HADE); 865 } 866 867 int ptshift = (levels - 1) * ptidxbits; 868 target_ulong pte; 869 hwaddr pte_addr; 870 int i; 871 872 #if !TCG_OVERSIZED_GUEST 873 restart: 874 #endif 875 for (i = 0; i < levels; i++, ptshift -= ptidxbits) { 876 target_ulong idx; 877 if (i == 0) { 878 idx = (addr >> (PGSHIFT + ptshift)) & 879 ((1 << (ptidxbits + widened)) - 1); 880 } else { 881 idx = (addr >> (PGSHIFT + ptshift)) & 882 ((1 << ptidxbits) - 1); 883 } 884 885 /* check that physical address of PTE is legal */ 886 887 if (two_stage && first_stage) { 888 int vbase_prot; 889 hwaddr vbase; 890 891 /* Do the second stage translation on the base PTE address. */ 892 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, 893 base, NULL, MMU_DATA_LOAD, 894 MMUIdx_U, false, true, 895 is_debug); 896 897 if (vbase_ret != TRANSLATE_SUCCESS) { 898 if (fault_pte_addr) { 899 *fault_pte_addr = (base + idx * ptesize) >> 2; 900 } 901 return TRANSLATE_G_STAGE_FAIL; 902 } 903 904 pte_addr = vbase + idx * ptesize; 905 } else { 906 pte_addr = base + idx * ptesize; 907 } 908 909 int pmp_prot; 910 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr, 911 sizeof(target_ulong), 912 MMU_DATA_LOAD, PRV_S); 913 if (pmp_ret != TRANSLATE_SUCCESS) { 914 return TRANSLATE_PMP_FAIL; 915 } 916 917 if (riscv_cpu_mxl(env) == MXL_RV32) { 918 pte = address_space_ldl(cs->as, pte_addr, attrs, &res); 919 } else { 920 pte = address_space_ldq(cs->as, pte_addr, attrs, &res); 921 } 922 923 if (res != MEMTX_OK) { 924 return TRANSLATE_FAIL; 925 } 926 927 if (riscv_cpu_sxl(env) == MXL_RV32) { 928 ppn = pte >> PTE_PPN_SHIFT; 929 } else if (pbmte || riscv_cpu_cfg(env)->ext_svnapot) { 930 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT; 931 } else { 932 ppn = pte >> PTE_PPN_SHIFT; 933 if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) { 934 return TRANSLATE_FAIL; 935 } 936 } 937 938 if (!(pte & PTE_V)) { 939 /* Invalid PTE */ 940 return TRANSLATE_FAIL; 941 } 942 if (pte & (PTE_R | PTE_W | PTE_X)) { 943 goto leaf; 944 } 945 946 /* Inner PTE, continue walking */ 947 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) { 948 return TRANSLATE_FAIL; 949 } 950 base = ppn << PGSHIFT; 951 } 952 953 /* No leaf pte at any translation level. */ 954 return TRANSLATE_FAIL; 955 956 leaf: 957 if (ppn & ((1ULL << ptshift) - 1)) { 958 /* Misaligned PPN */ 959 return TRANSLATE_FAIL; 960 } 961 if (!pbmte && (pte & PTE_PBMT)) { 962 /* Reserved without Svpbmt. */ 963 return TRANSLATE_FAIL; 964 } 965 if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) { 966 /* Reserved leaf PTE flags: PTE_W */ 967 return TRANSLATE_FAIL; 968 } 969 if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) { 970 /* Reserved leaf PTE flags: PTE_W + PTE_X */ 971 return TRANSLATE_FAIL; 972 } 973 if ((pte & PTE_U) && 974 ((mode != PRV_U) && (!sum || access_type == MMU_INST_FETCH))) { 975 /* 976 * User PTE flags when not U mode and mstatus.SUM is not set, 977 * or the access type is an instruction fetch. 978 */ 979 return TRANSLATE_FAIL; 980 } 981 if (!(pte & PTE_U) && (mode != PRV_S)) { 982 /* Supervisor PTE flags when not S mode */ 983 return TRANSLATE_FAIL; 984 } 985 if (access_type == MMU_DATA_LOAD && 986 !((pte & PTE_R) || ((pte & PTE_X) && mxr))) { 987 /* Read access check failed */ 988 return TRANSLATE_FAIL; 989 } 990 if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) { 991 /* Write access check failed */ 992 return TRANSLATE_FAIL; 993 } 994 if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) { 995 /* Fetch access check failed */ 996 return TRANSLATE_FAIL; 997 } 998 999 /* If necessary, set accessed and dirty bits. */ 1000 target_ulong updated_pte = pte | PTE_A | 1001 (access_type == MMU_DATA_STORE ? PTE_D : 0); 1002 1003 /* Page table updates need to be atomic with MTTCG enabled */ 1004 if (updated_pte != pte && !is_debug) { 1005 if (!hade) { 1006 return TRANSLATE_FAIL; 1007 } 1008 1009 /* 1010 * - if accessed or dirty bits need updating, and the PTE is 1011 * in RAM, then we do so atomically with a compare and swap. 1012 * - if the PTE is in IO space or ROM, then it can't be updated 1013 * and we return TRANSLATE_FAIL. 1014 * - if the PTE changed by the time we went to update it, then 1015 * it is no longer valid and we must re-walk the page table. 1016 */ 1017 MemoryRegion *mr; 1018 hwaddr l = sizeof(target_ulong), addr1; 1019 mr = address_space_translate(cs->as, pte_addr, &addr1, &l, 1020 false, MEMTXATTRS_UNSPECIFIED); 1021 if (memory_region_is_ram(mr)) { 1022 target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1); 1023 #if TCG_OVERSIZED_GUEST 1024 /* 1025 * MTTCG is not enabled on oversized TCG guests so 1026 * page table updates do not need to be atomic 1027 */ 1028 *pte_pa = pte = updated_pte; 1029 #else 1030 target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte); 1031 if (old_pte != pte) { 1032 goto restart; 1033 } 1034 pte = updated_pte; 1035 #endif 1036 } else { 1037 /* 1038 * Misconfigured PTE in ROM (AD bits are not preset) or 1039 * PTE is in IO space and can't be updated atomically. 1040 */ 1041 return TRANSLATE_FAIL; 1042 } 1043 } 1044 1045 /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */ 1046 target_ulong vpn = addr >> PGSHIFT; 1047 1048 if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) { 1049 napot_bits = ctzl(ppn) + 1; 1050 if ((i != (levels - 1)) || (napot_bits != 4)) { 1051 return TRANSLATE_FAIL; 1052 } 1053 } 1054 1055 napot_mask = (1 << napot_bits) - 1; 1056 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) | 1057 (vpn & (((target_ulong)1 << ptshift) - 1)) 1058 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK); 1059 1060 /* set permissions on the TLB entry */ 1061 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) { 1062 *prot |= PAGE_READ; 1063 } 1064 if (pte & PTE_X) { 1065 *prot |= PAGE_EXEC; 1066 } 1067 /* 1068 * Add write permission on stores or if the page is already dirty, 1069 * so that we TLB miss on later writes to update the dirty bit. 1070 */ 1071 if ((pte & PTE_W) && (access_type == MMU_DATA_STORE || (pte & PTE_D))) { 1072 *prot |= PAGE_WRITE; 1073 } 1074 return TRANSLATE_SUCCESS; 1075 } 1076 1077 static void raise_mmu_exception(CPURISCVState *env, target_ulong address, 1078 MMUAccessType access_type, bool pmp_violation, 1079 bool first_stage, bool two_stage, 1080 bool two_stage_indirect) 1081 { 1082 CPUState *cs = env_cpu(env); 1083 int page_fault_exceptions, vm; 1084 uint64_t stap_mode; 1085 1086 if (riscv_cpu_mxl(env) == MXL_RV32) { 1087 stap_mode = SATP32_MODE; 1088 } else { 1089 stap_mode = SATP64_MODE; 1090 } 1091 1092 if (first_stage) { 1093 vm = get_field(env->satp, stap_mode); 1094 } else { 1095 vm = get_field(env->hgatp, stap_mode); 1096 } 1097 1098 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation; 1099 1100 switch (access_type) { 1101 case MMU_INST_FETCH: 1102 if (env->virt_enabled && !first_stage) { 1103 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; 1104 } else { 1105 cs->exception_index = page_fault_exceptions ? 1106 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT; 1107 } 1108 break; 1109 case MMU_DATA_LOAD: 1110 if (two_stage && !first_stage) { 1111 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; 1112 } else { 1113 cs->exception_index = page_fault_exceptions ? 1114 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT; 1115 } 1116 break; 1117 case MMU_DATA_STORE: 1118 if (two_stage && !first_stage) { 1119 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; 1120 } else { 1121 cs->exception_index = page_fault_exceptions ? 1122 RISCV_EXCP_STORE_PAGE_FAULT : 1123 RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1124 } 1125 break; 1126 default: 1127 g_assert_not_reached(); 1128 } 1129 env->badaddr = address; 1130 env->two_stage_lookup = two_stage; 1131 env->two_stage_indirect_lookup = two_stage_indirect; 1132 } 1133 1134 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 1135 { 1136 RISCVCPU *cpu = RISCV_CPU(cs); 1137 CPURISCVState *env = &cpu->env; 1138 hwaddr phys_addr; 1139 int prot; 1140 int mmu_idx = cpu_mmu_index(&cpu->env, false); 1141 1142 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx, 1143 true, env->virt_enabled, true)) { 1144 return -1; 1145 } 1146 1147 if (env->virt_enabled) { 1148 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL, 1149 0, mmu_idx, false, true, true)) { 1150 return -1; 1151 } 1152 } 1153 1154 return phys_addr & TARGET_PAGE_MASK; 1155 } 1156 1157 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 1158 vaddr addr, unsigned size, 1159 MMUAccessType access_type, 1160 int mmu_idx, MemTxAttrs attrs, 1161 MemTxResult response, uintptr_t retaddr) 1162 { 1163 RISCVCPU *cpu = RISCV_CPU(cs); 1164 CPURISCVState *env = &cpu->env; 1165 1166 if (access_type == MMU_DATA_STORE) { 1167 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1168 } else if (access_type == MMU_DATA_LOAD) { 1169 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 1170 } else { 1171 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT; 1172 } 1173 1174 env->badaddr = addr; 1175 env->two_stage_lookup = mmuidx_2stage(mmu_idx); 1176 env->two_stage_indirect_lookup = false; 1177 cpu_loop_exit_restore(cs, retaddr); 1178 } 1179 1180 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 1181 MMUAccessType access_type, int mmu_idx, 1182 uintptr_t retaddr) 1183 { 1184 RISCVCPU *cpu = RISCV_CPU(cs); 1185 CPURISCVState *env = &cpu->env; 1186 switch (access_type) { 1187 case MMU_INST_FETCH: 1188 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; 1189 break; 1190 case MMU_DATA_LOAD: 1191 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; 1192 break; 1193 case MMU_DATA_STORE: 1194 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; 1195 break; 1196 default: 1197 g_assert_not_reached(); 1198 } 1199 env->badaddr = addr; 1200 env->two_stage_lookup = mmuidx_2stage(mmu_idx); 1201 env->two_stage_indirect_lookup = false; 1202 cpu_loop_exit_restore(cs, retaddr); 1203 } 1204 1205 1206 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type) 1207 { 1208 enum riscv_pmu_event_idx pmu_event_type; 1209 1210 switch (access_type) { 1211 case MMU_INST_FETCH: 1212 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS; 1213 break; 1214 case MMU_DATA_LOAD: 1215 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS; 1216 break; 1217 case MMU_DATA_STORE: 1218 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS; 1219 break; 1220 default: 1221 return; 1222 } 1223 1224 riscv_pmu_incr_ctr(cpu, pmu_event_type); 1225 } 1226 1227 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 1228 MMUAccessType access_type, int mmu_idx, 1229 bool probe, uintptr_t retaddr) 1230 { 1231 RISCVCPU *cpu = RISCV_CPU(cs); 1232 CPURISCVState *env = &cpu->env; 1233 vaddr im_address; 1234 hwaddr pa = 0; 1235 int prot, prot2, prot_pmp; 1236 bool pmp_violation = false; 1237 bool first_stage_error = true; 1238 bool two_stage_lookup = mmuidx_2stage(mmu_idx); 1239 bool two_stage_indirect_error = false; 1240 int ret = TRANSLATE_FAIL; 1241 int mode = mmu_idx; 1242 /* default TLB page size */ 1243 target_ulong tlb_size = TARGET_PAGE_SIZE; 1244 1245 env->guest_phys_fault_addr = 0; 1246 1247 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", 1248 __func__, address, access_type, mmu_idx); 1249 1250 pmu_tlb_fill_incr_ctr(cpu, access_type); 1251 if (two_stage_lookup) { 1252 /* Two stage lookup */ 1253 ret = get_physical_address(env, &pa, &prot, address, 1254 &env->guest_phys_fault_addr, access_type, 1255 mmu_idx, true, true, false); 1256 1257 /* 1258 * A G-stage exception may be triggered during two state lookup. 1259 * And the env->guest_phys_fault_addr has already been set in 1260 * get_physical_address(). 1261 */ 1262 if (ret == TRANSLATE_G_STAGE_FAIL) { 1263 first_stage_error = false; 1264 two_stage_indirect_error = true; 1265 access_type = MMU_DATA_LOAD; 1266 } 1267 1268 qemu_log_mask(CPU_LOG_MMU, 1269 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " 1270 HWADDR_FMT_plx " prot %d\n", 1271 __func__, address, ret, pa, prot); 1272 1273 if (ret == TRANSLATE_SUCCESS) { 1274 /* Second stage lookup */ 1275 im_address = pa; 1276 1277 ret = get_physical_address(env, &pa, &prot2, im_address, NULL, 1278 access_type, MMUIdx_U, false, true, 1279 false); 1280 1281 qemu_log_mask(CPU_LOG_MMU, 1282 "%s 2nd-stage address=%" VADDR_PRIx 1283 " ret %d physical " 1284 HWADDR_FMT_plx " prot %d\n", 1285 __func__, im_address, ret, pa, prot2); 1286 1287 prot &= prot2; 1288 1289 if (ret == TRANSLATE_SUCCESS) { 1290 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, 1291 size, access_type, mode); 1292 1293 qemu_log_mask(CPU_LOG_MMU, 1294 "%s PMP address=" HWADDR_FMT_plx " ret %d prot" 1295 " %d tlb_size " TARGET_FMT_lu "\n", 1296 __func__, pa, ret, prot_pmp, tlb_size); 1297 1298 prot &= prot_pmp; 1299 } 1300 1301 if (ret != TRANSLATE_SUCCESS) { 1302 /* 1303 * Guest physical address translation failed, this is a HS 1304 * level exception 1305 */ 1306 first_stage_error = false; 1307 env->guest_phys_fault_addr = (im_address | 1308 (address & 1309 (TARGET_PAGE_SIZE - 1))) >> 2; 1310 } 1311 } 1312 } else { 1313 /* Single stage lookup */ 1314 ret = get_physical_address(env, &pa, &prot, address, NULL, 1315 access_type, mmu_idx, true, false, false); 1316 1317 qemu_log_mask(CPU_LOG_MMU, 1318 "%s address=%" VADDR_PRIx " ret %d physical " 1319 HWADDR_FMT_plx " prot %d\n", 1320 __func__, address, ret, pa, prot); 1321 1322 if (ret == TRANSLATE_SUCCESS) { 1323 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, 1324 size, access_type, mode); 1325 1326 qemu_log_mask(CPU_LOG_MMU, 1327 "%s PMP address=" HWADDR_FMT_plx " ret %d prot" 1328 " %d tlb_size " TARGET_FMT_lu "\n", 1329 __func__, pa, ret, prot_pmp, tlb_size); 1330 1331 prot &= prot_pmp; 1332 } 1333 } 1334 1335 if (ret == TRANSLATE_PMP_FAIL) { 1336 pmp_violation = true; 1337 } 1338 1339 if (ret == TRANSLATE_SUCCESS) { 1340 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), 1341 prot, mmu_idx, tlb_size); 1342 return true; 1343 } else if (probe) { 1344 return false; 1345 } else { 1346 raise_mmu_exception(env, address, access_type, pmp_violation, 1347 first_stage_error, two_stage_lookup, 1348 two_stage_indirect_error); 1349 cpu_loop_exit_restore(cs, retaddr); 1350 } 1351 1352 return true; 1353 } 1354 1355 static target_ulong riscv_transformed_insn(CPURISCVState *env, 1356 target_ulong insn, 1357 target_ulong taddr) 1358 { 1359 target_ulong xinsn = 0; 1360 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0; 1361 1362 /* 1363 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to 1364 * be uncompressed. The Quadrant 1 of RVC instruction space need 1365 * not be transformed because these instructions won't generate 1366 * any load/store trap. 1367 */ 1368 1369 if ((insn & 0x3) != 0x3) { 1370 /* Transform 16bit instruction into 32bit instruction */ 1371 switch (GET_C_OP(insn)) { 1372 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */ 1373 switch (GET_C_FUNC(insn)) { 1374 case OPC_RISC_C_FUNC_FLD_LQ: 1375 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */ 1376 xinsn = OPC_RISC_FLD; 1377 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1378 access_rs1 = GET_C_RS1S(insn); 1379 access_imm = GET_C_LD_IMM(insn); 1380 access_size = 8; 1381 } 1382 break; 1383 case OPC_RISC_C_FUNC_LW: /* C.LW */ 1384 xinsn = OPC_RISC_LW; 1385 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1386 access_rs1 = GET_C_RS1S(insn); 1387 access_imm = GET_C_LW_IMM(insn); 1388 access_size = 4; 1389 break; 1390 case OPC_RISC_C_FUNC_FLW_LD: 1391 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */ 1392 xinsn = OPC_RISC_FLW; 1393 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1394 access_rs1 = GET_C_RS1S(insn); 1395 access_imm = GET_C_LW_IMM(insn); 1396 access_size = 4; 1397 } else { /* C.LD (RV64/RV128) */ 1398 xinsn = OPC_RISC_LD; 1399 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1400 access_rs1 = GET_C_RS1S(insn); 1401 access_imm = GET_C_LD_IMM(insn); 1402 access_size = 8; 1403 } 1404 break; 1405 case OPC_RISC_C_FUNC_FSD_SQ: 1406 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */ 1407 xinsn = OPC_RISC_FSD; 1408 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1409 access_rs1 = GET_C_RS1S(insn); 1410 access_imm = GET_C_SD_IMM(insn); 1411 access_size = 8; 1412 } 1413 break; 1414 case OPC_RISC_C_FUNC_SW: /* C.SW */ 1415 xinsn = OPC_RISC_SW; 1416 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1417 access_rs1 = GET_C_RS1S(insn); 1418 access_imm = GET_C_SW_IMM(insn); 1419 access_size = 4; 1420 break; 1421 case OPC_RISC_C_FUNC_FSW_SD: 1422 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */ 1423 xinsn = OPC_RISC_FSW; 1424 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1425 access_rs1 = GET_C_RS1S(insn); 1426 access_imm = GET_C_SW_IMM(insn); 1427 access_size = 4; 1428 } else { /* C.SD (RV64/RV128) */ 1429 xinsn = OPC_RISC_SD; 1430 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1431 access_rs1 = GET_C_RS1S(insn); 1432 access_imm = GET_C_SD_IMM(insn); 1433 access_size = 8; 1434 } 1435 break; 1436 default: 1437 break; 1438 } 1439 break; 1440 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */ 1441 switch (GET_C_FUNC(insn)) { 1442 case OPC_RISC_C_FUNC_FLDSP_LQSP: 1443 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */ 1444 xinsn = OPC_RISC_FLD; 1445 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1446 access_rs1 = 2; 1447 access_imm = GET_C_LDSP_IMM(insn); 1448 access_size = 8; 1449 } 1450 break; 1451 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */ 1452 xinsn = OPC_RISC_LW; 1453 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1454 access_rs1 = 2; 1455 access_imm = GET_C_LWSP_IMM(insn); 1456 access_size = 4; 1457 break; 1458 case OPC_RISC_C_FUNC_FLWSP_LDSP: 1459 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */ 1460 xinsn = OPC_RISC_FLW; 1461 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1462 access_rs1 = 2; 1463 access_imm = GET_C_LWSP_IMM(insn); 1464 access_size = 4; 1465 } else { /* C.LDSP (RV64/RV128) */ 1466 xinsn = OPC_RISC_LD; 1467 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1468 access_rs1 = 2; 1469 access_imm = GET_C_LDSP_IMM(insn); 1470 access_size = 8; 1471 } 1472 break; 1473 case OPC_RISC_C_FUNC_FSDSP_SQSP: 1474 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */ 1475 xinsn = OPC_RISC_FSD; 1476 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1477 access_rs1 = 2; 1478 access_imm = GET_C_SDSP_IMM(insn); 1479 access_size = 8; 1480 } 1481 break; 1482 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */ 1483 xinsn = OPC_RISC_SW; 1484 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1485 access_rs1 = 2; 1486 access_imm = GET_C_SWSP_IMM(insn); 1487 access_size = 4; 1488 break; 1489 case 7: 1490 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */ 1491 xinsn = OPC_RISC_FSW; 1492 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1493 access_rs1 = 2; 1494 access_imm = GET_C_SWSP_IMM(insn); 1495 access_size = 4; 1496 } else { /* C.SDSP (RV64/RV128) */ 1497 xinsn = OPC_RISC_SD; 1498 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1499 access_rs1 = 2; 1500 access_imm = GET_C_SDSP_IMM(insn); 1501 access_size = 8; 1502 } 1503 break; 1504 default: 1505 break; 1506 } 1507 break; 1508 default: 1509 break; 1510 } 1511 1512 /* 1513 * Clear Bit1 of transformed instruction to indicate that 1514 * original insruction was a 16bit instruction 1515 */ 1516 xinsn &= ~((target_ulong)0x2); 1517 } else { 1518 /* Transform 32bit (or wider) instructions */ 1519 switch (MASK_OP_MAJOR(insn)) { 1520 case OPC_RISC_ATOMIC: 1521 xinsn = insn; 1522 access_rs1 = GET_RS1(insn); 1523 access_size = 1 << GET_FUNCT3(insn); 1524 break; 1525 case OPC_RISC_LOAD: 1526 case OPC_RISC_FP_LOAD: 1527 xinsn = SET_I_IMM(insn, 0); 1528 access_rs1 = GET_RS1(insn); 1529 access_imm = GET_IMM(insn); 1530 access_size = 1 << GET_FUNCT3(insn); 1531 break; 1532 case OPC_RISC_STORE: 1533 case OPC_RISC_FP_STORE: 1534 xinsn = SET_S_IMM(insn, 0); 1535 access_rs1 = GET_RS1(insn); 1536 access_imm = GET_STORE_IMM(insn); 1537 access_size = 1 << GET_FUNCT3(insn); 1538 break; 1539 case OPC_RISC_SYSTEM: 1540 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) { 1541 xinsn = insn; 1542 access_rs1 = GET_RS1(insn); 1543 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3); 1544 access_size = 1 << access_size; 1545 } 1546 break; 1547 default: 1548 break; 1549 } 1550 } 1551 1552 if (access_size) { 1553 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) & 1554 (access_size - 1)); 1555 } 1556 1557 return xinsn; 1558 } 1559 #endif /* !CONFIG_USER_ONLY */ 1560 1561 /* 1562 * Handle Traps 1563 * 1564 * Adapted from Spike's processor_t::take_trap. 1565 * 1566 */ 1567 void riscv_cpu_do_interrupt(CPUState *cs) 1568 { 1569 #if !defined(CONFIG_USER_ONLY) 1570 1571 RISCVCPU *cpu = RISCV_CPU(cs); 1572 CPURISCVState *env = &cpu->env; 1573 bool write_gva = false; 1574 uint64_t s; 1575 1576 /* 1577 * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide 1578 * so we mask off the MSB and separate into trap type and cause. 1579 */ 1580 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); 1581 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; 1582 uint64_t deleg = async ? env->mideleg : env->medeleg; 1583 target_ulong tval = 0; 1584 target_ulong tinst = 0; 1585 target_ulong htval = 0; 1586 target_ulong mtval2 = 0; 1587 1588 if (cause == RISCV_EXCP_SEMIHOST) { 1589 do_common_semihosting(cs); 1590 env->pc += 4; 1591 return; 1592 } 1593 1594 if (!async) { 1595 /* set tval to badaddr for traps with address information */ 1596 switch (cause) { 1597 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: 1598 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: 1599 case RISCV_EXCP_LOAD_ADDR_MIS: 1600 case RISCV_EXCP_STORE_AMO_ADDR_MIS: 1601 case RISCV_EXCP_LOAD_ACCESS_FAULT: 1602 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: 1603 case RISCV_EXCP_LOAD_PAGE_FAULT: 1604 case RISCV_EXCP_STORE_PAGE_FAULT: 1605 write_gva = env->two_stage_lookup; 1606 tval = env->badaddr; 1607 if (env->two_stage_indirect_lookup) { 1608 /* 1609 * special pseudoinstruction for G-stage fault taken while 1610 * doing VS-stage page table walk. 1611 */ 1612 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; 1613 } else { 1614 /* 1615 * The "Addr. Offset" field in transformed instruction is 1616 * non-zero only for misaligned access. 1617 */ 1618 tinst = riscv_transformed_insn(env, env->bins, tval); 1619 } 1620 break; 1621 case RISCV_EXCP_INST_GUEST_PAGE_FAULT: 1622 case RISCV_EXCP_INST_ADDR_MIS: 1623 case RISCV_EXCP_INST_ACCESS_FAULT: 1624 case RISCV_EXCP_INST_PAGE_FAULT: 1625 write_gva = env->two_stage_lookup; 1626 tval = env->badaddr; 1627 if (env->two_stage_indirect_lookup) { 1628 /* 1629 * special pseudoinstruction for G-stage fault taken while 1630 * doing VS-stage page table walk. 1631 */ 1632 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; 1633 } 1634 break; 1635 case RISCV_EXCP_ILLEGAL_INST: 1636 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT: 1637 tval = env->bins; 1638 break; 1639 case RISCV_EXCP_BREAKPOINT: 1640 if (cs->watchpoint_hit) { 1641 tval = cs->watchpoint_hit->hitaddr; 1642 cs->watchpoint_hit = NULL; 1643 } 1644 break; 1645 default: 1646 break; 1647 } 1648 /* ecall is dispatched as one cause so translate based on mode */ 1649 if (cause == RISCV_EXCP_U_ECALL) { 1650 assert(env->priv <= 3); 1651 1652 if (env->priv == PRV_M) { 1653 cause = RISCV_EXCP_M_ECALL; 1654 } else if (env->priv == PRV_S && env->virt_enabled) { 1655 cause = RISCV_EXCP_VS_ECALL; 1656 } else if (env->priv == PRV_S && !env->virt_enabled) { 1657 cause = RISCV_EXCP_S_ECALL; 1658 } else if (env->priv == PRV_U) { 1659 cause = RISCV_EXCP_U_ECALL; 1660 } 1661 } 1662 } 1663 1664 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, 1665 riscv_cpu_get_trap_name(cause, async)); 1666 1667 qemu_log_mask(CPU_LOG_INT, 1668 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", " 1669 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n", 1670 __func__, env->mhartid, async, cause, env->pc, tval, 1671 riscv_cpu_get_trap_name(cause, async)); 1672 1673 if (env->priv <= PRV_S && 1674 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) { 1675 /* handle the trap in S-mode */ 1676 if (riscv_has_ext(env, RVH)) { 1677 uint64_t hdeleg = async ? env->hideleg : env->hedeleg; 1678 1679 if (env->virt_enabled && ((hdeleg >> cause) & 1)) { 1680 /* Trap to VS mode */ 1681 /* 1682 * See if we need to adjust cause. Yes if its VS mode interrupt 1683 * no if hypervisor has delegated one of hs mode's interrupt 1684 */ 1685 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || 1686 cause == IRQ_VS_EXT) { 1687 cause = cause - 1; 1688 } 1689 write_gva = false; 1690 } else if (env->virt_enabled) { 1691 /* Trap into HS mode, from virt */ 1692 riscv_cpu_swap_hypervisor_regs(env); 1693 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, 1694 env->priv); 1695 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true); 1696 1697 htval = env->guest_phys_fault_addr; 1698 1699 riscv_cpu_set_virt_enabled(env, 0); 1700 } else { 1701 /* Trap into HS mode */ 1702 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false); 1703 htval = env->guest_phys_fault_addr; 1704 } 1705 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva); 1706 } 1707 1708 s = env->mstatus; 1709 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); 1710 s = set_field(s, MSTATUS_SPP, env->priv); 1711 s = set_field(s, MSTATUS_SIE, 0); 1712 env->mstatus = s; 1713 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); 1714 env->sepc = env->pc; 1715 env->stval = tval; 1716 env->htval = htval; 1717 env->htinst = tinst; 1718 env->pc = (env->stvec >> 2 << 2) + 1719 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); 1720 riscv_cpu_set_mode(env, PRV_S); 1721 } else { 1722 /* handle the trap in M-mode */ 1723 if (riscv_has_ext(env, RVH)) { 1724 if (env->virt_enabled) { 1725 riscv_cpu_swap_hypervisor_regs(env); 1726 } 1727 env->mstatus = set_field(env->mstatus, MSTATUS_MPV, 1728 env->virt_enabled); 1729 if (env->virt_enabled && tval) { 1730 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); 1731 } 1732 1733 mtval2 = env->guest_phys_fault_addr; 1734 1735 /* Trapping to M mode, virt is disabled */ 1736 riscv_cpu_set_virt_enabled(env, 0); 1737 } 1738 1739 s = env->mstatus; 1740 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); 1741 s = set_field(s, MSTATUS_MPP, env->priv); 1742 s = set_field(s, MSTATUS_MIE, 0); 1743 env->mstatus = s; 1744 env->mcause = cause | ~(((target_ulong)-1) >> async); 1745 env->mepc = env->pc; 1746 env->mtval = tval; 1747 env->mtval2 = mtval2; 1748 env->mtinst = tinst; 1749 env->pc = (env->mtvec >> 2 << 2) + 1750 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); 1751 riscv_cpu_set_mode(env, PRV_M); 1752 } 1753 1754 /* 1755 * NOTE: it is not necessary to yield load reservations here. It is only 1756 * necessary for an SC from "another hart" to cause a load reservation 1757 * to be yielded. Refer to the memory consistency model section of the 1758 * RISC-V ISA Specification. 1759 */ 1760 1761 env->two_stage_lookup = false; 1762 env->two_stage_indirect_lookup = false; 1763 #endif 1764 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */ 1765 } 1766