xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision 340b5805)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "pmu.h"
26 #include "exec/exec-all.h"
27 #include "instmap.h"
28 #include "tcg/tcg-op.h"
29 #include "trace.h"
30 #include "semihosting/common-semi.h"
31 #include "sysemu/cpu-timers.h"
32 #include "cpu_bits.h"
33 #include "debug.h"
34 
35 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
36 {
37 #ifdef CONFIG_USER_ONLY
38     return 0;
39 #else
40     if (ifetch) {
41         return env->priv;
42     }
43 
44     /* All priv -> mmu_idx mapping are here */
45     int mode = env->priv;
46     if (mode == PRV_M && get_field(env->mstatus, MSTATUS_MPRV)) {
47         mode = get_field(env->mstatus, MSTATUS_MPP);
48     }
49     if (mode == PRV_S && get_field(env->mstatus, MSTATUS_SUM)) {
50         return MMUIdx_S_SUM;
51     }
52     return mode;
53 #endif
54 }
55 
56 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
57                           target_ulong *cs_base, uint32_t *pflags)
58 {
59     CPUState *cs = env_cpu(env);
60     RISCVCPU *cpu = RISCV_CPU(cs);
61     RISCVExtStatus fs, vs;
62     uint32_t flags = 0;
63 
64     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
65     *cs_base = 0;
66 
67     if (cpu->cfg.ext_zve32f) {
68         /*
69          * If env->vl equals to VLMAX, we can use generic vector operation
70          * expanders (GVEC) to accerlate the vector operations.
71          * However, as LMUL could be a fractional number. The maximum
72          * vector size can be operated might be less than 8 bytes,
73          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
74          * only when maxsz >= 8 bytes.
75          */
76         uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
77         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
78         uint32_t maxsz = vlmax << sew;
79         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
80                            (maxsz >= 8);
81         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
82         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
83         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
84                            FIELD_EX64(env->vtype, VTYPE, VLMUL));
85         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
86         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
87                            FIELD_EX64(env->vtype, VTYPE, VTA));
88         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
89                            FIELD_EX64(env->vtype, VTYPE, VMA));
90         flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
91     } else {
92         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
93     }
94 
95 #ifdef CONFIG_USER_ONLY
96     fs = EXT_STATUS_DIRTY;
97     vs = EXT_STATUS_DIRTY;
98 #else
99     flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
100 
101     flags |= cpu_mmu_index(env, 0);
102     fs = get_field(env->mstatus, MSTATUS_FS);
103     vs = get_field(env->mstatus, MSTATUS_VS);
104 
105     if (env->virt_enabled) {
106         flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
107         /*
108          * Merge DISABLED and !DIRTY states using MIN.
109          * We will set both fields when dirtying.
110          */
111         fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
112         vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
113     }
114 
115     if (cpu->cfg.debug && !icount_enabled()) {
116         flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
117     }
118 #endif
119 
120     flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
121     flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
122     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
123     if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
124         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
125     }
126     if (env->cur_pmbase != 0) {
127         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
128     }
129 
130     *pflags = flags;
131 }
132 
133 void riscv_cpu_update_mask(CPURISCVState *env)
134 {
135     target_ulong mask = -1, base = 0;
136     /*
137      * TODO: Current RVJ spec does not specify
138      * how the extension interacts with XLEN.
139      */
140 #ifndef CONFIG_USER_ONLY
141     if (riscv_has_ext(env, RVJ)) {
142         switch (env->priv) {
143         case PRV_M:
144             if (env->mmte & M_PM_ENABLE) {
145                 mask = env->mpmmask;
146                 base = env->mpmbase;
147             }
148             break;
149         case PRV_S:
150             if (env->mmte & S_PM_ENABLE) {
151                 mask = env->spmmask;
152                 base = env->spmbase;
153             }
154             break;
155         case PRV_U:
156             if (env->mmte & U_PM_ENABLE) {
157                 mask = env->upmmask;
158                 base = env->upmbase;
159             }
160             break;
161         default:
162             g_assert_not_reached();
163         }
164     }
165 #endif
166     if (env->xl == MXL_RV32) {
167         env->cur_pmmask = mask & UINT32_MAX;
168         env->cur_pmbase = base & UINT32_MAX;
169     } else {
170         env->cur_pmmask = mask;
171         env->cur_pmbase = base;
172     }
173 }
174 
175 #ifndef CONFIG_USER_ONLY
176 
177 /*
178  * The HS-mode is allowed to configure priority only for the
179  * following VS-mode local interrupts:
180  *
181  * 0  (Reserved interrupt, reads as zero)
182  * 1  Supervisor software interrupt
183  * 4  (Reserved interrupt, reads as zero)
184  * 5  Supervisor timer interrupt
185  * 8  (Reserved interrupt, reads as zero)
186  * 13 (Reserved interrupt)
187  * 14 "
188  * 15 "
189  * 16 "
190  * 17 "
191  * 18 "
192  * 19 "
193  * 20 "
194  * 21 "
195  * 22 "
196  * 23 "
197  */
198 
199 static const int hviprio_index2irq[] = {
200     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
201 static const int hviprio_index2rdzero[] = {
202     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
203 
204 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
205 {
206     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
207         return -EINVAL;
208     }
209 
210     if (out_irq) {
211         *out_irq = hviprio_index2irq[index];
212     }
213 
214     if (out_rdzero) {
215         *out_rdzero = hviprio_index2rdzero[index];
216     }
217 
218     return 0;
219 }
220 
221 /*
222  * Default priorities of local interrupts are defined in the
223  * RISC-V Advanced Interrupt Architecture specification.
224  *
225  * ----------------------------------------------------------------
226  *  Default  |
227  *  Priority | Major Interrupt Numbers
228  * ----------------------------------------------------------------
229  *  Highest  | 47, 23, 46, 45, 22, 44,
230  *           | 43, 21, 42, 41, 20, 40
231  *           |
232  *           | 11 (0b),  3 (03),  7 (07)
233  *           |  9 (09),  1 (01),  5 (05)
234  *           | 12 (0c)
235  *           | 10 (0a),  2 (02),  6 (06)
236  *           |
237  *           | 39, 19, 38, 37, 18, 36,
238  *  Lowest   | 35, 17, 34, 33, 16, 32
239  * ----------------------------------------------------------------
240  */
241 static const uint8_t default_iprio[64] = {
242     /* Custom interrupts 48 to 63 */
243     [63] = IPRIO_MMAXIPRIO,
244     [62] = IPRIO_MMAXIPRIO,
245     [61] = IPRIO_MMAXIPRIO,
246     [60] = IPRIO_MMAXIPRIO,
247     [59] = IPRIO_MMAXIPRIO,
248     [58] = IPRIO_MMAXIPRIO,
249     [57] = IPRIO_MMAXIPRIO,
250     [56] = IPRIO_MMAXIPRIO,
251     [55] = IPRIO_MMAXIPRIO,
252     [54] = IPRIO_MMAXIPRIO,
253     [53] = IPRIO_MMAXIPRIO,
254     [52] = IPRIO_MMAXIPRIO,
255     [51] = IPRIO_MMAXIPRIO,
256     [50] = IPRIO_MMAXIPRIO,
257     [49] = IPRIO_MMAXIPRIO,
258     [48] = IPRIO_MMAXIPRIO,
259 
260     /* Custom interrupts 24 to 31 */
261     [31] = IPRIO_MMAXIPRIO,
262     [30] = IPRIO_MMAXIPRIO,
263     [29] = IPRIO_MMAXIPRIO,
264     [28] = IPRIO_MMAXIPRIO,
265     [27] = IPRIO_MMAXIPRIO,
266     [26] = IPRIO_MMAXIPRIO,
267     [25] = IPRIO_MMAXIPRIO,
268     [24] = IPRIO_MMAXIPRIO,
269 
270     [47] = IPRIO_DEFAULT_UPPER,
271     [23] = IPRIO_DEFAULT_UPPER + 1,
272     [46] = IPRIO_DEFAULT_UPPER + 2,
273     [45] = IPRIO_DEFAULT_UPPER + 3,
274     [22] = IPRIO_DEFAULT_UPPER + 4,
275     [44] = IPRIO_DEFAULT_UPPER + 5,
276 
277     [43] = IPRIO_DEFAULT_UPPER + 6,
278     [21] = IPRIO_DEFAULT_UPPER + 7,
279     [42] = IPRIO_DEFAULT_UPPER + 8,
280     [41] = IPRIO_DEFAULT_UPPER + 9,
281     [20] = IPRIO_DEFAULT_UPPER + 10,
282     [40] = IPRIO_DEFAULT_UPPER + 11,
283 
284     [11] = IPRIO_DEFAULT_M,
285     [3]  = IPRIO_DEFAULT_M + 1,
286     [7]  = IPRIO_DEFAULT_M + 2,
287 
288     [9]  = IPRIO_DEFAULT_S,
289     [1]  = IPRIO_DEFAULT_S + 1,
290     [5]  = IPRIO_DEFAULT_S + 2,
291 
292     [12] = IPRIO_DEFAULT_SGEXT,
293 
294     [10] = IPRIO_DEFAULT_VS,
295     [2]  = IPRIO_DEFAULT_VS + 1,
296     [6]  = IPRIO_DEFAULT_VS + 2,
297 
298     [39] = IPRIO_DEFAULT_LOWER,
299     [19] = IPRIO_DEFAULT_LOWER + 1,
300     [38] = IPRIO_DEFAULT_LOWER + 2,
301     [37] = IPRIO_DEFAULT_LOWER + 3,
302     [18] = IPRIO_DEFAULT_LOWER + 4,
303     [36] = IPRIO_DEFAULT_LOWER + 5,
304 
305     [35] = IPRIO_DEFAULT_LOWER + 6,
306     [17] = IPRIO_DEFAULT_LOWER + 7,
307     [34] = IPRIO_DEFAULT_LOWER + 8,
308     [33] = IPRIO_DEFAULT_LOWER + 9,
309     [16] = IPRIO_DEFAULT_LOWER + 10,
310     [32] = IPRIO_DEFAULT_LOWER + 11,
311 };
312 
313 uint8_t riscv_cpu_default_priority(int irq)
314 {
315     if (irq < 0 || irq > 63) {
316         return IPRIO_MMAXIPRIO;
317     }
318 
319     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
320 };
321 
322 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
323                                     int extirq, unsigned int extirq_def_prio,
324                                     uint64_t pending, uint8_t *iprio)
325 {
326     int irq, best_irq = RISCV_EXCP_NONE;
327     unsigned int prio, best_prio = UINT_MAX;
328 
329     if (!pending) {
330         return RISCV_EXCP_NONE;
331     }
332 
333     irq = ctz64(pending);
334     if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
335                                   riscv_cpu_cfg(env)->ext_ssaia)) {
336         return irq;
337     }
338 
339     pending = pending >> irq;
340     while (pending) {
341         prio = iprio[irq];
342         if (!prio) {
343             if (irq == extirq) {
344                 prio = extirq_def_prio;
345             } else {
346                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
347                        1 : IPRIO_MMAXIPRIO;
348             }
349         }
350         if ((pending & 0x1) && (prio <= best_prio)) {
351             best_irq = irq;
352             best_prio = prio;
353         }
354         irq++;
355         pending = pending >> 1;
356     }
357 
358     return best_irq;
359 }
360 
361 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
362 {
363     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
364     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
365     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
366 
367     return (env->mip | vsgein | vstip) & env->mie;
368 }
369 
370 int riscv_cpu_mirq_pending(CPURISCVState *env)
371 {
372     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
373                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
374 
375     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
376                                     irqs, env->miprio);
377 }
378 
379 int riscv_cpu_sirq_pending(CPURISCVState *env)
380 {
381     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
382                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
383 
384     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
385                                     irqs, env->siprio);
386 }
387 
388 int riscv_cpu_vsirq_pending(CPURISCVState *env)
389 {
390     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
391                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
392 
393     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
394                                     irqs >> 1, env->hviprio);
395 }
396 
397 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
398 {
399     int virq;
400     uint64_t irqs, pending, mie, hsie, vsie;
401 
402     /* Determine interrupt enable state of all privilege modes */
403     if (env->virt_enabled) {
404         mie = 1;
405         hsie = 1;
406         vsie = (env->priv < PRV_S) ||
407                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
408     } else {
409         mie = (env->priv < PRV_M) ||
410               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
411         hsie = (env->priv < PRV_S) ||
412                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
413         vsie = 0;
414     }
415 
416     /* Determine all pending interrupts */
417     pending = riscv_cpu_all_pending(env);
418 
419     /* Check M-mode interrupts */
420     irqs = pending & ~env->mideleg & -mie;
421     if (irqs) {
422         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
423                                         irqs, env->miprio);
424     }
425 
426     /* Check HS-mode interrupts */
427     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
428     if (irqs) {
429         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
430                                         irqs, env->siprio);
431     }
432 
433     /* Check VS-mode interrupts */
434     irqs = pending & env->mideleg & env->hideleg & -vsie;
435     if (irqs) {
436         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
437                                         irqs >> 1, env->hviprio);
438         return (virq <= 0) ? virq : virq + 1;
439     }
440 
441     /* Indicate no pending interrupt */
442     return RISCV_EXCP_NONE;
443 }
444 
445 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
446 {
447     if (interrupt_request & CPU_INTERRUPT_HARD) {
448         RISCVCPU *cpu = RISCV_CPU(cs);
449         CPURISCVState *env = &cpu->env;
450         int interruptno = riscv_cpu_local_irq_pending(env);
451         if (interruptno >= 0) {
452             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
453             riscv_cpu_do_interrupt(cs);
454             return true;
455         }
456     }
457     return false;
458 }
459 
460 /* Return true is floating point support is currently enabled */
461 bool riscv_cpu_fp_enabled(CPURISCVState *env)
462 {
463     if (env->mstatus & MSTATUS_FS) {
464         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
465             return false;
466         }
467         return true;
468     }
469 
470     return false;
471 }
472 
473 /* Return true is vector support is currently enabled */
474 bool riscv_cpu_vector_enabled(CPURISCVState *env)
475 {
476     if (env->mstatus & MSTATUS_VS) {
477         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
478             return false;
479         }
480         return true;
481     }
482 
483     return false;
484 }
485 
486 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
487 {
488     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
489                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
490                             MSTATUS64_UXL | MSTATUS_VS;
491 
492     if (riscv_has_ext(env, RVF)) {
493         mstatus_mask |= MSTATUS_FS;
494     }
495     bool current_virt = env->virt_enabled;
496 
497     g_assert(riscv_has_ext(env, RVH));
498 
499     if (current_virt) {
500         /* Current V=1 and we are about to change to V=0 */
501         env->vsstatus = env->mstatus & mstatus_mask;
502         env->mstatus &= ~mstatus_mask;
503         env->mstatus |= env->mstatus_hs;
504 
505         env->vstvec = env->stvec;
506         env->stvec = env->stvec_hs;
507 
508         env->vsscratch = env->sscratch;
509         env->sscratch = env->sscratch_hs;
510 
511         env->vsepc = env->sepc;
512         env->sepc = env->sepc_hs;
513 
514         env->vscause = env->scause;
515         env->scause = env->scause_hs;
516 
517         env->vstval = env->stval;
518         env->stval = env->stval_hs;
519 
520         env->vsatp = env->satp;
521         env->satp = env->satp_hs;
522     } else {
523         /* Current V=0 and we are about to change to V=1 */
524         env->mstatus_hs = env->mstatus & mstatus_mask;
525         env->mstatus &= ~mstatus_mask;
526         env->mstatus |= env->vsstatus;
527 
528         env->stvec_hs = env->stvec;
529         env->stvec = env->vstvec;
530 
531         env->sscratch_hs = env->sscratch;
532         env->sscratch = env->vsscratch;
533 
534         env->sepc_hs = env->sepc;
535         env->sepc = env->vsepc;
536 
537         env->scause_hs = env->scause;
538         env->scause = env->vscause;
539 
540         env->stval_hs = env->stval;
541         env->stval = env->vstval;
542 
543         env->satp_hs = env->satp;
544         env->satp = env->vsatp;
545     }
546 }
547 
548 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
549 {
550     if (!riscv_has_ext(env, RVH)) {
551         return 0;
552     }
553 
554     return env->geilen;
555 }
556 
557 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
558 {
559     if (!riscv_has_ext(env, RVH)) {
560         return;
561     }
562 
563     if (geilen > (TARGET_LONG_BITS - 1)) {
564         return;
565     }
566 
567     env->geilen = geilen;
568 }
569 
570 /* This function can only be called to set virt when RVH is enabled */
571 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
572 {
573     /* Flush the TLB on all virt mode changes. */
574     if (env->virt_enabled != enable) {
575         tlb_flush(env_cpu(env));
576     }
577 
578     env->virt_enabled = enable;
579 
580     if (enable) {
581         /*
582          * The guest external interrupts from an interrupt controller are
583          * delivered only when the Guest/VM is running (i.e. V=1). This means
584          * any guest external interrupt which is triggered while the Guest/VM
585          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
586          * with sluggish response to serial console input and other I/O events.
587          *
588          * To solve this, we check and inject interrupt after setting V=1.
589          */
590         riscv_cpu_update_mip(env, 0, 0);
591     }
592 }
593 
594 bool riscv_cpu_two_stage_lookup(int mmu_idx)
595 {
596     return mmu_idx & MMU_2STAGE_BIT;
597 }
598 
599 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
600 {
601     CPURISCVState *env = &cpu->env;
602     if (env->miclaim & interrupts) {
603         return -1;
604     } else {
605         env->miclaim |= interrupts;
606         return 0;
607     }
608 }
609 
610 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
611                               uint64_t value)
612 {
613     CPUState *cs = env_cpu(env);
614     uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
615 
616     if (env->virt_enabled) {
617         gein = get_field(env->hstatus, HSTATUS_VGEIN);
618         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
619     }
620 
621     vstip = env->vstime_irq ? MIP_VSTIP : 0;
622 
623     QEMU_IOTHREAD_LOCK_GUARD();
624 
625     env->mip = (env->mip & ~mask) | (value & mask);
626 
627     if (env->mip | vsgein | vstip) {
628         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
629     } else {
630         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
631     }
632 
633     return old;
634 }
635 
636 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
637                              void *arg)
638 {
639     env->rdtime_fn = fn;
640     env->rdtime_fn_arg = arg;
641 }
642 
643 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
644                                    int (*rmw_fn)(void *arg,
645                                                  target_ulong reg,
646                                                  target_ulong *val,
647                                                  target_ulong new_val,
648                                                  target_ulong write_mask),
649                                    void *rmw_fn_arg)
650 {
651     if (priv <= PRV_M) {
652         env->aia_ireg_rmw_fn[priv] = rmw_fn;
653         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
654     }
655 }
656 
657 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
658 {
659     g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
660 
661     if (icount_enabled() && newpriv != env->priv) {
662         riscv_itrigger_update_priv(env);
663     }
664     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
665     env->priv = newpriv;
666     env->xl = cpu_recompute_xl(env);
667     riscv_cpu_update_mask(env);
668 
669     /*
670      * Clear the load reservation - otherwise a reservation placed in one
671      * context/process can be used by another, resulting in an SC succeeding
672      * incorrectly. Version 2.2 of the ISA specification explicitly requires
673      * this behaviour, while later revisions say that the kernel "should" use
674      * an SC instruction to force the yielding of a load reservation on a
675      * preemptive context switch. As a result, do both.
676      */
677     env->load_res = -1;
678 }
679 
680 /*
681  * get_physical_address_pmp - check PMP permission for this physical address
682  *
683  * Match the PMP region and check permission for this physical address and it's
684  * TLB page. Returns 0 if the permission checking was successful
685  *
686  * @env: CPURISCVState
687  * @prot: The returned protection attributes
688  * @tlb_size: TLB page size containing addr. It could be modified after PMP
689  *            permission checking. NULL if not set TLB page for addr.
690  * @addr: The physical address to be checked permission
691  * @access_type: The type of MMU access
692  * @mode: Indicates current privilege level.
693  */
694 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
695                                     target_ulong *tlb_size, hwaddr addr,
696                                     int size, MMUAccessType access_type,
697                                     int mode)
698 {
699     pmp_priv_t pmp_priv;
700     int pmp_index = -1;
701 
702     if (!riscv_cpu_cfg(env)->pmp) {
703         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
704         return TRANSLATE_SUCCESS;
705     }
706 
707     pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
708                                    &pmp_priv, mode);
709     if (pmp_index < 0) {
710         *prot = 0;
711         return TRANSLATE_PMP_FAIL;
712     }
713 
714     *prot = pmp_priv_to_page_prot(pmp_priv);
715     if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
716         target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
717         target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
718 
719         *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
720     }
721 
722     return TRANSLATE_SUCCESS;
723 }
724 
725 /*
726  * get_physical_address - get the physical address for this virtual address
727  *
728  * Do a page table walk to obtain the physical address corresponding to a
729  * virtual address. Returns 0 if the translation was successful
730  *
731  * Adapted from Spike's mmu_t::translate and mmu_t::walk
732  *
733  * @env: CPURISCVState
734  * @physical: This will be set to the calculated physical address
735  * @prot: The returned protection attributes
736  * @addr: The virtual address or guest physical address to be translated
737  * @fault_pte_addr: If not NULL, this will be set to fault pte address
738  *                  when a error occurs on pte address translation.
739  *                  This will already be shifted to match htval.
740  * @access_type: The type of MMU access
741  * @mmu_idx: Indicates current privilege level
742  * @first_stage: Are we in first stage translation?
743  *               Second stage is used for hypervisor guest translation
744  * @two_stage: Are we going to perform two stage translation
745  * @is_debug: Is this access from a debugger or the monitor?
746  */
747 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
748                                 int *prot, vaddr addr,
749                                 target_ulong *fault_pte_addr,
750                                 int access_type, int mmu_idx,
751                                 bool first_stage, bool two_stage,
752                                 bool is_debug)
753 {
754     /*
755      * NOTE: the env->pc value visible here will not be
756      * correct, but the value visible to the exception handler
757      * (riscv_cpu_do_interrupt) is correct
758      */
759     MemTxResult res;
760     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
761     int mode = mmuidx_priv(mmu_idx);
762     bool use_background = false;
763     hwaddr ppn;
764     int napot_bits = 0;
765     target_ulong napot_mask;
766 
767     /*
768      * Check if we should use the background registers for the two
769      * stage translation. We don't need to check if we actually need
770      * two stage translation as that happened before this function
771      * was called. Background registers will be used if the guest has
772      * forced a two stage translation to be on (in HS or M mode).
773      */
774     if (!env->virt_enabled && two_stage) {
775         use_background = true;
776     }
777 
778     /*
779      * MPRV does not affect the virtual-machine load/store
780      * instructions, HLV, HLVX, and HSV.
781      */
782     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
783         mode = get_field(env->hstatus, HSTATUS_SPVP);
784     }
785 
786     if (first_stage == false) {
787         /*
788          * We are in stage 2 translation, this is similar to stage 1.
789          * Stage 2 is always taken as U-mode
790          */
791         mode = PRV_U;
792     }
793 
794     if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
795         *physical = addr;
796         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
797         return TRANSLATE_SUCCESS;
798     }
799 
800     *prot = 0;
801 
802     hwaddr base;
803     int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
804 
805     if (first_stage == true) {
806         mxr = get_field(env->mstatus, MSTATUS_MXR);
807     } else {
808         mxr = get_field(env->vsstatus, MSTATUS_MXR);
809     }
810 
811     if (first_stage == true) {
812         if (use_background) {
813             if (riscv_cpu_mxl(env) == MXL_RV32) {
814                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
815                 vm = get_field(env->vsatp, SATP32_MODE);
816             } else {
817                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
818                 vm = get_field(env->vsatp, SATP64_MODE);
819             }
820         } else {
821             if (riscv_cpu_mxl(env) == MXL_RV32) {
822                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
823                 vm = get_field(env->satp, SATP32_MODE);
824             } else {
825                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
826                 vm = get_field(env->satp, SATP64_MODE);
827             }
828         }
829         widened = 0;
830     } else {
831         if (riscv_cpu_mxl(env) == MXL_RV32) {
832             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
833             vm = get_field(env->hgatp, SATP32_MODE);
834         } else {
835             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
836             vm = get_field(env->hgatp, SATP64_MODE);
837         }
838         widened = 2;
839     }
840     /* status.SUM will be ignored if execute on background */
841     sum = mmuidx_sum(mmu_idx) || use_background || is_debug;
842     switch (vm) {
843     case VM_1_10_SV32:
844       levels = 2; ptidxbits = 10; ptesize = 4; break;
845     case VM_1_10_SV39:
846       levels = 3; ptidxbits = 9; ptesize = 8; break;
847     case VM_1_10_SV48:
848       levels = 4; ptidxbits = 9; ptesize = 8; break;
849     case VM_1_10_SV57:
850       levels = 5; ptidxbits = 9; ptesize = 8; break;
851     case VM_1_10_MBARE:
852         *physical = addr;
853         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
854         return TRANSLATE_SUCCESS;
855     default:
856       g_assert_not_reached();
857     }
858 
859     CPUState *cs = env_cpu(env);
860     int va_bits = PGSHIFT + levels * ptidxbits + widened;
861     target_ulong mask, masked_msbs;
862 
863     if (TARGET_LONG_BITS > (va_bits - 1)) {
864         mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
865     } else {
866         mask = 0;
867     }
868     masked_msbs = (addr >> (va_bits - 1)) & mask;
869 
870     if (masked_msbs != 0 && masked_msbs != mask) {
871         return TRANSLATE_FAIL;
872     }
873 
874     int ptshift = (levels - 1) * ptidxbits;
875     int i;
876 
877 #if !TCG_OVERSIZED_GUEST
878 restart:
879 #endif
880     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
881         target_ulong idx;
882         if (i == 0) {
883             idx = (addr >> (PGSHIFT + ptshift)) &
884                            ((1 << (ptidxbits + widened)) - 1);
885         } else {
886             idx = (addr >> (PGSHIFT + ptshift)) &
887                            ((1 << ptidxbits) - 1);
888         }
889 
890         /* check that physical address of PTE is legal */
891         hwaddr pte_addr;
892 
893         if (two_stage && first_stage) {
894             int vbase_prot;
895             hwaddr vbase;
896 
897             /* Do the second stage translation on the base PTE address. */
898             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
899                                                  base, NULL, MMU_DATA_LOAD,
900                                                  mmu_idx, false, true,
901                                                  is_debug);
902 
903             if (vbase_ret != TRANSLATE_SUCCESS) {
904                 if (fault_pte_addr) {
905                     *fault_pte_addr = (base + idx * ptesize) >> 2;
906                 }
907                 return TRANSLATE_G_STAGE_FAIL;
908             }
909 
910             pte_addr = vbase + idx * ptesize;
911         } else {
912             pte_addr = base + idx * ptesize;
913         }
914 
915         int pmp_prot;
916         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
917                                                sizeof(target_ulong),
918                                                MMU_DATA_LOAD, PRV_S);
919         if (pmp_ret != TRANSLATE_SUCCESS) {
920             return TRANSLATE_PMP_FAIL;
921         }
922 
923         target_ulong pte;
924         if (riscv_cpu_mxl(env) == MXL_RV32) {
925             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
926         } else {
927             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
928         }
929 
930         if (res != MEMTX_OK) {
931             return TRANSLATE_FAIL;
932         }
933 
934         bool pbmte = env->menvcfg & MENVCFG_PBMTE;
935         bool hade = env->menvcfg & MENVCFG_HADE;
936 
937         if (first_stage && two_stage && env->virt_enabled) {
938             pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
939             hade = hade && (env->henvcfg & HENVCFG_HADE);
940         }
941 
942         if (riscv_cpu_sxl(env) == MXL_RV32) {
943             ppn = pte >> PTE_PPN_SHIFT;
944         } else if (pbmte || riscv_cpu_cfg(env)->ext_svnapot) {
945             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
946         } else {
947             ppn = pte >> PTE_PPN_SHIFT;
948             if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
949                 return TRANSLATE_FAIL;
950             }
951         }
952 
953         if (!(pte & PTE_V)) {
954             /* Invalid PTE */
955             return TRANSLATE_FAIL;
956         } else if (!pbmte && (pte & PTE_PBMT)) {
957             return TRANSLATE_FAIL;
958         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
959             /* Inner PTE, continue walking */
960             if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
961                 return TRANSLATE_FAIL;
962             }
963             base = ppn << PGSHIFT;
964         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
965             /* Reserved leaf PTE flags: PTE_W */
966             return TRANSLATE_FAIL;
967         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
968             /* Reserved leaf PTE flags: PTE_W + PTE_X */
969             return TRANSLATE_FAIL;
970         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
971                    (!sum || access_type == MMU_INST_FETCH))) {
972             /* User PTE flags when not U mode and mstatus.SUM is not set,
973                or the access type is an instruction fetch */
974             return TRANSLATE_FAIL;
975         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
976             /* Supervisor PTE flags when not S mode */
977             return TRANSLATE_FAIL;
978         } else if (ppn & ((1ULL << ptshift) - 1)) {
979             /* Misaligned PPN */
980             return TRANSLATE_FAIL;
981         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
982                    ((pte & PTE_X) && mxr))) {
983             /* Read access check failed */
984             return TRANSLATE_FAIL;
985         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
986             /* Write access check failed */
987             return TRANSLATE_FAIL;
988         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
989             /* Fetch access check failed */
990             return TRANSLATE_FAIL;
991         } else {
992             /* if necessary, set accessed and dirty bits. */
993             target_ulong updated_pte = pte | PTE_A |
994                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
995 
996             /* Page table updates need to be atomic with MTTCG enabled */
997             if (updated_pte != pte) {
998                 if (!hade) {
999                     return TRANSLATE_FAIL;
1000                 }
1001 
1002                 /*
1003                  * - if accessed or dirty bits need updating, and the PTE is
1004                  *   in RAM, then we do so atomically with a compare and swap.
1005                  * - if the PTE is in IO space or ROM, then it can't be updated
1006                  *   and we return TRANSLATE_FAIL.
1007                  * - if the PTE changed by the time we went to update it, then
1008                  *   it is no longer valid and we must re-walk the page table.
1009                  */
1010                 MemoryRegion *mr;
1011                 hwaddr l = sizeof(target_ulong), addr1;
1012                 mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1013                                              false, MEMTXATTRS_UNSPECIFIED);
1014                 if (memory_region_is_ram(mr)) {
1015                     target_ulong *pte_pa =
1016                         qemu_map_ram_ptr(mr->ram_block, addr1);
1017 #if TCG_OVERSIZED_GUEST
1018                     /*
1019                      * MTTCG is not enabled on oversized TCG guests so
1020                      * page table updates do not need to be atomic
1021                      */
1022                     *pte_pa = pte = updated_pte;
1023 #else
1024                     target_ulong old_pte =
1025                         qatomic_cmpxchg(pte_pa, pte, updated_pte);
1026                     if (old_pte != pte) {
1027                         goto restart;
1028                     } else {
1029                         pte = updated_pte;
1030                     }
1031 #endif
1032                 } else {
1033                     /*
1034                      * misconfigured PTE in ROM (AD bits are not preset) or
1035                      * PTE is in IO space and can't be updated atomically
1036                      */
1037                     return TRANSLATE_FAIL;
1038                 }
1039             }
1040 
1041             /*
1042              * for superpage mappings, make a fake leaf PTE for the TLB's
1043              * benefit.
1044              */
1045             target_ulong vpn = addr >> PGSHIFT;
1046 
1047             if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1048                 napot_bits = ctzl(ppn) + 1;
1049                 if ((i != (levels - 1)) || (napot_bits != 4)) {
1050                     return TRANSLATE_FAIL;
1051                 }
1052             }
1053 
1054             napot_mask = (1 << napot_bits) - 1;
1055             *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1056                           (vpn & (((target_ulong)1 << ptshift) - 1))
1057                          ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1058 
1059             /* set permissions on the TLB entry */
1060             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
1061                 *prot |= PAGE_READ;
1062             }
1063             if (pte & PTE_X) {
1064                 *prot |= PAGE_EXEC;
1065             }
1066             /*
1067              * add write permission on stores or if the page is already dirty,
1068              * so that we TLB miss on later writes to update the dirty bit
1069              */
1070             if ((pte & PTE_W) &&
1071                 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1072                 *prot |= PAGE_WRITE;
1073             }
1074             return TRANSLATE_SUCCESS;
1075         }
1076     }
1077     return TRANSLATE_FAIL;
1078 }
1079 
1080 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1081                                 MMUAccessType access_type, bool pmp_violation,
1082                                 bool first_stage, bool two_stage,
1083                                 bool two_stage_indirect)
1084 {
1085     CPUState *cs = env_cpu(env);
1086     int page_fault_exceptions, vm;
1087     uint64_t stap_mode;
1088 
1089     if (riscv_cpu_mxl(env) == MXL_RV32) {
1090         stap_mode = SATP32_MODE;
1091     } else {
1092         stap_mode = SATP64_MODE;
1093     }
1094 
1095     if (first_stage) {
1096         vm = get_field(env->satp, stap_mode);
1097     } else {
1098         vm = get_field(env->hgatp, stap_mode);
1099     }
1100 
1101     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1102 
1103     switch (access_type) {
1104     case MMU_INST_FETCH:
1105         if (env->virt_enabled && !first_stage) {
1106             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1107         } else {
1108             cs->exception_index = page_fault_exceptions ?
1109                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1110         }
1111         break;
1112     case MMU_DATA_LOAD:
1113         if (two_stage && !first_stage) {
1114             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1115         } else {
1116             cs->exception_index = page_fault_exceptions ?
1117                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1118         }
1119         break;
1120     case MMU_DATA_STORE:
1121         if (two_stage && !first_stage) {
1122             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1123         } else {
1124             cs->exception_index = page_fault_exceptions ?
1125                 RISCV_EXCP_STORE_PAGE_FAULT :
1126                 RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1127         }
1128         break;
1129     default:
1130         g_assert_not_reached();
1131     }
1132     env->badaddr = address;
1133     env->two_stage_lookup = two_stage;
1134     env->two_stage_indirect_lookup = two_stage_indirect;
1135 }
1136 
1137 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1138 {
1139     RISCVCPU *cpu = RISCV_CPU(cs);
1140     CPURISCVState *env = &cpu->env;
1141     hwaddr phys_addr;
1142     int prot;
1143     int mmu_idx = cpu_mmu_index(&cpu->env, false);
1144 
1145     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1146                              true, env->virt_enabled, true)) {
1147         return -1;
1148     }
1149 
1150     if (env->virt_enabled) {
1151         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1152                                  0, mmu_idx, false, true, true)) {
1153             return -1;
1154         }
1155     }
1156 
1157     return phys_addr & TARGET_PAGE_MASK;
1158 }
1159 
1160 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1161                                      vaddr addr, unsigned size,
1162                                      MMUAccessType access_type,
1163                                      int mmu_idx, MemTxAttrs attrs,
1164                                      MemTxResult response, uintptr_t retaddr)
1165 {
1166     RISCVCPU *cpu = RISCV_CPU(cs);
1167     CPURISCVState *env = &cpu->env;
1168 
1169     if (access_type == MMU_DATA_STORE) {
1170         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1171     } else if (access_type == MMU_DATA_LOAD) {
1172         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1173     } else {
1174         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1175     }
1176 
1177     env->badaddr = addr;
1178     env->two_stage_lookup = env->virt_enabled ||
1179                             riscv_cpu_two_stage_lookup(mmu_idx);
1180     env->two_stage_indirect_lookup = false;
1181     cpu_loop_exit_restore(cs, retaddr);
1182 }
1183 
1184 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1185                                    MMUAccessType access_type, int mmu_idx,
1186                                    uintptr_t retaddr)
1187 {
1188     RISCVCPU *cpu = RISCV_CPU(cs);
1189     CPURISCVState *env = &cpu->env;
1190     switch (access_type) {
1191     case MMU_INST_FETCH:
1192         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1193         break;
1194     case MMU_DATA_LOAD:
1195         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1196         break;
1197     case MMU_DATA_STORE:
1198         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1199         break;
1200     default:
1201         g_assert_not_reached();
1202     }
1203     env->badaddr = addr;
1204     env->two_stage_lookup = env->virt_enabled ||
1205                             riscv_cpu_two_stage_lookup(mmu_idx);
1206     env->two_stage_indirect_lookup = false;
1207     cpu_loop_exit_restore(cs, retaddr);
1208 }
1209 
1210 
1211 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1212 {
1213     enum riscv_pmu_event_idx pmu_event_type;
1214 
1215     switch (access_type) {
1216     case MMU_INST_FETCH:
1217         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1218         break;
1219     case MMU_DATA_LOAD:
1220         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1221         break;
1222     case MMU_DATA_STORE:
1223         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1224         break;
1225     default:
1226         return;
1227     }
1228 
1229     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1230 }
1231 
1232 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1233                         MMUAccessType access_type, int mmu_idx,
1234                         bool probe, uintptr_t retaddr)
1235 {
1236     RISCVCPU *cpu = RISCV_CPU(cs);
1237     CPURISCVState *env = &cpu->env;
1238     vaddr im_address;
1239     hwaddr pa = 0;
1240     int prot, prot2, prot_pmp;
1241     bool pmp_violation = false;
1242     bool first_stage_error = true;
1243     bool two_stage_lookup = false;
1244     bool two_stage_indirect_error = false;
1245     int ret = TRANSLATE_FAIL;
1246     int mode = mmu_idx;
1247     /* default TLB page size */
1248     target_ulong tlb_size = TARGET_PAGE_SIZE;
1249 
1250     env->guest_phys_fault_addr = 0;
1251 
1252     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1253                   __func__, address, access_type, mmu_idx);
1254 
1255     /*
1256      * MPRV does not affect the virtual-machine load/store
1257      * instructions, HLV, HLVX, and HSV.
1258      */
1259     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1260         mode = get_field(env->hstatus, HSTATUS_SPVP);
1261     } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1262                get_field(env->mstatus, MSTATUS_MPRV)) {
1263         mode = get_field(env->mstatus, MSTATUS_MPP);
1264         if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1265             two_stage_lookup = true;
1266         }
1267     }
1268 
1269     pmu_tlb_fill_incr_ctr(cpu, access_type);
1270     if (env->virt_enabled ||
1271         ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1272          access_type != MMU_INST_FETCH)) {
1273         /* Two stage lookup */
1274         ret = get_physical_address(env, &pa, &prot, address,
1275                                    &env->guest_phys_fault_addr, access_type,
1276                                    mmu_idx, true, true, false);
1277 
1278         /*
1279          * A G-stage exception may be triggered during two state lookup.
1280          * And the env->guest_phys_fault_addr has already been set in
1281          * get_physical_address().
1282          */
1283         if (ret == TRANSLATE_G_STAGE_FAIL) {
1284             first_stage_error = false;
1285             two_stage_indirect_error = true;
1286             access_type = MMU_DATA_LOAD;
1287         }
1288 
1289         qemu_log_mask(CPU_LOG_MMU,
1290                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1291                       HWADDR_FMT_plx " prot %d\n",
1292                       __func__, address, ret, pa, prot);
1293 
1294         if (ret == TRANSLATE_SUCCESS) {
1295             /* Second stage lookup */
1296             im_address = pa;
1297 
1298             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1299                                        access_type, mmu_idx, false, true,
1300                                        false);
1301 
1302             qemu_log_mask(CPU_LOG_MMU,
1303                           "%s 2nd-stage address=%" VADDR_PRIx
1304                           " ret %d physical "
1305                           HWADDR_FMT_plx " prot %d\n",
1306                           __func__, im_address, ret, pa, prot2);
1307 
1308             prot &= prot2;
1309 
1310             if (ret == TRANSLATE_SUCCESS) {
1311                 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1312                                                size, access_type, mode);
1313 
1314                 qemu_log_mask(CPU_LOG_MMU,
1315                               "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1316                               " %d tlb_size " TARGET_FMT_lu "\n",
1317                               __func__, pa, ret, prot_pmp, tlb_size);
1318 
1319                 prot &= prot_pmp;
1320             }
1321 
1322             if (ret != TRANSLATE_SUCCESS) {
1323                 /*
1324                  * Guest physical address translation failed, this is a HS
1325                  * level exception
1326                  */
1327                 first_stage_error = false;
1328                 env->guest_phys_fault_addr = (im_address |
1329                                               (address &
1330                                                (TARGET_PAGE_SIZE - 1))) >> 2;
1331             }
1332         }
1333     } else {
1334         /* Single stage lookup */
1335         ret = get_physical_address(env, &pa, &prot, address, NULL,
1336                                    access_type, mmu_idx, true, false, false);
1337 
1338         qemu_log_mask(CPU_LOG_MMU,
1339                       "%s address=%" VADDR_PRIx " ret %d physical "
1340                       HWADDR_FMT_plx " prot %d\n",
1341                       __func__, address, ret, pa, prot);
1342 
1343         if (ret == TRANSLATE_SUCCESS) {
1344             ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1345                                            size, access_type, mode);
1346 
1347             qemu_log_mask(CPU_LOG_MMU,
1348                           "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1349                           " %d tlb_size " TARGET_FMT_lu "\n",
1350                           __func__, pa, ret, prot_pmp, tlb_size);
1351 
1352             prot &= prot_pmp;
1353         }
1354     }
1355 
1356     if (ret == TRANSLATE_PMP_FAIL) {
1357         pmp_violation = true;
1358     }
1359 
1360     if (ret == TRANSLATE_SUCCESS) {
1361         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1362                      prot, mmu_idx, tlb_size);
1363         return true;
1364     } else if (probe) {
1365         return false;
1366     } else {
1367         raise_mmu_exception(env, address, access_type, pmp_violation,
1368                             first_stage_error,
1369                             env->virt_enabled ||
1370                                 riscv_cpu_two_stage_lookup(mmu_idx),
1371                             two_stage_indirect_error);
1372         cpu_loop_exit_restore(cs, retaddr);
1373     }
1374 
1375     return true;
1376 }
1377 
1378 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1379                                            target_ulong insn,
1380                                            target_ulong taddr)
1381 {
1382     target_ulong xinsn = 0;
1383     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1384 
1385     /*
1386      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1387      * be uncompressed. The Quadrant 1 of RVC instruction space need
1388      * not be transformed because these instructions won't generate
1389      * any load/store trap.
1390      */
1391 
1392     if ((insn & 0x3) != 0x3) {
1393         /* Transform 16bit instruction into 32bit instruction */
1394         switch (GET_C_OP(insn)) {
1395         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1396             switch (GET_C_FUNC(insn)) {
1397             case OPC_RISC_C_FUNC_FLD_LQ:
1398                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1399                     xinsn = OPC_RISC_FLD;
1400                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1401                     access_rs1 = GET_C_RS1S(insn);
1402                     access_imm = GET_C_LD_IMM(insn);
1403                     access_size = 8;
1404                 }
1405                 break;
1406             case OPC_RISC_C_FUNC_LW: /* C.LW */
1407                 xinsn = OPC_RISC_LW;
1408                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1409                 access_rs1 = GET_C_RS1S(insn);
1410                 access_imm = GET_C_LW_IMM(insn);
1411                 access_size = 4;
1412                 break;
1413             case OPC_RISC_C_FUNC_FLW_LD:
1414                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1415                     xinsn = OPC_RISC_FLW;
1416                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1417                     access_rs1 = GET_C_RS1S(insn);
1418                     access_imm = GET_C_LW_IMM(insn);
1419                     access_size = 4;
1420                 } else { /* C.LD (RV64/RV128) */
1421                     xinsn = OPC_RISC_LD;
1422                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1423                     access_rs1 = GET_C_RS1S(insn);
1424                     access_imm = GET_C_LD_IMM(insn);
1425                     access_size = 8;
1426                 }
1427                 break;
1428             case OPC_RISC_C_FUNC_FSD_SQ:
1429                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1430                     xinsn = OPC_RISC_FSD;
1431                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1432                     access_rs1 = GET_C_RS1S(insn);
1433                     access_imm = GET_C_SD_IMM(insn);
1434                     access_size = 8;
1435                 }
1436                 break;
1437             case OPC_RISC_C_FUNC_SW: /* C.SW */
1438                 xinsn = OPC_RISC_SW;
1439                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1440                 access_rs1 = GET_C_RS1S(insn);
1441                 access_imm = GET_C_SW_IMM(insn);
1442                 access_size = 4;
1443                 break;
1444             case OPC_RISC_C_FUNC_FSW_SD:
1445                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1446                     xinsn = OPC_RISC_FSW;
1447                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1448                     access_rs1 = GET_C_RS1S(insn);
1449                     access_imm = GET_C_SW_IMM(insn);
1450                     access_size = 4;
1451                 } else { /* C.SD (RV64/RV128) */
1452                     xinsn = OPC_RISC_SD;
1453                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1454                     access_rs1 = GET_C_RS1S(insn);
1455                     access_imm = GET_C_SD_IMM(insn);
1456                     access_size = 8;
1457                 }
1458                 break;
1459             default:
1460                 break;
1461             }
1462             break;
1463         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1464             switch (GET_C_FUNC(insn)) {
1465             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1466                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1467                     xinsn = OPC_RISC_FLD;
1468                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1469                     access_rs1 = 2;
1470                     access_imm = GET_C_LDSP_IMM(insn);
1471                     access_size = 8;
1472                 }
1473                 break;
1474             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1475                 xinsn = OPC_RISC_LW;
1476                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1477                 access_rs1 = 2;
1478                 access_imm = GET_C_LWSP_IMM(insn);
1479                 access_size = 4;
1480                 break;
1481             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1482                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1483                     xinsn = OPC_RISC_FLW;
1484                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1485                     access_rs1 = 2;
1486                     access_imm = GET_C_LWSP_IMM(insn);
1487                     access_size = 4;
1488                 } else { /* C.LDSP (RV64/RV128) */
1489                     xinsn = OPC_RISC_LD;
1490                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1491                     access_rs1 = 2;
1492                     access_imm = GET_C_LDSP_IMM(insn);
1493                     access_size = 8;
1494                 }
1495                 break;
1496             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1497                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1498                     xinsn = OPC_RISC_FSD;
1499                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1500                     access_rs1 = 2;
1501                     access_imm = GET_C_SDSP_IMM(insn);
1502                     access_size = 8;
1503                 }
1504                 break;
1505             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1506                 xinsn = OPC_RISC_SW;
1507                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1508                 access_rs1 = 2;
1509                 access_imm = GET_C_SWSP_IMM(insn);
1510                 access_size = 4;
1511                 break;
1512             case 7:
1513                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1514                     xinsn = OPC_RISC_FSW;
1515                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1516                     access_rs1 = 2;
1517                     access_imm = GET_C_SWSP_IMM(insn);
1518                     access_size = 4;
1519                 } else { /* C.SDSP (RV64/RV128) */
1520                     xinsn = OPC_RISC_SD;
1521                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1522                     access_rs1 = 2;
1523                     access_imm = GET_C_SDSP_IMM(insn);
1524                     access_size = 8;
1525                 }
1526                 break;
1527             default:
1528                 break;
1529             }
1530             break;
1531         default:
1532             break;
1533         }
1534 
1535         /*
1536          * Clear Bit1 of transformed instruction to indicate that
1537          * original insruction was a 16bit instruction
1538          */
1539         xinsn &= ~((target_ulong)0x2);
1540     } else {
1541         /* Transform 32bit (or wider) instructions */
1542         switch (MASK_OP_MAJOR(insn)) {
1543         case OPC_RISC_ATOMIC:
1544             xinsn = insn;
1545             access_rs1 = GET_RS1(insn);
1546             access_size = 1 << GET_FUNCT3(insn);
1547             break;
1548         case OPC_RISC_LOAD:
1549         case OPC_RISC_FP_LOAD:
1550             xinsn = SET_I_IMM(insn, 0);
1551             access_rs1 = GET_RS1(insn);
1552             access_imm = GET_IMM(insn);
1553             access_size = 1 << GET_FUNCT3(insn);
1554             break;
1555         case OPC_RISC_STORE:
1556         case OPC_RISC_FP_STORE:
1557             xinsn = SET_S_IMM(insn, 0);
1558             access_rs1 = GET_RS1(insn);
1559             access_imm = GET_STORE_IMM(insn);
1560             access_size = 1 << GET_FUNCT3(insn);
1561             break;
1562         case OPC_RISC_SYSTEM:
1563             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1564                 xinsn = insn;
1565                 access_rs1 = GET_RS1(insn);
1566                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1567                 access_size = 1 << access_size;
1568             }
1569             break;
1570         default:
1571             break;
1572         }
1573     }
1574 
1575     if (access_size) {
1576         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1577                                (access_size - 1));
1578     }
1579 
1580     return xinsn;
1581 }
1582 #endif /* !CONFIG_USER_ONLY */
1583 
1584 /*
1585  * Handle Traps
1586  *
1587  * Adapted from Spike's processor_t::take_trap.
1588  *
1589  */
1590 void riscv_cpu_do_interrupt(CPUState *cs)
1591 {
1592 #if !defined(CONFIG_USER_ONLY)
1593 
1594     RISCVCPU *cpu = RISCV_CPU(cs);
1595     CPURISCVState *env = &cpu->env;
1596     bool write_gva = false;
1597     uint64_t s;
1598 
1599     /*
1600      * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1601      * so we mask off the MSB and separate into trap type and cause.
1602      */
1603     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1604     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1605     uint64_t deleg = async ? env->mideleg : env->medeleg;
1606     target_ulong tval = 0;
1607     target_ulong tinst = 0;
1608     target_ulong htval = 0;
1609     target_ulong mtval2 = 0;
1610 
1611     if  (cause == RISCV_EXCP_SEMIHOST) {
1612         do_common_semihosting(cs);
1613         env->pc += 4;
1614         return;
1615     }
1616 
1617     if (!async) {
1618         /* set tval to badaddr for traps with address information */
1619         switch (cause) {
1620         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1621         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1622         case RISCV_EXCP_LOAD_ADDR_MIS:
1623         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1624         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1625         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1626         case RISCV_EXCP_LOAD_PAGE_FAULT:
1627         case RISCV_EXCP_STORE_PAGE_FAULT:
1628             write_gva = env->two_stage_lookup;
1629             tval = env->badaddr;
1630             if (env->two_stage_indirect_lookup) {
1631                 /*
1632                  * special pseudoinstruction for G-stage fault taken while
1633                  * doing VS-stage page table walk.
1634                  */
1635                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1636             } else {
1637                 /*
1638                  * The "Addr. Offset" field in transformed instruction is
1639                  * non-zero only for misaligned access.
1640                  */
1641                 tinst = riscv_transformed_insn(env, env->bins, tval);
1642             }
1643             break;
1644         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1645         case RISCV_EXCP_INST_ADDR_MIS:
1646         case RISCV_EXCP_INST_ACCESS_FAULT:
1647         case RISCV_EXCP_INST_PAGE_FAULT:
1648             write_gva = env->two_stage_lookup;
1649             tval = env->badaddr;
1650             if (env->two_stage_indirect_lookup) {
1651                 /*
1652                  * special pseudoinstruction for G-stage fault taken while
1653                  * doing VS-stage page table walk.
1654                  */
1655                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1656             }
1657             break;
1658         case RISCV_EXCP_ILLEGAL_INST:
1659         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1660             tval = env->bins;
1661             break;
1662         case RISCV_EXCP_BREAKPOINT:
1663             if (cs->watchpoint_hit) {
1664                 tval = cs->watchpoint_hit->hitaddr;
1665                 cs->watchpoint_hit = NULL;
1666             }
1667             break;
1668         default:
1669             break;
1670         }
1671         /* ecall is dispatched as one cause so translate based on mode */
1672         if (cause == RISCV_EXCP_U_ECALL) {
1673             assert(env->priv <= 3);
1674 
1675             if (env->priv == PRV_M) {
1676                 cause = RISCV_EXCP_M_ECALL;
1677             } else if (env->priv == PRV_S && env->virt_enabled) {
1678                 cause = RISCV_EXCP_VS_ECALL;
1679             } else if (env->priv == PRV_S && !env->virt_enabled) {
1680                 cause = RISCV_EXCP_S_ECALL;
1681             } else if (env->priv == PRV_U) {
1682                 cause = RISCV_EXCP_U_ECALL;
1683             }
1684         }
1685     }
1686 
1687     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1688                      riscv_cpu_get_trap_name(cause, async));
1689 
1690     qemu_log_mask(CPU_LOG_INT,
1691                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1692                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1693                   __func__, env->mhartid, async, cause, env->pc, tval,
1694                   riscv_cpu_get_trap_name(cause, async));
1695 
1696     if (env->priv <= PRV_S &&
1697             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1698         /* handle the trap in S-mode */
1699         if (riscv_has_ext(env, RVH)) {
1700             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1701 
1702             if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
1703                 /* Trap to VS mode */
1704                 /*
1705                  * See if we need to adjust cause. Yes if its VS mode interrupt
1706                  * no if hypervisor has delegated one of hs mode's interrupt
1707                  */
1708                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1709                     cause == IRQ_VS_EXT) {
1710                     cause = cause - 1;
1711                 }
1712                 write_gva = false;
1713             } else if (env->virt_enabled) {
1714                 /* Trap into HS mode, from virt */
1715                 riscv_cpu_swap_hypervisor_regs(env);
1716                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1717                                          env->priv);
1718                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1719 
1720                 htval = env->guest_phys_fault_addr;
1721 
1722                 riscv_cpu_set_virt_enabled(env, 0);
1723             } else {
1724                 /* Trap into HS mode */
1725                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1726                 htval = env->guest_phys_fault_addr;
1727             }
1728             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1729         }
1730 
1731         s = env->mstatus;
1732         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1733         s = set_field(s, MSTATUS_SPP, env->priv);
1734         s = set_field(s, MSTATUS_SIE, 0);
1735         env->mstatus = s;
1736         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1737         env->sepc = env->pc;
1738         env->stval = tval;
1739         env->htval = htval;
1740         env->htinst = tinst;
1741         env->pc = (env->stvec >> 2 << 2) +
1742                   ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1743         riscv_cpu_set_mode(env, PRV_S);
1744     } else {
1745         /* handle the trap in M-mode */
1746         if (riscv_has_ext(env, RVH)) {
1747             if (env->virt_enabled) {
1748                 riscv_cpu_swap_hypervisor_regs(env);
1749             }
1750             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1751                                      env->virt_enabled);
1752             if (env->virt_enabled && tval) {
1753                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1754             }
1755 
1756             mtval2 = env->guest_phys_fault_addr;
1757 
1758             /* Trapping to M mode, virt is disabled */
1759             riscv_cpu_set_virt_enabled(env, 0);
1760         }
1761 
1762         s = env->mstatus;
1763         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1764         s = set_field(s, MSTATUS_MPP, env->priv);
1765         s = set_field(s, MSTATUS_MIE, 0);
1766         env->mstatus = s;
1767         env->mcause = cause | ~(((target_ulong)-1) >> async);
1768         env->mepc = env->pc;
1769         env->mtval = tval;
1770         env->mtval2 = mtval2;
1771         env->mtinst = tinst;
1772         env->pc = (env->mtvec >> 2 << 2) +
1773                   ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1774         riscv_cpu_set_mode(env, PRV_M);
1775     }
1776 
1777     /*
1778      * NOTE: it is not necessary to yield load reservations here. It is only
1779      * necessary for an SC from "another hart" to cause a load reservation
1780      * to be yielded. Refer to the memory consistency model section of the
1781      * RISC-V ISA Specification.
1782      */
1783 
1784     env->two_stage_lookup = false;
1785     env->two_stage_indirect_lookup = false;
1786 #endif
1787     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1788 }
1789