1 /* 2 * RISC-V CPU helpers for qemu. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/main-loop.h" 23 #include "cpu.h" 24 #include "exec/exec-all.h" 25 #include "tcg/tcg-op.h" 26 #include "trace.h" 27 #include "semihosting/common-semi.h" 28 29 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch) 30 { 31 #ifdef CONFIG_USER_ONLY 32 return 0; 33 #else 34 return env->priv; 35 #endif 36 } 37 38 #ifndef CONFIG_USER_ONLY 39 static int riscv_cpu_local_irq_pending(CPURISCVState *env) 40 { 41 target_ulong irqs; 42 43 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE); 44 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE); 45 target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE); 46 47 target_ulong pending = env->mip & env->mie & 48 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 49 target_ulong vspending = (env->mip & env->mie & 50 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)); 51 52 target_ulong mie = env->priv < PRV_M || 53 (env->priv == PRV_M && mstatus_mie); 54 target_ulong sie = env->priv < PRV_S || 55 (env->priv == PRV_S && mstatus_sie); 56 target_ulong hs_sie = env->priv < PRV_S || 57 (env->priv == PRV_S && hs_mstatus_sie); 58 59 if (riscv_cpu_virt_enabled(env)) { 60 target_ulong pending_hs_irq = pending & -hs_sie; 61 62 if (pending_hs_irq) { 63 riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP); 64 return ctz64(pending_hs_irq); 65 } 66 67 pending = vspending; 68 } 69 70 irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie); 71 72 if (irqs) { 73 return ctz64(irqs); /* since non-zero */ 74 } else { 75 return RISCV_EXCP_NONE; /* indicates no pending interrupt */ 76 } 77 } 78 #endif 79 80 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 81 { 82 #if !defined(CONFIG_USER_ONLY) 83 if (interrupt_request & CPU_INTERRUPT_HARD) { 84 RISCVCPU *cpu = RISCV_CPU(cs); 85 CPURISCVState *env = &cpu->env; 86 int interruptno = riscv_cpu_local_irq_pending(env); 87 if (interruptno >= 0) { 88 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; 89 riscv_cpu_do_interrupt(cs); 90 return true; 91 } 92 } 93 #endif 94 return false; 95 } 96 97 #if !defined(CONFIG_USER_ONLY) 98 99 /* Return true is floating point support is currently enabled */ 100 bool riscv_cpu_fp_enabled(CPURISCVState *env) 101 { 102 if (env->mstatus & MSTATUS_FS) { 103 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) { 104 return false; 105 } 106 return true; 107 } 108 109 return false; 110 } 111 112 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) 113 { 114 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS | 115 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE | 116 MSTATUS64_UXL; 117 bool current_virt = riscv_cpu_virt_enabled(env); 118 119 g_assert(riscv_has_ext(env, RVH)); 120 121 if (current_virt) { 122 /* Current V=1 and we are about to change to V=0 */ 123 env->vsstatus = env->mstatus & mstatus_mask; 124 env->mstatus &= ~mstatus_mask; 125 env->mstatus |= env->mstatus_hs; 126 127 env->vstvec = env->stvec; 128 env->stvec = env->stvec_hs; 129 130 env->vsscratch = env->sscratch; 131 env->sscratch = env->sscratch_hs; 132 133 env->vsepc = env->sepc; 134 env->sepc = env->sepc_hs; 135 136 env->vscause = env->scause; 137 env->scause = env->scause_hs; 138 139 env->vstval = env->stval; 140 env->stval = env->stval_hs; 141 142 env->vsatp = env->satp; 143 env->satp = env->satp_hs; 144 } else { 145 /* Current V=0 and we are about to change to V=1 */ 146 env->mstatus_hs = env->mstatus & mstatus_mask; 147 env->mstatus &= ~mstatus_mask; 148 env->mstatus |= env->vsstatus; 149 150 env->stvec_hs = env->stvec; 151 env->stvec = env->vstvec; 152 153 env->sscratch_hs = env->sscratch; 154 env->sscratch = env->vsscratch; 155 156 env->sepc_hs = env->sepc; 157 env->sepc = env->vsepc; 158 159 env->scause_hs = env->scause; 160 env->scause = env->vscause; 161 162 env->stval_hs = env->stval; 163 env->stval = env->vstval; 164 165 env->satp_hs = env->satp; 166 env->satp = env->vsatp; 167 } 168 } 169 170 bool riscv_cpu_virt_enabled(CPURISCVState *env) 171 { 172 if (!riscv_has_ext(env, RVH)) { 173 return false; 174 } 175 176 return get_field(env->virt, VIRT_ONOFF); 177 } 178 179 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable) 180 { 181 if (!riscv_has_ext(env, RVH)) { 182 return; 183 } 184 185 /* Flush the TLB on all virt mode changes. */ 186 if (get_field(env->virt, VIRT_ONOFF) != enable) { 187 tlb_flush(env_cpu(env)); 188 } 189 190 env->virt = set_field(env->virt, VIRT_ONOFF, enable); 191 } 192 193 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env) 194 { 195 if (!riscv_has_ext(env, RVH)) { 196 return false; 197 } 198 199 return get_field(env->virt, FORCE_HS_EXCEP); 200 } 201 202 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable) 203 { 204 if (!riscv_has_ext(env, RVH)) { 205 return; 206 } 207 208 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable); 209 } 210 211 bool riscv_cpu_two_stage_lookup(int mmu_idx) 212 { 213 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK; 214 } 215 216 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts) 217 { 218 CPURISCVState *env = &cpu->env; 219 if (env->miclaim & interrupts) { 220 return -1; 221 } else { 222 env->miclaim |= interrupts; 223 return 0; 224 } 225 } 226 227 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value) 228 { 229 CPURISCVState *env = &cpu->env; 230 CPUState *cs = CPU(cpu); 231 uint32_t old = env->mip; 232 bool locked = false; 233 234 if (!qemu_mutex_iothread_locked()) { 235 locked = true; 236 qemu_mutex_lock_iothread(); 237 } 238 239 env->mip = (env->mip & ~mask) | (value & mask); 240 241 if (env->mip) { 242 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 243 } else { 244 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 245 } 246 247 if (locked) { 248 qemu_mutex_unlock_iothread(); 249 } 250 251 return old; 252 } 253 254 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t), 255 uint32_t arg) 256 { 257 env->rdtime_fn = fn; 258 env->rdtime_fn_arg = arg; 259 } 260 261 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) 262 { 263 if (newpriv > PRV_M) { 264 g_assert_not_reached(); 265 } 266 if (newpriv == PRV_H) { 267 newpriv = PRV_U; 268 } 269 /* tlb_flush is unnecessary as mode is contained in mmu_idx */ 270 env->priv = newpriv; 271 272 /* 273 * Clear the load reservation - otherwise a reservation placed in one 274 * context/process can be used by another, resulting in an SC succeeding 275 * incorrectly. Version 2.2 of the ISA specification explicitly requires 276 * this behaviour, while later revisions say that the kernel "should" use 277 * an SC instruction to force the yielding of a load reservation on a 278 * preemptive context switch. As a result, do both. 279 */ 280 env->load_res = -1; 281 } 282 283 /* 284 * get_physical_address_pmp - check PMP permission for this physical address 285 * 286 * Match the PMP region and check permission for this physical address and it's 287 * TLB page. Returns 0 if the permission checking was successful 288 * 289 * @env: CPURISCVState 290 * @prot: The returned protection attributes 291 * @tlb_size: TLB page size containing addr. It could be modified after PMP 292 * permission checking. NULL if not set TLB page for addr. 293 * @addr: The physical address to be checked permission 294 * @access_type: The type of MMU access 295 * @mode: Indicates current privilege level. 296 */ 297 static int get_physical_address_pmp(CPURISCVState *env, int *prot, 298 target_ulong *tlb_size, hwaddr addr, 299 int size, MMUAccessType access_type, 300 int mode) 301 { 302 pmp_priv_t pmp_priv; 303 target_ulong tlb_size_pmp = 0; 304 305 if (!riscv_feature(env, RISCV_FEATURE_PMP)) { 306 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 307 return TRANSLATE_SUCCESS; 308 } 309 310 if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv, 311 mode)) { 312 *prot = 0; 313 return TRANSLATE_PMP_FAIL; 314 } 315 316 *prot = pmp_priv_to_page_prot(pmp_priv); 317 if (tlb_size != NULL) { 318 if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) { 319 *tlb_size = tlb_size_pmp; 320 } 321 } 322 323 return TRANSLATE_SUCCESS; 324 } 325 326 /* get_physical_address - get the physical address for this virtual address 327 * 328 * Do a page table walk to obtain the physical address corresponding to a 329 * virtual address. Returns 0 if the translation was successful 330 * 331 * Adapted from Spike's mmu_t::translate and mmu_t::walk 332 * 333 * @env: CPURISCVState 334 * @physical: This will be set to the calculated physical address 335 * @prot: The returned protection attributes 336 * @addr: The virtual address to be translated 337 * @fault_pte_addr: If not NULL, this will be set to fault pte address 338 * when a error occurs on pte address translation. 339 * This will already be shifted to match htval. 340 * @access_type: The type of MMU access 341 * @mmu_idx: Indicates current privilege level 342 * @first_stage: Are we in first stage translation? 343 * Second stage is used for hypervisor guest translation 344 * @two_stage: Are we going to perform two stage translation 345 */ 346 static int get_physical_address(CPURISCVState *env, hwaddr *physical, 347 int *prot, target_ulong addr, 348 target_ulong *fault_pte_addr, 349 int access_type, int mmu_idx, 350 bool first_stage, bool two_stage) 351 { 352 /* NOTE: the env->pc value visible here will not be 353 * correct, but the value visible to the exception handler 354 * (riscv_cpu_do_interrupt) is correct */ 355 MemTxResult res; 356 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 357 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK; 358 bool use_background = false; 359 360 /* 361 * Check if we should use the background registers for the two 362 * stage translation. We don't need to check if we actually need 363 * two stage translation as that happened before this function 364 * was called. Background registers will be used if the guest has 365 * forced a two stage translation to be on (in HS or M mode). 366 */ 367 if (!riscv_cpu_virt_enabled(env) && two_stage) { 368 use_background = true; 369 } 370 371 /* MPRV does not affect the virtual-machine load/store 372 instructions, HLV, HLVX, and HSV. */ 373 if (riscv_cpu_two_stage_lookup(mmu_idx)) { 374 mode = get_field(env->hstatus, HSTATUS_SPVP); 375 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) { 376 if (get_field(env->mstatus, MSTATUS_MPRV)) { 377 mode = get_field(env->mstatus, MSTATUS_MPP); 378 } 379 } 380 381 if (first_stage == false) { 382 /* We are in stage 2 translation, this is similar to stage 1. */ 383 /* Stage 2 is always taken as U-mode */ 384 mode = PRV_U; 385 } 386 387 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) { 388 *physical = addr; 389 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 390 return TRANSLATE_SUCCESS; 391 } 392 393 *prot = 0; 394 395 hwaddr base; 396 int levels, ptidxbits, ptesize, vm, sum, mxr, widened; 397 398 if (first_stage == true) { 399 mxr = get_field(env->mstatus, MSTATUS_MXR); 400 } else { 401 mxr = get_field(env->vsstatus, MSTATUS_MXR); 402 } 403 404 if (first_stage == true) { 405 if (use_background) { 406 base = (hwaddr)get_field(env->vsatp, SATP_PPN) << PGSHIFT; 407 vm = get_field(env->vsatp, SATP_MODE); 408 } else { 409 base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT; 410 vm = get_field(env->satp, SATP_MODE); 411 } 412 widened = 0; 413 } else { 414 base = (hwaddr)get_field(env->hgatp, HGATP_PPN) << PGSHIFT; 415 vm = get_field(env->hgatp, HGATP_MODE); 416 widened = 2; 417 } 418 /* status.SUM will be ignored if execute on background */ 419 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background; 420 switch (vm) { 421 case VM_1_10_SV32: 422 levels = 2; ptidxbits = 10; ptesize = 4; break; 423 case VM_1_10_SV39: 424 levels = 3; ptidxbits = 9; ptesize = 8; break; 425 case VM_1_10_SV48: 426 levels = 4; ptidxbits = 9; ptesize = 8; break; 427 case VM_1_10_SV57: 428 levels = 5; ptidxbits = 9; ptesize = 8; break; 429 case VM_1_10_MBARE: 430 *physical = addr; 431 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 432 return TRANSLATE_SUCCESS; 433 default: 434 g_assert_not_reached(); 435 } 436 437 CPUState *cs = env_cpu(env); 438 int va_bits = PGSHIFT + levels * ptidxbits + widened; 439 target_ulong mask, masked_msbs; 440 441 if (TARGET_LONG_BITS > (va_bits - 1)) { 442 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; 443 } else { 444 mask = 0; 445 } 446 masked_msbs = (addr >> (va_bits - 1)) & mask; 447 448 if (masked_msbs != 0 && masked_msbs != mask) { 449 return TRANSLATE_FAIL; 450 } 451 452 int ptshift = (levels - 1) * ptidxbits; 453 int i; 454 455 #if !TCG_OVERSIZED_GUEST 456 restart: 457 #endif 458 for (i = 0; i < levels; i++, ptshift -= ptidxbits) { 459 target_ulong idx; 460 if (i == 0) { 461 idx = (addr >> (PGSHIFT + ptshift)) & 462 ((1 << (ptidxbits + widened)) - 1); 463 } else { 464 idx = (addr >> (PGSHIFT + ptshift)) & 465 ((1 << ptidxbits) - 1); 466 } 467 468 /* check that physical address of PTE is legal */ 469 hwaddr pte_addr; 470 471 if (two_stage && first_stage) { 472 int vbase_prot; 473 hwaddr vbase; 474 475 /* Do the second stage translation on the base PTE address. */ 476 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, 477 base, NULL, MMU_DATA_LOAD, 478 mmu_idx, false, true); 479 480 if (vbase_ret != TRANSLATE_SUCCESS) { 481 if (fault_pte_addr) { 482 *fault_pte_addr = (base + idx * ptesize) >> 2; 483 } 484 return TRANSLATE_G_STAGE_FAIL; 485 } 486 487 pte_addr = vbase + idx * ptesize; 488 } else { 489 pte_addr = base + idx * ptesize; 490 } 491 492 int pmp_prot; 493 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr, 494 sizeof(target_ulong), 495 MMU_DATA_LOAD, PRV_S); 496 if (pmp_ret != TRANSLATE_SUCCESS) { 497 return TRANSLATE_PMP_FAIL; 498 } 499 500 target_ulong pte; 501 if (riscv_cpu_is_32bit(env)) { 502 pte = address_space_ldl(cs->as, pte_addr, attrs, &res); 503 } else { 504 pte = address_space_ldq(cs->as, pte_addr, attrs, &res); 505 } 506 507 if (res != MEMTX_OK) { 508 return TRANSLATE_FAIL; 509 } 510 511 hwaddr ppn = pte >> PTE_PPN_SHIFT; 512 513 if (!(pte & PTE_V)) { 514 /* Invalid PTE */ 515 return TRANSLATE_FAIL; 516 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) { 517 /* Inner PTE, continue walking */ 518 base = ppn << PGSHIFT; 519 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) { 520 /* Reserved leaf PTE flags: PTE_W */ 521 return TRANSLATE_FAIL; 522 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) { 523 /* Reserved leaf PTE flags: PTE_W + PTE_X */ 524 return TRANSLATE_FAIL; 525 } else if ((pte & PTE_U) && ((mode != PRV_U) && 526 (!sum || access_type == MMU_INST_FETCH))) { 527 /* User PTE flags when not U mode and mstatus.SUM is not set, 528 or the access type is an instruction fetch */ 529 return TRANSLATE_FAIL; 530 } else if (!(pte & PTE_U) && (mode != PRV_S)) { 531 /* Supervisor PTE flags when not S mode */ 532 return TRANSLATE_FAIL; 533 } else if (ppn & ((1ULL << ptshift) - 1)) { 534 /* Misaligned PPN */ 535 return TRANSLATE_FAIL; 536 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) || 537 ((pte & PTE_X) && mxr))) { 538 /* Read access check failed */ 539 return TRANSLATE_FAIL; 540 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) { 541 /* Write access check failed */ 542 return TRANSLATE_FAIL; 543 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) { 544 /* Fetch access check failed */ 545 return TRANSLATE_FAIL; 546 } else { 547 /* if necessary, set accessed and dirty bits. */ 548 target_ulong updated_pte = pte | PTE_A | 549 (access_type == MMU_DATA_STORE ? PTE_D : 0); 550 551 /* Page table updates need to be atomic with MTTCG enabled */ 552 if (updated_pte != pte) { 553 /* 554 * - if accessed or dirty bits need updating, and the PTE is 555 * in RAM, then we do so atomically with a compare and swap. 556 * - if the PTE is in IO space or ROM, then it can't be updated 557 * and we return TRANSLATE_FAIL. 558 * - if the PTE changed by the time we went to update it, then 559 * it is no longer valid and we must re-walk the page table. 560 */ 561 MemoryRegion *mr; 562 hwaddr l = sizeof(target_ulong), addr1; 563 mr = address_space_translate(cs->as, pte_addr, 564 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED); 565 if (memory_region_is_ram(mr)) { 566 target_ulong *pte_pa = 567 qemu_map_ram_ptr(mr->ram_block, addr1); 568 #if TCG_OVERSIZED_GUEST 569 /* MTTCG is not enabled on oversized TCG guests so 570 * page table updates do not need to be atomic */ 571 *pte_pa = pte = updated_pte; 572 #else 573 target_ulong old_pte = 574 qatomic_cmpxchg(pte_pa, pte, updated_pte); 575 if (old_pte != pte) { 576 goto restart; 577 } else { 578 pte = updated_pte; 579 } 580 #endif 581 } else { 582 /* misconfigured PTE in ROM (AD bits are not preset) or 583 * PTE is in IO space and can't be updated atomically */ 584 return TRANSLATE_FAIL; 585 } 586 } 587 588 /* for superpage mappings, make a fake leaf PTE for the TLB's 589 benefit. */ 590 target_ulong vpn = addr >> PGSHIFT; 591 *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) | 592 (addr & ~TARGET_PAGE_MASK); 593 594 /* set permissions on the TLB entry */ 595 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) { 596 *prot |= PAGE_READ; 597 } 598 if ((pte & PTE_X)) { 599 *prot |= PAGE_EXEC; 600 } 601 /* add write permission on stores or if the page is already dirty, 602 so that we TLB miss on later writes to update the dirty bit */ 603 if ((pte & PTE_W) && 604 (access_type == MMU_DATA_STORE || (pte & PTE_D))) { 605 *prot |= PAGE_WRITE; 606 } 607 return TRANSLATE_SUCCESS; 608 } 609 } 610 return TRANSLATE_FAIL; 611 } 612 613 static void raise_mmu_exception(CPURISCVState *env, target_ulong address, 614 MMUAccessType access_type, bool pmp_violation, 615 bool first_stage, bool two_stage) 616 { 617 CPUState *cs = env_cpu(env); 618 int page_fault_exceptions; 619 if (first_stage) { 620 page_fault_exceptions = 621 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE && 622 !pmp_violation; 623 } else { 624 page_fault_exceptions = 625 get_field(env->hgatp, HGATP_MODE) != VM_1_10_MBARE && 626 !pmp_violation; 627 } 628 switch (access_type) { 629 case MMU_INST_FETCH: 630 if (riscv_cpu_virt_enabled(env) && !first_stage) { 631 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; 632 } else { 633 cs->exception_index = page_fault_exceptions ? 634 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT; 635 } 636 break; 637 case MMU_DATA_LOAD: 638 if (two_stage && !first_stage) { 639 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; 640 } else { 641 cs->exception_index = page_fault_exceptions ? 642 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT; 643 } 644 break; 645 case MMU_DATA_STORE: 646 if (two_stage && !first_stage) { 647 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; 648 } else { 649 cs->exception_index = page_fault_exceptions ? 650 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 651 } 652 break; 653 default: 654 g_assert_not_reached(); 655 } 656 env->badaddr = address; 657 env->two_stage_lookup = two_stage; 658 } 659 660 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 661 { 662 RISCVCPU *cpu = RISCV_CPU(cs); 663 CPURISCVState *env = &cpu->env; 664 hwaddr phys_addr; 665 int prot; 666 int mmu_idx = cpu_mmu_index(&cpu->env, false); 667 668 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx, 669 true, riscv_cpu_virt_enabled(env))) { 670 return -1; 671 } 672 673 if (riscv_cpu_virt_enabled(env)) { 674 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL, 675 0, mmu_idx, false, true)) { 676 return -1; 677 } 678 } 679 680 return phys_addr & TARGET_PAGE_MASK; 681 } 682 683 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 684 vaddr addr, unsigned size, 685 MMUAccessType access_type, 686 int mmu_idx, MemTxAttrs attrs, 687 MemTxResult response, uintptr_t retaddr) 688 { 689 RISCVCPU *cpu = RISCV_CPU(cs); 690 CPURISCVState *env = &cpu->env; 691 692 if (access_type == MMU_DATA_STORE) { 693 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 694 } else { 695 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 696 } 697 698 env->badaddr = addr; 699 env->two_stage_lookup = riscv_cpu_virt_enabled(env) || 700 riscv_cpu_two_stage_lookup(mmu_idx); 701 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr); 702 } 703 704 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 705 MMUAccessType access_type, int mmu_idx, 706 uintptr_t retaddr) 707 { 708 RISCVCPU *cpu = RISCV_CPU(cs); 709 CPURISCVState *env = &cpu->env; 710 switch (access_type) { 711 case MMU_INST_FETCH: 712 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; 713 break; 714 case MMU_DATA_LOAD: 715 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; 716 break; 717 case MMU_DATA_STORE: 718 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; 719 break; 720 default: 721 g_assert_not_reached(); 722 } 723 env->badaddr = addr; 724 env->two_stage_lookup = riscv_cpu_virt_enabled(env) || 725 riscv_cpu_two_stage_lookup(mmu_idx); 726 riscv_raise_exception(env, cs->exception_index, retaddr); 727 } 728 #endif /* !CONFIG_USER_ONLY */ 729 730 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 731 MMUAccessType access_type, int mmu_idx, 732 bool probe, uintptr_t retaddr) 733 { 734 RISCVCPU *cpu = RISCV_CPU(cs); 735 CPURISCVState *env = &cpu->env; 736 #ifndef CONFIG_USER_ONLY 737 vaddr im_address; 738 hwaddr pa = 0; 739 int prot, prot2, prot_pmp; 740 bool pmp_violation = false; 741 bool first_stage_error = true; 742 bool two_stage_lookup = false; 743 int ret = TRANSLATE_FAIL; 744 int mode = mmu_idx; 745 /* default TLB page size */ 746 target_ulong tlb_size = TARGET_PAGE_SIZE; 747 748 env->guest_phys_fault_addr = 0; 749 750 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", 751 __func__, address, access_type, mmu_idx); 752 753 /* MPRV does not affect the virtual-machine load/store 754 instructions, HLV, HLVX, and HSV. */ 755 if (riscv_cpu_two_stage_lookup(mmu_idx)) { 756 mode = get_field(env->hstatus, HSTATUS_SPVP); 757 } else if (mode == PRV_M && access_type != MMU_INST_FETCH && 758 get_field(env->mstatus, MSTATUS_MPRV)) { 759 mode = get_field(env->mstatus, MSTATUS_MPP); 760 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) { 761 two_stage_lookup = true; 762 } 763 } 764 765 if (riscv_cpu_virt_enabled(env) || 766 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) && 767 access_type != MMU_INST_FETCH)) { 768 /* Two stage lookup */ 769 ret = get_physical_address(env, &pa, &prot, address, 770 &env->guest_phys_fault_addr, access_type, 771 mmu_idx, true, true); 772 773 /* 774 * A G-stage exception may be triggered during two state lookup. 775 * And the env->guest_phys_fault_addr has already been set in 776 * get_physical_address(). 777 */ 778 if (ret == TRANSLATE_G_STAGE_FAIL) { 779 first_stage_error = false; 780 access_type = MMU_DATA_LOAD; 781 } 782 783 qemu_log_mask(CPU_LOG_MMU, 784 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " 785 TARGET_FMT_plx " prot %d\n", 786 __func__, address, ret, pa, prot); 787 788 if (ret == TRANSLATE_SUCCESS) { 789 /* Second stage lookup */ 790 im_address = pa; 791 792 ret = get_physical_address(env, &pa, &prot2, im_address, NULL, 793 access_type, mmu_idx, false, true); 794 795 qemu_log_mask(CPU_LOG_MMU, 796 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical " 797 TARGET_FMT_plx " prot %d\n", 798 __func__, im_address, ret, pa, prot2); 799 800 prot &= prot2; 801 802 if (ret == TRANSLATE_SUCCESS) { 803 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, 804 size, access_type, mode); 805 806 qemu_log_mask(CPU_LOG_MMU, 807 "%s PMP address=" TARGET_FMT_plx " ret %d prot" 808 " %d tlb_size " TARGET_FMT_lu "\n", 809 __func__, pa, ret, prot_pmp, tlb_size); 810 811 prot &= prot_pmp; 812 } 813 814 if (ret != TRANSLATE_SUCCESS) { 815 /* 816 * Guest physical address translation failed, this is a HS 817 * level exception 818 */ 819 first_stage_error = false; 820 env->guest_phys_fault_addr = (im_address | 821 (address & 822 (TARGET_PAGE_SIZE - 1))) >> 2; 823 } 824 } 825 } else { 826 /* Single stage lookup */ 827 ret = get_physical_address(env, &pa, &prot, address, NULL, 828 access_type, mmu_idx, true, false); 829 830 qemu_log_mask(CPU_LOG_MMU, 831 "%s address=%" VADDR_PRIx " ret %d physical " 832 TARGET_FMT_plx " prot %d\n", 833 __func__, address, ret, pa, prot); 834 835 if (ret == TRANSLATE_SUCCESS) { 836 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, 837 size, access_type, mode); 838 839 qemu_log_mask(CPU_LOG_MMU, 840 "%s PMP address=" TARGET_FMT_plx " ret %d prot" 841 " %d tlb_size " TARGET_FMT_lu "\n", 842 __func__, pa, ret, prot_pmp, tlb_size); 843 844 prot &= prot_pmp; 845 } 846 } 847 848 if (ret == TRANSLATE_PMP_FAIL) { 849 pmp_violation = true; 850 } 851 852 if (ret == TRANSLATE_SUCCESS) { 853 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), 854 prot, mmu_idx, tlb_size); 855 return true; 856 } else if (probe) { 857 return false; 858 } else { 859 raise_mmu_exception(env, address, access_type, pmp_violation, 860 first_stage_error, 861 riscv_cpu_virt_enabled(env) || 862 riscv_cpu_two_stage_lookup(mmu_idx)); 863 riscv_raise_exception(env, cs->exception_index, retaddr); 864 } 865 866 return true; 867 868 #else 869 switch (access_type) { 870 case MMU_INST_FETCH: 871 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT; 872 break; 873 case MMU_DATA_LOAD: 874 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT; 875 break; 876 case MMU_DATA_STORE: 877 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT; 878 break; 879 default: 880 g_assert_not_reached(); 881 } 882 env->badaddr = address; 883 cpu_loop_exit_restore(cs, retaddr); 884 #endif 885 } 886 887 /* 888 * Handle Traps 889 * 890 * Adapted from Spike's processor_t::take_trap. 891 * 892 */ 893 void riscv_cpu_do_interrupt(CPUState *cs) 894 { 895 #if !defined(CONFIG_USER_ONLY) 896 897 RISCVCPU *cpu = RISCV_CPU(cs); 898 CPURISCVState *env = &cpu->env; 899 bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env); 900 uint64_t s; 901 902 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide 903 * so we mask off the MSB and separate into trap type and cause. 904 */ 905 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); 906 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; 907 target_ulong deleg = async ? env->mideleg : env->medeleg; 908 bool write_tval = false; 909 target_ulong tval = 0; 910 target_ulong htval = 0; 911 target_ulong mtval2 = 0; 912 913 if (cause == RISCV_EXCP_SEMIHOST) { 914 if (env->priv >= PRV_S) { 915 env->gpr[xA0] = do_common_semihosting(cs); 916 env->pc += 4; 917 return; 918 } 919 cause = RISCV_EXCP_BREAKPOINT; 920 } 921 922 if (!async) { 923 /* set tval to badaddr for traps with address information */ 924 switch (cause) { 925 case RISCV_EXCP_INST_GUEST_PAGE_FAULT: 926 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: 927 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: 928 force_hs_execp = true; 929 /* fallthrough */ 930 case RISCV_EXCP_INST_ADDR_MIS: 931 case RISCV_EXCP_INST_ACCESS_FAULT: 932 case RISCV_EXCP_LOAD_ADDR_MIS: 933 case RISCV_EXCP_STORE_AMO_ADDR_MIS: 934 case RISCV_EXCP_LOAD_ACCESS_FAULT: 935 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: 936 case RISCV_EXCP_INST_PAGE_FAULT: 937 case RISCV_EXCP_LOAD_PAGE_FAULT: 938 case RISCV_EXCP_STORE_PAGE_FAULT: 939 write_tval = true; 940 tval = env->badaddr; 941 break; 942 default: 943 break; 944 } 945 /* ecall is dispatched as one cause so translate based on mode */ 946 if (cause == RISCV_EXCP_U_ECALL) { 947 assert(env->priv <= 3); 948 949 if (env->priv == PRV_M) { 950 cause = RISCV_EXCP_M_ECALL; 951 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) { 952 cause = RISCV_EXCP_VS_ECALL; 953 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) { 954 cause = RISCV_EXCP_S_ECALL; 955 } else if (env->priv == PRV_U) { 956 cause = RISCV_EXCP_U_ECALL; 957 } 958 } 959 } 960 961 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, 962 riscv_cpu_get_trap_name(cause, async)); 963 964 qemu_log_mask(CPU_LOG_INT, 965 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", " 966 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n", 967 __func__, env->mhartid, async, cause, env->pc, tval, 968 riscv_cpu_get_trap_name(cause, async)); 969 970 if (env->priv <= PRV_S && 971 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) { 972 /* handle the trap in S-mode */ 973 if (riscv_has_ext(env, RVH)) { 974 target_ulong hdeleg = async ? env->hideleg : env->hedeleg; 975 976 if (env->two_stage_lookup && write_tval) { 977 /* 978 * If we are writing a guest virtual address to stval, set 979 * this to 1. If we are trapping to VS we will set this to 0 980 * later. 981 */ 982 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1); 983 } else { 984 /* For other HS-mode traps, we set this to 0. */ 985 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0); 986 } 987 988 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) && 989 !force_hs_execp) { 990 /* Trap to VS mode */ 991 /* 992 * See if we need to adjust cause. Yes if its VS mode interrupt 993 * no if hypervisor has delegated one of hs mode's interrupt 994 */ 995 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || 996 cause == IRQ_VS_EXT) { 997 cause = cause - 1; 998 } 999 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0); 1000 } else if (riscv_cpu_virt_enabled(env)) { 1001 /* Trap into HS mode, from virt */ 1002 riscv_cpu_swap_hypervisor_regs(env); 1003 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, 1004 env->priv); 1005 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, 1006 riscv_cpu_virt_enabled(env)); 1007 1008 htval = env->guest_phys_fault_addr; 1009 1010 riscv_cpu_set_virt_enabled(env, 0); 1011 riscv_cpu_set_force_hs_excep(env, 0); 1012 } else { 1013 /* Trap into HS mode */ 1014 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false); 1015 htval = env->guest_phys_fault_addr; 1016 } 1017 } 1018 1019 s = env->mstatus; 1020 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); 1021 s = set_field(s, MSTATUS_SPP, env->priv); 1022 s = set_field(s, MSTATUS_SIE, 0); 1023 env->mstatus = s; 1024 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); 1025 env->sepc = env->pc; 1026 env->stval = tval; 1027 env->htval = htval; 1028 env->pc = (env->stvec >> 2 << 2) + 1029 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); 1030 riscv_cpu_set_mode(env, PRV_S); 1031 } else { 1032 /* handle the trap in M-mode */ 1033 if (riscv_has_ext(env, RVH)) { 1034 if (riscv_cpu_virt_enabled(env)) { 1035 riscv_cpu_swap_hypervisor_regs(env); 1036 } 1037 env->mstatus = set_field(env->mstatus, MSTATUS_MPV, 1038 riscv_cpu_virt_enabled(env)); 1039 if (riscv_cpu_virt_enabled(env) && tval) { 1040 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); 1041 } 1042 1043 mtval2 = env->guest_phys_fault_addr; 1044 1045 /* Trapping to M mode, virt is disabled */ 1046 riscv_cpu_set_virt_enabled(env, 0); 1047 riscv_cpu_set_force_hs_excep(env, 0); 1048 } 1049 1050 s = env->mstatus; 1051 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); 1052 s = set_field(s, MSTATUS_MPP, env->priv); 1053 s = set_field(s, MSTATUS_MIE, 0); 1054 env->mstatus = s; 1055 env->mcause = cause | ~(((target_ulong)-1) >> async); 1056 env->mepc = env->pc; 1057 env->mtval = tval; 1058 env->mtval2 = mtval2; 1059 env->pc = (env->mtvec >> 2 << 2) + 1060 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); 1061 riscv_cpu_set_mode(env, PRV_M); 1062 } 1063 1064 /* NOTE: it is not necessary to yield load reservations here. It is only 1065 * necessary for an SC from "another hart" to cause a load reservation 1066 * to be yielded. Refer to the memory consistency model section of the 1067 * RISC-V ISA Specification. 1068 */ 1069 1070 env->two_stage_lookup = false; 1071 #endif 1072 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */ 1073 } 1074