1 /* 2 * RISC-V CPU helpers for qemu. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/main-loop.h" 23 #include "cpu.h" 24 #include "internals.h" 25 #include "pmu.h" 26 #include "exec/exec-all.h" 27 #include "exec/page-protection.h" 28 #include "instmap.h" 29 #include "tcg/tcg-op.h" 30 #include "trace.h" 31 #include "semihosting/common-semi.h" 32 #include "sysemu/cpu-timers.h" 33 #include "cpu_bits.h" 34 #include "debug.h" 35 #include "tcg/oversized-guest.h" 36 37 int riscv_env_mmu_index(CPURISCVState *env, bool ifetch) 38 { 39 #ifdef CONFIG_USER_ONLY 40 return 0; 41 #else 42 bool virt = env->virt_enabled; 43 int mode = env->priv; 44 45 /* All priv -> mmu_idx mapping are here */ 46 if (!ifetch) { 47 uint64_t status = env->mstatus; 48 49 if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) { 50 mode = get_field(env->mstatus, MSTATUS_MPP); 51 virt = get_field(env->mstatus, MSTATUS_MPV) && 52 (mode != PRV_M); 53 if (virt) { 54 status = env->vsstatus; 55 } 56 } 57 if (mode == PRV_S && get_field(status, MSTATUS_SUM)) { 58 mode = MMUIdx_S_SUM; 59 } 60 } 61 62 return mode | (virt ? MMU_2STAGE_BIT : 0); 63 #endif 64 } 65 66 void cpu_get_tb_cpu_state(CPURISCVState *env, vaddr *pc, 67 uint64_t *cs_base, uint32_t *pflags) 68 { 69 RISCVCPU *cpu = env_archcpu(env); 70 RISCVExtStatus fs, vs; 71 uint32_t flags = 0; 72 73 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc; 74 *cs_base = 0; 75 76 if (cpu->cfg.ext_zve32x) { 77 /* 78 * If env->vl equals to VLMAX, we can use generic vector operation 79 * expanders (GVEC) to accerlate the vector operations. 80 * However, as LMUL could be a fractional number. The maximum 81 * vector size can be operated might be less than 8 bytes, 82 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true 83 * only when maxsz >= 8 bytes. 84 */ 85 86 /* lmul encoded as in DisasContext::lmul */ 87 int8_t lmul = sextract32(FIELD_EX64(env->vtype, VTYPE, VLMUL), 0, 3); 88 uint32_t vsew = FIELD_EX64(env->vtype, VTYPE, VSEW); 89 uint32_t vlmax = vext_get_vlmax(cpu->cfg.vlenb, vsew, lmul); 90 uint32_t maxsz = vlmax << vsew; 91 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) && 92 (maxsz >= 8); 93 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill); 94 flags = FIELD_DP32(flags, TB_FLAGS, SEW, vsew); 95 flags = FIELD_DP32(flags, TB_FLAGS, LMUL, 96 FIELD_EX64(env->vtype, VTYPE, VLMUL)); 97 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax); 98 flags = FIELD_DP32(flags, TB_FLAGS, VTA, 99 FIELD_EX64(env->vtype, VTYPE, VTA)); 100 flags = FIELD_DP32(flags, TB_FLAGS, VMA, 101 FIELD_EX64(env->vtype, VTYPE, VMA)); 102 flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0); 103 } else { 104 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1); 105 } 106 107 #ifdef CONFIG_USER_ONLY 108 fs = EXT_STATUS_DIRTY; 109 vs = EXT_STATUS_DIRTY; 110 #else 111 flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv); 112 113 flags |= riscv_env_mmu_index(env, 0); 114 fs = get_field(env->mstatus, MSTATUS_FS); 115 vs = get_field(env->mstatus, MSTATUS_VS); 116 117 if (env->virt_enabled) { 118 flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1); 119 /* 120 * Merge DISABLED and !DIRTY states using MIN. 121 * We will set both fields when dirtying. 122 */ 123 fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS)); 124 vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS)); 125 } 126 127 /* With Zfinx, floating point is enabled/disabled by Smstateen. */ 128 if (!riscv_has_ext(env, RVF)) { 129 fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE) 130 ? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED; 131 } 132 133 if (cpu->cfg.debug && !icount_enabled()) { 134 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled); 135 } 136 #endif 137 138 flags = FIELD_DP32(flags, TB_FLAGS, FS, fs); 139 flags = FIELD_DP32(flags, TB_FLAGS, VS, vs); 140 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl); 141 flags = FIELD_DP32(flags, TB_FLAGS, AXL, cpu_address_xl(env)); 142 if (env->cur_pmmask != 0) { 143 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1); 144 } 145 if (env->cur_pmbase != 0) { 146 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1); 147 } 148 149 *pflags = flags; 150 } 151 152 void riscv_cpu_update_mask(CPURISCVState *env) 153 { 154 target_ulong mask = 0, base = 0; 155 RISCVMXL xl = env->xl; 156 /* 157 * TODO: Current RVJ spec does not specify 158 * how the extension interacts with XLEN. 159 */ 160 #ifndef CONFIG_USER_ONLY 161 int mode = cpu_address_mode(env); 162 xl = cpu_get_xl(env, mode); 163 if (riscv_has_ext(env, RVJ)) { 164 switch (mode) { 165 case PRV_M: 166 if (env->mmte & M_PM_ENABLE) { 167 mask = env->mpmmask; 168 base = env->mpmbase; 169 } 170 break; 171 case PRV_S: 172 if (env->mmte & S_PM_ENABLE) { 173 mask = env->spmmask; 174 base = env->spmbase; 175 } 176 break; 177 case PRV_U: 178 if (env->mmte & U_PM_ENABLE) { 179 mask = env->upmmask; 180 base = env->upmbase; 181 } 182 break; 183 default: 184 g_assert_not_reached(); 185 } 186 } 187 #endif 188 if (xl == MXL_RV32) { 189 env->cur_pmmask = mask & UINT32_MAX; 190 env->cur_pmbase = base & UINT32_MAX; 191 } else { 192 env->cur_pmmask = mask; 193 env->cur_pmbase = base; 194 } 195 } 196 197 #ifndef CONFIG_USER_ONLY 198 199 /* 200 * The HS-mode is allowed to configure priority only for the 201 * following VS-mode local interrupts: 202 * 203 * 0 (Reserved interrupt, reads as zero) 204 * 1 Supervisor software interrupt 205 * 4 (Reserved interrupt, reads as zero) 206 * 5 Supervisor timer interrupt 207 * 8 (Reserved interrupt, reads as zero) 208 * 13 (Reserved interrupt) 209 * 14 " 210 * 15 " 211 * 16 " 212 * 17 " 213 * 18 " 214 * 19 " 215 * 20 " 216 * 21 " 217 * 22 " 218 * 23 " 219 */ 220 221 static const int hviprio_index2irq[] = { 222 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 }; 223 static const int hviprio_index2rdzero[] = { 224 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 225 226 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero) 227 { 228 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) { 229 return -EINVAL; 230 } 231 232 if (out_irq) { 233 *out_irq = hviprio_index2irq[index]; 234 } 235 236 if (out_rdzero) { 237 *out_rdzero = hviprio_index2rdzero[index]; 238 } 239 240 return 0; 241 } 242 243 /* 244 * Default priorities of local interrupts are defined in the 245 * RISC-V Advanced Interrupt Architecture specification. 246 * 247 * ---------------------------------------------------------------- 248 * Default | 249 * Priority | Major Interrupt Numbers 250 * ---------------------------------------------------------------- 251 * Highest | 47, 23, 46, 45, 22, 44, 252 * | 43, 21, 42, 41, 20, 40 253 * | 254 * | 11 (0b), 3 (03), 7 (07) 255 * | 9 (09), 1 (01), 5 (05) 256 * | 12 (0c) 257 * | 10 (0a), 2 (02), 6 (06) 258 * | 259 * | 39, 19, 38, 37, 18, 36, 260 * Lowest | 35, 17, 34, 33, 16, 32 261 * ---------------------------------------------------------------- 262 */ 263 static const uint8_t default_iprio[64] = { 264 /* Custom interrupts 48 to 63 */ 265 [63] = IPRIO_MMAXIPRIO, 266 [62] = IPRIO_MMAXIPRIO, 267 [61] = IPRIO_MMAXIPRIO, 268 [60] = IPRIO_MMAXIPRIO, 269 [59] = IPRIO_MMAXIPRIO, 270 [58] = IPRIO_MMAXIPRIO, 271 [57] = IPRIO_MMAXIPRIO, 272 [56] = IPRIO_MMAXIPRIO, 273 [55] = IPRIO_MMAXIPRIO, 274 [54] = IPRIO_MMAXIPRIO, 275 [53] = IPRIO_MMAXIPRIO, 276 [52] = IPRIO_MMAXIPRIO, 277 [51] = IPRIO_MMAXIPRIO, 278 [50] = IPRIO_MMAXIPRIO, 279 [49] = IPRIO_MMAXIPRIO, 280 [48] = IPRIO_MMAXIPRIO, 281 282 /* Custom interrupts 24 to 31 */ 283 [31] = IPRIO_MMAXIPRIO, 284 [30] = IPRIO_MMAXIPRIO, 285 [29] = IPRIO_MMAXIPRIO, 286 [28] = IPRIO_MMAXIPRIO, 287 [27] = IPRIO_MMAXIPRIO, 288 [26] = IPRIO_MMAXIPRIO, 289 [25] = IPRIO_MMAXIPRIO, 290 [24] = IPRIO_MMAXIPRIO, 291 292 [47] = IPRIO_DEFAULT_UPPER, 293 [23] = IPRIO_DEFAULT_UPPER + 1, 294 [46] = IPRIO_DEFAULT_UPPER + 2, 295 [45] = IPRIO_DEFAULT_UPPER + 3, 296 [22] = IPRIO_DEFAULT_UPPER + 4, 297 [44] = IPRIO_DEFAULT_UPPER + 5, 298 299 [43] = IPRIO_DEFAULT_UPPER + 6, 300 [21] = IPRIO_DEFAULT_UPPER + 7, 301 [42] = IPRIO_DEFAULT_UPPER + 8, 302 [41] = IPRIO_DEFAULT_UPPER + 9, 303 [20] = IPRIO_DEFAULT_UPPER + 10, 304 [40] = IPRIO_DEFAULT_UPPER + 11, 305 306 [11] = IPRIO_DEFAULT_M, 307 [3] = IPRIO_DEFAULT_M + 1, 308 [7] = IPRIO_DEFAULT_M + 2, 309 310 [9] = IPRIO_DEFAULT_S, 311 [1] = IPRIO_DEFAULT_S + 1, 312 [5] = IPRIO_DEFAULT_S + 2, 313 314 [12] = IPRIO_DEFAULT_SGEXT, 315 316 [10] = IPRIO_DEFAULT_VS, 317 [2] = IPRIO_DEFAULT_VS + 1, 318 [6] = IPRIO_DEFAULT_VS + 2, 319 320 [39] = IPRIO_DEFAULT_LOWER, 321 [19] = IPRIO_DEFAULT_LOWER + 1, 322 [38] = IPRIO_DEFAULT_LOWER + 2, 323 [37] = IPRIO_DEFAULT_LOWER + 3, 324 [18] = IPRIO_DEFAULT_LOWER + 4, 325 [36] = IPRIO_DEFAULT_LOWER + 5, 326 327 [35] = IPRIO_DEFAULT_LOWER + 6, 328 [17] = IPRIO_DEFAULT_LOWER + 7, 329 [34] = IPRIO_DEFAULT_LOWER + 8, 330 [33] = IPRIO_DEFAULT_LOWER + 9, 331 [16] = IPRIO_DEFAULT_LOWER + 10, 332 [32] = IPRIO_DEFAULT_LOWER + 11, 333 }; 334 335 uint8_t riscv_cpu_default_priority(int irq) 336 { 337 if (irq < 0 || irq > 63) { 338 return IPRIO_MMAXIPRIO; 339 } 340 341 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO; 342 }; 343 344 static int riscv_cpu_pending_to_irq(CPURISCVState *env, 345 int extirq, unsigned int extirq_def_prio, 346 uint64_t pending, uint8_t *iprio) 347 { 348 int irq, best_irq = RISCV_EXCP_NONE; 349 unsigned int prio, best_prio = UINT_MAX; 350 351 if (!pending) { 352 return RISCV_EXCP_NONE; 353 } 354 355 irq = ctz64(pending); 356 if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia : 357 riscv_cpu_cfg(env)->ext_ssaia)) { 358 return irq; 359 } 360 361 pending = pending >> irq; 362 while (pending) { 363 prio = iprio[irq]; 364 if (!prio) { 365 if (irq == extirq) { 366 prio = extirq_def_prio; 367 } else { 368 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ? 369 1 : IPRIO_MMAXIPRIO; 370 } 371 } 372 if ((pending & 0x1) && (prio <= best_prio)) { 373 best_irq = irq; 374 best_prio = prio; 375 } 376 irq++; 377 pending = pending >> 1; 378 } 379 380 return best_irq; 381 } 382 383 /* 384 * Doesn't report interrupts inserted using mvip from M-mode firmware or 385 * using hvip bits 13:63 from HS-mode. Those are returned in 386 * riscv_cpu_sirq_pending() and riscv_cpu_vsirq_pending(). 387 */ 388 uint64_t riscv_cpu_all_pending(CPURISCVState *env) 389 { 390 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN); 391 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 392 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0; 393 394 return (env->mip | vsgein | vstip) & env->mie; 395 } 396 397 int riscv_cpu_mirq_pending(CPURISCVState *env) 398 { 399 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg & 400 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 401 402 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 403 irqs, env->miprio); 404 } 405 406 int riscv_cpu_sirq_pending(CPURISCVState *env) 407 { 408 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & 409 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 410 uint64_t irqs_f = env->mvip & env->mvien & ~env->mideleg & env->sie; 411 412 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 413 irqs | irqs_f, env->siprio); 414 } 415 416 int riscv_cpu_vsirq_pending(CPURISCVState *env) 417 { 418 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & env->hideleg; 419 uint64_t irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie; 420 uint64_t vsbits; 421 422 /* Bring VS-level bits to correct position */ 423 vsbits = irqs & VS_MODE_INTERRUPTS; 424 irqs &= ~VS_MODE_INTERRUPTS; 425 irqs |= vsbits >> 1; 426 427 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 428 (irqs | irqs_f_vs), env->hviprio); 429 } 430 431 static int riscv_cpu_local_irq_pending(CPURISCVState *env) 432 { 433 uint64_t irqs, pending, mie, hsie, vsie, irqs_f, irqs_f_vs; 434 uint64_t vsbits, irq_delegated; 435 int virq; 436 437 /* Determine interrupt enable state of all privilege modes */ 438 if (env->virt_enabled) { 439 mie = 1; 440 hsie = 1; 441 vsie = (env->priv < PRV_S) || 442 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 443 } else { 444 mie = (env->priv < PRV_M) || 445 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE)); 446 hsie = (env->priv < PRV_S) || 447 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 448 vsie = 0; 449 } 450 451 /* Determine all pending interrupts */ 452 pending = riscv_cpu_all_pending(env); 453 454 /* Check M-mode interrupts */ 455 irqs = pending & ~env->mideleg & -mie; 456 if (irqs) { 457 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 458 irqs, env->miprio); 459 } 460 461 /* Check for virtual S-mode interrupts. */ 462 irqs_f = env->mvip & (env->mvien & ~env->mideleg) & env->sie; 463 464 /* Check HS-mode interrupts */ 465 irqs = ((pending & env->mideleg & ~env->hideleg) | irqs_f) & -hsie; 466 if (irqs) { 467 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 468 irqs, env->siprio); 469 } 470 471 /* Check for virtual VS-mode interrupts. */ 472 irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie; 473 474 /* Check VS-mode interrupts */ 475 irq_delegated = pending & env->mideleg & env->hideleg; 476 477 /* Bring VS-level bits to correct position */ 478 vsbits = irq_delegated & VS_MODE_INTERRUPTS; 479 irq_delegated &= ~VS_MODE_INTERRUPTS; 480 irq_delegated |= vsbits >> 1; 481 482 irqs = (irq_delegated | irqs_f_vs) & -vsie; 483 if (irqs) { 484 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 485 irqs, env->hviprio); 486 if (virq <= 0 || (virq > 12 && virq <= 63)) { 487 return virq; 488 } else { 489 return virq + 1; 490 } 491 } 492 493 /* Indicate no pending interrupt */ 494 return RISCV_EXCP_NONE; 495 } 496 497 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 498 { 499 if (interrupt_request & CPU_INTERRUPT_HARD) { 500 RISCVCPU *cpu = RISCV_CPU(cs); 501 CPURISCVState *env = &cpu->env; 502 int interruptno = riscv_cpu_local_irq_pending(env); 503 if (interruptno >= 0) { 504 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; 505 riscv_cpu_do_interrupt(cs); 506 return true; 507 } 508 } 509 return false; 510 } 511 512 /* Return true is floating point support is currently enabled */ 513 bool riscv_cpu_fp_enabled(CPURISCVState *env) 514 { 515 if (env->mstatus & MSTATUS_FS) { 516 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) { 517 return false; 518 } 519 return true; 520 } 521 522 return false; 523 } 524 525 /* Return true is vector support is currently enabled */ 526 bool riscv_cpu_vector_enabled(CPURISCVState *env) 527 { 528 if (env->mstatus & MSTATUS_VS) { 529 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) { 530 return false; 531 } 532 return true; 533 } 534 535 return false; 536 } 537 538 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) 539 { 540 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | 541 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE | 542 MSTATUS64_UXL | MSTATUS_VS; 543 544 if (riscv_has_ext(env, RVF)) { 545 mstatus_mask |= MSTATUS_FS; 546 } 547 bool current_virt = env->virt_enabled; 548 549 g_assert(riscv_has_ext(env, RVH)); 550 551 if (current_virt) { 552 /* Current V=1 and we are about to change to V=0 */ 553 env->vsstatus = env->mstatus & mstatus_mask; 554 env->mstatus &= ~mstatus_mask; 555 env->mstatus |= env->mstatus_hs; 556 557 env->vstvec = env->stvec; 558 env->stvec = env->stvec_hs; 559 560 env->vsscratch = env->sscratch; 561 env->sscratch = env->sscratch_hs; 562 563 env->vsepc = env->sepc; 564 env->sepc = env->sepc_hs; 565 566 env->vscause = env->scause; 567 env->scause = env->scause_hs; 568 569 env->vstval = env->stval; 570 env->stval = env->stval_hs; 571 572 env->vsatp = env->satp; 573 env->satp = env->satp_hs; 574 } else { 575 /* Current V=0 and we are about to change to V=1 */ 576 env->mstatus_hs = env->mstatus & mstatus_mask; 577 env->mstatus &= ~mstatus_mask; 578 env->mstatus |= env->vsstatus; 579 580 env->stvec_hs = env->stvec; 581 env->stvec = env->vstvec; 582 583 env->sscratch_hs = env->sscratch; 584 env->sscratch = env->vsscratch; 585 586 env->sepc_hs = env->sepc; 587 env->sepc = env->vsepc; 588 589 env->scause_hs = env->scause; 590 env->scause = env->vscause; 591 592 env->stval_hs = env->stval; 593 env->stval = env->vstval; 594 595 env->satp_hs = env->satp; 596 env->satp = env->vsatp; 597 } 598 } 599 600 target_ulong riscv_cpu_get_geilen(CPURISCVState *env) 601 { 602 if (!riscv_has_ext(env, RVH)) { 603 return 0; 604 } 605 606 return env->geilen; 607 } 608 609 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen) 610 { 611 if (!riscv_has_ext(env, RVH)) { 612 return; 613 } 614 615 if (geilen > (TARGET_LONG_BITS - 1)) { 616 return; 617 } 618 619 env->geilen = geilen; 620 } 621 622 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts) 623 { 624 CPURISCVState *env = &cpu->env; 625 if (env->miclaim & interrupts) { 626 return -1; 627 } else { 628 env->miclaim |= interrupts; 629 return 0; 630 } 631 } 632 633 void riscv_cpu_interrupt(CPURISCVState *env) 634 { 635 uint64_t gein, vsgein = 0, vstip = 0, irqf = 0; 636 CPUState *cs = env_cpu(env); 637 638 BQL_LOCK_GUARD(); 639 640 if (env->virt_enabled) { 641 gein = get_field(env->hstatus, HSTATUS_VGEIN); 642 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 643 irqf = env->hvien & env->hvip & env->vsie; 644 } else { 645 irqf = env->mvien & env->mvip & env->sie; 646 } 647 648 vstip = env->vstime_irq ? MIP_VSTIP : 0; 649 650 if (env->mip | vsgein | vstip | irqf) { 651 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 652 } else { 653 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 654 } 655 } 656 657 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask, uint64_t value) 658 { 659 uint64_t old = env->mip; 660 661 /* No need to update mip for VSTIP */ 662 mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask; 663 664 BQL_LOCK_GUARD(); 665 666 env->mip = (env->mip & ~mask) | (value & mask); 667 668 riscv_cpu_interrupt(env); 669 670 return old; 671 } 672 673 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *), 674 void *arg) 675 { 676 env->rdtime_fn = fn; 677 env->rdtime_fn_arg = arg; 678 } 679 680 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv, 681 int (*rmw_fn)(void *arg, 682 target_ulong reg, 683 target_ulong *val, 684 target_ulong new_val, 685 target_ulong write_mask), 686 void *rmw_fn_arg) 687 { 688 if (priv <= PRV_M) { 689 env->aia_ireg_rmw_fn[priv] = rmw_fn; 690 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg; 691 } 692 } 693 694 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv, bool virt_en) 695 { 696 g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED); 697 698 if (newpriv != env->priv || env->virt_enabled != virt_en) { 699 if (icount_enabled()) { 700 riscv_itrigger_update_priv(env); 701 } 702 703 riscv_pmu_update_fixed_ctrs(env, newpriv, virt_en); 704 } 705 706 /* tlb_flush is unnecessary as mode is contained in mmu_idx */ 707 env->priv = newpriv; 708 env->xl = cpu_recompute_xl(env); 709 riscv_cpu_update_mask(env); 710 711 /* 712 * Clear the load reservation - otherwise a reservation placed in one 713 * context/process can be used by another, resulting in an SC succeeding 714 * incorrectly. Version 2.2 of the ISA specification explicitly requires 715 * this behaviour, while later revisions say that the kernel "should" use 716 * an SC instruction to force the yielding of a load reservation on a 717 * preemptive context switch. As a result, do both. 718 */ 719 env->load_res = -1; 720 721 if (riscv_has_ext(env, RVH)) { 722 /* Flush the TLB on all virt mode changes. */ 723 if (env->virt_enabled != virt_en) { 724 tlb_flush(env_cpu(env)); 725 } 726 727 env->virt_enabled = virt_en; 728 if (virt_en) { 729 /* 730 * The guest external interrupts from an interrupt controller are 731 * delivered only when the Guest/VM is running (i.e. V=1). This 732 * means any guest external interrupt which is triggered while the 733 * Guest/VM is not running (i.e. V=0) will be missed on QEMU 734 * resulting in guest with sluggish response to serial console 735 * input and other I/O events. 736 * 737 * To solve this, we check and inject interrupt after setting V=1. 738 */ 739 riscv_cpu_update_mip(env, 0, 0); 740 } 741 } 742 } 743 744 /* 745 * get_physical_address_pmp - check PMP permission for this physical address 746 * 747 * Match the PMP region and check permission for this physical address and it's 748 * TLB page. Returns 0 if the permission checking was successful 749 * 750 * @env: CPURISCVState 751 * @prot: The returned protection attributes 752 * @addr: The physical address to be checked permission 753 * @access_type: The type of MMU access 754 * @mode: Indicates current privilege level. 755 */ 756 static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr, 757 int size, MMUAccessType access_type, 758 int mode) 759 { 760 pmp_priv_t pmp_priv; 761 bool pmp_has_privs; 762 763 if (!riscv_cpu_cfg(env)->pmp) { 764 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 765 return TRANSLATE_SUCCESS; 766 } 767 768 pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type, 769 &pmp_priv, mode); 770 if (!pmp_has_privs) { 771 *prot = 0; 772 return TRANSLATE_PMP_FAIL; 773 } 774 775 *prot = pmp_priv_to_page_prot(pmp_priv); 776 777 return TRANSLATE_SUCCESS; 778 } 779 780 /* 781 * get_physical_address - get the physical address for this virtual address 782 * 783 * Do a page table walk to obtain the physical address corresponding to a 784 * virtual address. Returns 0 if the translation was successful 785 * 786 * Adapted from Spike's mmu_t::translate and mmu_t::walk 787 * 788 * @env: CPURISCVState 789 * @physical: This will be set to the calculated physical address 790 * @prot: The returned protection attributes 791 * @addr: The virtual address or guest physical address to be translated 792 * @fault_pte_addr: If not NULL, this will be set to fault pte address 793 * when a error occurs on pte address translation. 794 * This will already be shifted to match htval. 795 * @access_type: The type of MMU access 796 * @mmu_idx: Indicates current privilege level 797 * @first_stage: Are we in first stage translation? 798 * Second stage is used for hypervisor guest translation 799 * @two_stage: Are we going to perform two stage translation 800 * @is_debug: Is this access from a debugger or the monitor? 801 */ 802 static int get_physical_address(CPURISCVState *env, hwaddr *physical, 803 int *ret_prot, vaddr addr, 804 target_ulong *fault_pte_addr, 805 int access_type, int mmu_idx, 806 bool first_stage, bool two_stage, 807 bool is_debug) 808 { 809 /* 810 * NOTE: the env->pc value visible here will not be 811 * correct, but the value visible to the exception handler 812 * (riscv_cpu_do_interrupt) is correct 813 */ 814 MemTxResult res; 815 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 816 int mode = mmuidx_priv(mmu_idx); 817 bool use_background = false; 818 hwaddr ppn; 819 int napot_bits = 0; 820 target_ulong napot_mask; 821 822 /* 823 * Check if we should use the background registers for the two 824 * stage translation. We don't need to check if we actually need 825 * two stage translation as that happened before this function 826 * was called. Background registers will be used if the guest has 827 * forced a two stage translation to be on (in HS or M mode). 828 */ 829 if (!env->virt_enabled && two_stage) { 830 use_background = true; 831 } 832 833 if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) { 834 *physical = addr; 835 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 836 return TRANSLATE_SUCCESS; 837 } 838 839 *ret_prot = 0; 840 841 hwaddr base; 842 int levels, ptidxbits, ptesize, vm, widened; 843 844 if (first_stage == true) { 845 if (use_background) { 846 if (riscv_cpu_mxl(env) == MXL_RV32) { 847 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT; 848 vm = get_field(env->vsatp, SATP32_MODE); 849 } else { 850 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT; 851 vm = get_field(env->vsatp, SATP64_MODE); 852 } 853 } else { 854 if (riscv_cpu_mxl(env) == MXL_RV32) { 855 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT; 856 vm = get_field(env->satp, SATP32_MODE); 857 } else { 858 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT; 859 vm = get_field(env->satp, SATP64_MODE); 860 } 861 } 862 widened = 0; 863 } else { 864 if (riscv_cpu_mxl(env) == MXL_RV32) { 865 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT; 866 vm = get_field(env->hgatp, SATP32_MODE); 867 } else { 868 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT; 869 vm = get_field(env->hgatp, SATP64_MODE); 870 } 871 widened = 2; 872 } 873 874 switch (vm) { 875 case VM_1_10_SV32: 876 levels = 2; ptidxbits = 10; ptesize = 4; break; 877 case VM_1_10_SV39: 878 levels = 3; ptidxbits = 9; ptesize = 8; break; 879 case VM_1_10_SV48: 880 levels = 4; ptidxbits = 9; ptesize = 8; break; 881 case VM_1_10_SV57: 882 levels = 5; ptidxbits = 9; ptesize = 8; break; 883 case VM_1_10_MBARE: 884 *physical = addr; 885 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 886 return TRANSLATE_SUCCESS; 887 default: 888 g_assert_not_reached(); 889 } 890 891 CPUState *cs = env_cpu(env); 892 int va_bits = PGSHIFT + levels * ptidxbits + widened; 893 894 if (first_stage == true) { 895 target_ulong mask, masked_msbs; 896 897 if (TARGET_LONG_BITS > (va_bits - 1)) { 898 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; 899 } else { 900 mask = 0; 901 } 902 masked_msbs = (addr >> (va_bits - 1)) & mask; 903 904 if (masked_msbs != 0 && masked_msbs != mask) { 905 return TRANSLATE_FAIL; 906 } 907 } else { 908 if (vm != VM_1_10_SV32 && addr >> va_bits != 0) { 909 return TRANSLATE_FAIL; 910 } 911 } 912 913 bool pbmte = env->menvcfg & MENVCFG_PBMTE; 914 bool svade = riscv_cpu_cfg(env)->ext_svade; 915 bool svadu = riscv_cpu_cfg(env)->ext_svadu; 916 bool adue = svadu ? env->menvcfg & MENVCFG_ADUE : !svade; 917 918 if (first_stage && two_stage && env->virt_enabled) { 919 pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE); 920 adue = adue && (env->henvcfg & HENVCFG_ADUE); 921 } 922 923 int ptshift = (levels - 1) * ptidxbits; 924 target_ulong pte; 925 hwaddr pte_addr; 926 int i; 927 928 #if !TCG_OVERSIZED_GUEST 929 restart: 930 #endif 931 for (i = 0; i < levels; i++, ptshift -= ptidxbits) { 932 target_ulong idx; 933 if (i == 0) { 934 idx = (addr >> (PGSHIFT + ptshift)) & 935 ((1 << (ptidxbits + widened)) - 1); 936 } else { 937 idx = (addr >> (PGSHIFT + ptshift)) & 938 ((1 << ptidxbits) - 1); 939 } 940 941 /* check that physical address of PTE is legal */ 942 943 if (two_stage && first_stage) { 944 int vbase_prot; 945 hwaddr vbase; 946 947 /* Do the second stage translation on the base PTE address. */ 948 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, 949 base, NULL, MMU_DATA_LOAD, 950 MMUIdx_U, false, true, 951 is_debug); 952 953 if (vbase_ret != TRANSLATE_SUCCESS) { 954 if (fault_pte_addr) { 955 *fault_pte_addr = (base + idx * ptesize) >> 2; 956 } 957 return TRANSLATE_G_STAGE_FAIL; 958 } 959 960 pte_addr = vbase + idx * ptesize; 961 } else { 962 pte_addr = base + idx * ptesize; 963 } 964 965 int pmp_prot; 966 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr, 967 sizeof(target_ulong), 968 MMU_DATA_LOAD, PRV_S); 969 if (pmp_ret != TRANSLATE_SUCCESS) { 970 return TRANSLATE_PMP_FAIL; 971 } 972 973 if (riscv_cpu_mxl(env) == MXL_RV32) { 974 pte = address_space_ldl(cs->as, pte_addr, attrs, &res); 975 } else { 976 pte = address_space_ldq(cs->as, pte_addr, attrs, &res); 977 } 978 979 if (res != MEMTX_OK) { 980 return TRANSLATE_FAIL; 981 } 982 983 if (riscv_cpu_sxl(env) == MXL_RV32) { 984 ppn = pte >> PTE_PPN_SHIFT; 985 } else { 986 if (pte & PTE_RESERVED) { 987 return TRANSLATE_FAIL; 988 } 989 990 if (!pbmte && (pte & PTE_PBMT)) { 991 return TRANSLATE_FAIL; 992 } 993 994 if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) { 995 return TRANSLATE_FAIL; 996 } 997 998 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT; 999 } 1000 1001 if (!(pte & PTE_V)) { 1002 /* Invalid PTE */ 1003 return TRANSLATE_FAIL; 1004 } 1005 if (pte & (PTE_R | PTE_W | PTE_X)) { 1006 goto leaf; 1007 } 1008 1009 /* Inner PTE, continue walking */ 1010 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) { 1011 return TRANSLATE_FAIL; 1012 } 1013 base = ppn << PGSHIFT; 1014 } 1015 1016 /* No leaf pte at any translation level. */ 1017 return TRANSLATE_FAIL; 1018 1019 leaf: 1020 if (ppn & ((1ULL << ptshift) - 1)) { 1021 /* Misaligned PPN */ 1022 return TRANSLATE_FAIL; 1023 } 1024 if (!pbmte && (pte & PTE_PBMT)) { 1025 /* Reserved without Svpbmt. */ 1026 return TRANSLATE_FAIL; 1027 } 1028 1029 /* Check for reserved combinations of RWX flags. */ 1030 switch (pte & (PTE_R | PTE_W | PTE_X)) { 1031 case PTE_W: 1032 case PTE_W | PTE_X: 1033 return TRANSLATE_FAIL; 1034 } 1035 1036 int prot = 0; 1037 if (pte & PTE_R) { 1038 prot |= PAGE_READ; 1039 } 1040 if (pte & PTE_W) { 1041 prot |= PAGE_WRITE; 1042 } 1043 if (pte & PTE_X) { 1044 bool mxr = false; 1045 1046 /* 1047 * Use mstatus for first stage or for the second stage without 1048 * virt_enabled (MPRV+MPV) 1049 */ 1050 if (first_stage || !env->virt_enabled) { 1051 mxr = get_field(env->mstatus, MSTATUS_MXR); 1052 } 1053 1054 /* MPRV+MPV case, check VSSTATUS */ 1055 if (first_stage && two_stage && !env->virt_enabled) { 1056 mxr |= get_field(env->vsstatus, MSTATUS_MXR); 1057 } 1058 1059 /* 1060 * Setting MXR at HS-level overrides both VS-stage and G-stage 1061 * execute-only permissions 1062 */ 1063 if (env->virt_enabled) { 1064 mxr |= get_field(env->mstatus_hs, MSTATUS_MXR); 1065 } 1066 1067 if (mxr) { 1068 prot |= PAGE_READ; 1069 } 1070 prot |= PAGE_EXEC; 1071 } 1072 1073 if (pte & PTE_U) { 1074 if (mode != PRV_U) { 1075 if (!mmuidx_sum(mmu_idx)) { 1076 return TRANSLATE_FAIL; 1077 } 1078 /* SUM allows only read+write, not execute. */ 1079 prot &= PAGE_READ | PAGE_WRITE; 1080 } 1081 } else if (mode != PRV_S) { 1082 /* Supervisor PTE flags when not S mode */ 1083 return TRANSLATE_FAIL; 1084 } 1085 1086 if (!((prot >> access_type) & 1)) { 1087 /* Access check failed */ 1088 return TRANSLATE_FAIL; 1089 } 1090 1091 target_ulong updated_pte = pte; 1092 1093 /* 1094 * If ADUE is enabled, set accessed and dirty bits. 1095 * Otherwise raise an exception if necessary. 1096 */ 1097 if (adue) { 1098 updated_pte |= PTE_A | (access_type == MMU_DATA_STORE ? PTE_D : 0); 1099 } else if (!(pte & PTE_A) || 1100 (access_type == MMU_DATA_STORE && !(pte & PTE_D))) { 1101 return TRANSLATE_FAIL; 1102 } 1103 1104 /* Page table updates need to be atomic with MTTCG enabled */ 1105 if (updated_pte != pte && !is_debug) { 1106 if (!adue) { 1107 return TRANSLATE_FAIL; 1108 } 1109 1110 /* 1111 * - if accessed or dirty bits need updating, and the PTE is 1112 * in RAM, then we do so atomically with a compare and swap. 1113 * - if the PTE is in IO space or ROM, then it can't be updated 1114 * and we return TRANSLATE_FAIL. 1115 * - if the PTE changed by the time we went to update it, then 1116 * it is no longer valid and we must re-walk the page table. 1117 */ 1118 MemoryRegion *mr; 1119 hwaddr l = sizeof(target_ulong), addr1; 1120 mr = address_space_translate(cs->as, pte_addr, &addr1, &l, 1121 false, MEMTXATTRS_UNSPECIFIED); 1122 if (memory_region_is_ram(mr)) { 1123 target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1); 1124 #if TCG_OVERSIZED_GUEST 1125 /* 1126 * MTTCG is not enabled on oversized TCG guests so 1127 * page table updates do not need to be atomic 1128 */ 1129 *pte_pa = pte = updated_pte; 1130 #else 1131 target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte); 1132 if (old_pte != pte) { 1133 goto restart; 1134 } 1135 pte = updated_pte; 1136 #endif 1137 } else { 1138 /* 1139 * Misconfigured PTE in ROM (AD bits are not preset) or 1140 * PTE is in IO space and can't be updated atomically. 1141 */ 1142 return TRANSLATE_FAIL; 1143 } 1144 } 1145 1146 /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */ 1147 target_ulong vpn = addr >> PGSHIFT; 1148 1149 if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) { 1150 napot_bits = ctzl(ppn) + 1; 1151 if ((i != (levels - 1)) || (napot_bits != 4)) { 1152 return TRANSLATE_FAIL; 1153 } 1154 } 1155 1156 napot_mask = (1 << napot_bits) - 1; 1157 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) | 1158 (vpn & (((target_ulong)1 << ptshift) - 1)) 1159 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK); 1160 1161 /* 1162 * Remove write permission unless this is a store, or the page is 1163 * already dirty, so that we TLB miss on later writes to update 1164 * the dirty bit. 1165 */ 1166 if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) { 1167 prot &= ~PAGE_WRITE; 1168 } 1169 *ret_prot = prot; 1170 1171 return TRANSLATE_SUCCESS; 1172 } 1173 1174 static void raise_mmu_exception(CPURISCVState *env, target_ulong address, 1175 MMUAccessType access_type, bool pmp_violation, 1176 bool first_stage, bool two_stage, 1177 bool two_stage_indirect) 1178 { 1179 CPUState *cs = env_cpu(env); 1180 1181 switch (access_type) { 1182 case MMU_INST_FETCH: 1183 if (pmp_violation) { 1184 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT; 1185 } else if (env->virt_enabled && !first_stage) { 1186 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; 1187 } else { 1188 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT; 1189 } 1190 break; 1191 case MMU_DATA_LOAD: 1192 if (pmp_violation) { 1193 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 1194 } else if (two_stage && !first_stage) { 1195 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; 1196 } else { 1197 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT; 1198 } 1199 break; 1200 case MMU_DATA_STORE: 1201 if (pmp_violation) { 1202 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1203 } else if (two_stage && !first_stage) { 1204 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; 1205 } else { 1206 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT; 1207 } 1208 break; 1209 default: 1210 g_assert_not_reached(); 1211 } 1212 env->badaddr = address; 1213 env->two_stage_lookup = two_stage; 1214 env->two_stage_indirect_lookup = two_stage_indirect; 1215 } 1216 1217 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 1218 { 1219 RISCVCPU *cpu = RISCV_CPU(cs); 1220 CPURISCVState *env = &cpu->env; 1221 hwaddr phys_addr; 1222 int prot; 1223 int mmu_idx = riscv_env_mmu_index(&cpu->env, false); 1224 1225 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx, 1226 true, env->virt_enabled, true)) { 1227 return -1; 1228 } 1229 1230 if (env->virt_enabled) { 1231 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL, 1232 0, MMUIdx_U, false, true, true)) { 1233 return -1; 1234 } 1235 } 1236 1237 return phys_addr & TARGET_PAGE_MASK; 1238 } 1239 1240 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 1241 vaddr addr, unsigned size, 1242 MMUAccessType access_type, 1243 int mmu_idx, MemTxAttrs attrs, 1244 MemTxResult response, uintptr_t retaddr) 1245 { 1246 RISCVCPU *cpu = RISCV_CPU(cs); 1247 CPURISCVState *env = &cpu->env; 1248 1249 if (access_type == MMU_DATA_STORE) { 1250 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1251 } else if (access_type == MMU_DATA_LOAD) { 1252 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 1253 } else { 1254 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT; 1255 } 1256 1257 env->badaddr = addr; 1258 env->two_stage_lookup = mmuidx_2stage(mmu_idx); 1259 env->two_stage_indirect_lookup = false; 1260 cpu_loop_exit_restore(cs, retaddr); 1261 } 1262 1263 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 1264 MMUAccessType access_type, int mmu_idx, 1265 uintptr_t retaddr) 1266 { 1267 RISCVCPU *cpu = RISCV_CPU(cs); 1268 CPURISCVState *env = &cpu->env; 1269 switch (access_type) { 1270 case MMU_INST_FETCH: 1271 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; 1272 break; 1273 case MMU_DATA_LOAD: 1274 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; 1275 break; 1276 case MMU_DATA_STORE: 1277 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; 1278 break; 1279 default: 1280 g_assert_not_reached(); 1281 } 1282 env->badaddr = addr; 1283 env->two_stage_lookup = mmuidx_2stage(mmu_idx); 1284 env->two_stage_indirect_lookup = false; 1285 cpu_loop_exit_restore(cs, retaddr); 1286 } 1287 1288 1289 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type) 1290 { 1291 enum riscv_pmu_event_idx pmu_event_type; 1292 1293 switch (access_type) { 1294 case MMU_INST_FETCH: 1295 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS; 1296 break; 1297 case MMU_DATA_LOAD: 1298 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS; 1299 break; 1300 case MMU_DATA_STORE: 1301 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS; 1302 break; 1303 default: 1304 return; 1305 } 1306 1307 riscv_pmu_incr_ctr(cpu, pmu_event_type); 1308 } 1309 1310 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 1311 MMUAccessType access_type, int mmu_idx, 1312 bool probe, uintptr_t retaddr) 1313 { 1314 RISCVCPU *cpu = RISCV_CPU(cs); 1315 CPURISCVState *env = &cpu->env; 1316 vaddr im_address; 1317 hwaddr pa = 0; 1318 int prot, prot2, prot_pmp; 1319 bool pmp_violation = false; 1320 bool first_stage_error = true; 1321 bool two_stage_lookup = mmuidx_2stage(mmu_idx); 1322 bool two_stage_indirect_error = false; 1323 int ret = TRANSLATE_FAIL; 1324 int mode = mmuidx_priv(mmu_idx); 1325 /* default TLB page size */ 1326 hwaddr tlb_size = TARGET_PAGE_SIZE; 1327 1328 env->guest_phys_fault_addr = 0; 1329 1330 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", 1331 __func__, address, access_type, mmu_idx); 1332 1333 pmu_tlb_fill_incr_ctr(cpu, access_type); 1334 if (two_stage_lookup) { 1335 /* Two stage lookup */ 1336 ret = get_physical_address(env, &pa, &prot, address, 1337 &env->guest_phys_fault_addr, access_type, 1338 mmu_idx, true, true, false); 1339 1340 /* 1341 * A G-stage exception may be triggered during two state lookup. 1342 * And the env->guest_phys_fault_addr has already been set in 1343 * get_physical_address(). 1344 */ 1345 if (ret == TRANSLATE_G_STAGE_FAIL) { 1346 first_stage_error = false; 1347 two_stage_indirect_error = true; 1348 } 1349 1350 qemu_log_mask(CPU_LOG_MMU, 1351 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " 1352 HWADDR_FMT_plx " prot %d\n", 1353 __func__, address, ret, pa, prot); 1354 1355 if (ret == TRANSLATE_SUCCESS) { 1356 /* Second stage lookup */ 1357 im_address = pa; 1358 1359 ret = get_physical_address(env, &pa, &prot2, im_address, NULL, 1360 access_type, MMUIdx_U, false, true, 1361 false); 1362 1363 qemu_log_mask(CPU_LOG_MMU, 1364 "%s 2nd-stage address=%" VADDR_PRIx 1365 " ret %d physical " 1366 HWADDR_FMT_plx " prot %d\n", 1367 __func__, im_address, ret, pa, prot2); 1368 1369 prot &= prot2; 1370 1371 if (ret == TRANSLATE_SUCCESS) { 1372 ret = get_physical_address_pmp(env, &prot_pmp, pa, 1373 size, access_type, mode); 1374 tlb_size = pmp_get_tlb_size(env, pa); 1375 1376 qemu_log_mask(CPU_LOG_MMU, 1377 "%s PMP address=" HWADDR_FMT_plx " ret %d prot" 1378 " %d tlb_size %" HWADDR_PRIu "\n", 1379 __func__, pa, ret, prot_pmp, tlb_size); 1380 1381 prot &= prot_pmp; 1382 } else { 1383 /* 1384 * Guest physical address translation failed, this is a HS 1385 * level exception 1386 */ 1387 first_stage_error = false; 1388 if (ret != TRANSLATE_PMP_FAIL) { 1389 env->guest_phys_fault_addr = (im_address | 1390 (address & 1391 (TARGET_PAGE_SIZE - 1))) >> 2; 1392 } 1393 } 1394 } 1395 } else { 1396 /* Single stage lookup */ 1397 ret = get_physical_address(env, &pa, &prot, address, NULL, 1398 access_type, mmu_idx, true, false, false); 1399 1400 qemu_log_mask(CPU_LOG_MMU, 1401 "%s address=%" VADDR_PRIx " ret %d physical " 1402 HWADDR_FMT_plx " prot %d\n", 1403 __func__, address, ret, pa, prot); 1404 1405 if (ret == TRANSLATE_SUCCESS) { 1406 ret = get_physical_address_pmp(env, &prot_pmp, pa, 1407 size, access_type, mode); 1408 tlb_size = pmp_get_tlb_size(env, pa); 1409 1410 qemu_log_mask(CPU_LOG_MMU, 1411 "%s PMP address=" HWADDR_FMT_plx " ret %d prot" 1412 " %d tlb_size %" HWADDR_PRIu "\n", 1413 __func__, pa, ret, prot_pmp, tlb_size); 1414 1415 prot &= prot_pmp; 1416 } 1417 } 1418 1419 if (ret == TRANSLATE_PMP_FAIL) { 1420 pmp_violation = true; 1421 } 1422 1423 if (ret == TRANSLATE_SUCCESS) { 1424 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), 1425 prot, mmu_idx, tlb_size); 1426 return true; 1427 } else if (probe) { 1428 return false; 1429 } else { 1430 raise_mmu_exception(env, address, access_type, pmp_violation, 1431 first_stage_error, two_stage_lookup, 1432 two_stage_indirect_error); 1433 cpu_loop_exit_restore(cs, retaddr); 1434 } 1435 1436 return true; 1437 } 1438 1439 static target_ulong riscv_transformed_insn(CPURISCVState *env, 1440 target_ulong insn, 1441 target_ulong taddr) 1442 { 1443 target_ulong xinsn = 0; 1444 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0; 1445 1446 /* 1447 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to 1448 * be uncompressed. The Quadrant 1 of RVC instruction space need 1449 * not be transformed because these instructions won't generate 1450 * any load/store trap. 1451 */ 1452 1453 if ((insn & 0x3) != 0x3) { 1454 /* Transform 16bit instruction into 32bit instruction */ 1455 switch (GET_C_OP(insn)) { 1456 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */ 1457 switch (GET_C_FUNC(insn)) { 1458 case OPC_RISC_C_FUNC_FLD_LQ: 1459 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */ 1460 xinsn = OPC_RISC_FLD; 1461 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1462 access_rs1 = GET_C_RS1S(insn); 1463 access_imm = GET_C_LD_IMM(insn); 1464 access_size = 8; 1465 } 1466 break; 1467 case OPC_RISC_C_FUNC_LW: /* C.LW */ 1468 xinsn = OPC_RISC_LW; 1469 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1470 access_rs1 = GET_C_RS1S(insn); 1471 access_imm = GET_C_LW_IMM(insn); 1472 access_size = 4; 1473 break; 1474 case OPC_RISC_C_FUNC_FLW_LD: 1475 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */ 1476 xinsn = OPC_RISC_FLW; 1477 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1478 access_rs1 = GET_C_RS1S(insn); 1479 access_imm = GET_C_LW_IMM(insn); 1480 access_size = 4; 1481 } else { /* C.LD (RV64/RV128) */ 1482 xinsn = OPC_RISC_LD; 1483 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1484 access_rs1 = GET_C_RS1S(insn); 1485 access_imm = GET_C_LD_IMM(insn); 1486 access_size = 8; 1487 } 1488 break; 1489 case OPC_RISC_C_FUNC_FSD_SQ: 1490 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */ 1491 xinsn = OPC_RISC_FSD; 1492 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1493 access_rs1 = GET_C_RS1S(insn); 1494 access_imm = GET_C_SD_IMM(insn); 1495 access_size = 8; 1496 } 1497 break; 1498 case OPC_RISC_C_FUNC_SW: /* C.SW */ 1499 xinsn = OPC_RISC_SW; 1500 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1501 access_rs1 = GET_C_RS1S(insn); 1502 access_imm = GET_C_SW_IMM(insn); 1503 access_size = 4; 1504 break; 1505 case OPC_RISC_C_FUNC_FSW_SD: 1506 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */ 1507 xinsn = OPC_RISC_FSW; 1508 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1509 access_rs1 = GET_C_RS1S(insn); 1510 access_imm = GET_C_SW_IMM(insn); 1511 access_size = 4; 1512 } else { /* C.SD (RV64/RV128) */ 1513 xinsn = OPC_RISC_SD; 1514 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1515 access_rs1 = GET_C_RS1S(insn); 1516 access_imm = GET_C_SD_IMM(insn); 1517 access_size = 8; 1518 } 1519 break; 1520 default: 1521 break; 1522 } 1523 break; 1524 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */ 1525 switch (GET_C_FUNC(insn)) { 1526 case OPC_RISC_C_FUNC_FLDSP_LQSP: 1527 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */ 1528 xinsn = OPC_RISC_FLD; 1529 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1530 access_rs1 = 2; 1531 access_imm = GET_C_LDSP_IMM(insn); 1532 access_size = 8; 1533 } 1534 break; 1535 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */ 1536 xinsn = OPC_RISC_LW; 1537 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1538 access_rs1 = 2; 1539 access_imm = GET_C_LWSP_IMM(insn); 1540 access_size = 4; 1541 break; 1542 case OPC_RISC_C_FUNC_FLWSP_LDSP: 1543 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */ 1544 xinsn = OPC_RISC_FLW; 1545 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1546 access_rs1 = 2; 1547 access_imm = GET_C_LWSP_IMM(insn); 1548 access_size = 4; 1549 } else { /* C.LDSP (RV64/RV128) */ 1550 xinsn = OPC_RISC_LD; 1551 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1552 access_rs1 = 2; 1553 access_imm = GET_C_LDSP_IMM(insn); 1554 access_size = 8; 1555 } 1556 break; 1557 case OPC_RISC_C_FUNC_FSDSP_SQSP: 1558 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */ 1559 xinsn = OPC_RISC_FSD; 1560 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1561 access_rs1 = 2; 1562 access_imm = GET_C_SDSP_IMM(insn); 1563 access_size = 8; 1564 } 1565 break; 1566 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */ 1567 xinsn = OPC_RISC_SW; 1568 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1569 access_rs1 = 2; 1570 access_imm = GET_C_SWSP_IMM(insn); 1571 access_size = 4; 1572 break; 1573 case 7: 1574 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */ 1575 xinsn = OPC_RISC_FSW; 1576 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1577 access_rs1 = 2; 1578 access_imm = GET_C_SWSP_IMM(insn); 1579 access_size = 4; 1580 } else { /* C.SDSP (RV64/RV128) */ 1581 xinsn = OPC_RISC_SD; 1582 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1583 access_rs1 = 2; 1584 access_imm = GET_C_SDSP_IMM(insn); 1585 access_size = 8; 1586 } 1587 break; 1588 default: 1589 break; 1590 } 1591 break; 1592 default: 1593 break; 1594 } 1595 1596 /* 1597 * Clear Bit1 of transformed instruction to indicate that 1598 * original insruction was a 16bit instruction 1599 */ 1600 xinsn &= ~((target_ulong)0x2); 1601 } else { 1602 /* Transform 32bit (or wider) instructions */ 1603 switch (MASK_OP_MAJOR(insn)) { 1604 case OPC_RISC_ATOMIC: 1605 xinsn = insn; 1606 access_rs1 = GET_RS1(insn); 1607 access_size = 1 << GET_FUNCT3(insn); 1608 break; 1609 case OPC_RISC_LOAD: 1610 case OPC_RISC_FP_LOAD: 1611 xinsn = SET_I_IMM(insn, 0); 1612 access_rs1 = GET_RS1(insn); 1613 access_imm = GET_IMM(insn); 1614 access_size = 1 << GET_FUNCT3(insn); 1615 break; 1616 case OPC_RISC_STORE: 1617 case OPC_RISC_FP_STORE: 1618 xinsn = SET_S_IMM(insn, 0); 1619 access_rs1 = GET_RS1(insn); 1620 access_imm = GET_STORE_IMM(insn); 1621 access_size = 1 << GET_FUNCT3(insn); 1622 break; 1623 case OPC_RISC_SYSTEM: 1624 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) { 1625 xinsn = insn; 1626 access_rs1 = GET_RS1(insn); 1627 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3); 1628 access_size = 1 << access_size; 1629 } 1630 break; 1631 default: 1632 break; 1633 } 1634 } 1635 1636 if (access_size) { 1637 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) & 1638 (access_size - 1)); 1639 } 1640 1641 return xinsn; 1642 } 1643 1644 /* 1645 * Handle Traps 1646 * 1647 * Adapted from Spike's processor_t::take_trap. 1648 * 1649 */ 1650 void riscv_cpu_do_interrupt(CPUState *cs) 1651 { 1652 RISCVCPU *cpu = RISCV_CPU(cs); 1653 CPURISCVState *env = &cpu->env; 1654 bool virt = env->virt_enabled; 1655 bool write_gva = false; 1656 uint64_t s; 1657 1658 /* 1659 * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide 1660 * so we mask off the MSB and separate into trap type and cause. 1661 */ 1662 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); 1663 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; 1664 uint64_t deleg = async ? env->mideleg : env->medeleg; 1665 bool s_injected = env->mvip & (1 << cause) & env->mvien && 1666 !(env->mip & (1 << cause)); 1667 bool vs_injected = env->hvip & (1 << cause) & env->hvien && 1668 !(env->mip & (1 << cause)); 1669 target_ulong tval = 0; 1670 target_ulong tinst = 0; 1671 target_ulong htval = 0; 1672 target_ulong mtval2 = 0; 1673 1674 if (!async) { 1675 /* set tval to badaddr for traps with address information */ 1676 switch (cause) { 1677 #ifdef CONFIG_TCG 1678 case RISCV_EXCP_SEMIHOST: 1679 do_common_semihosting(cs); 1680 env->pc += 4; 1681 return; 1682 #endif 1683 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: 1684 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: 1685 case RISCV_EXCP_LOAD_ADDR_MIS: 1686 case RISCV_EXCP_STORE_AMO_ADDR_MIS: 1687 case RISCV_EXCP_LOAD_ACCESS_FAULT: 1688 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: 1689 case RISCV_EXCP_LOAD_PAGE_FAULT: 1690 case RISCV_EXCP_STORE_PAGE_FAULT: 1691 write_gva = env->two_stage_lookup; 1692 tval = env->badaddr; 1693 if (env->two_stage_indirect_lookup) { 1694 /* 1695 * special pseudoinstruction for G-stage fault taken while 1696 * doing VS-stage page table walk. 1697 */ 1698 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; 1699 } else { 1700 /* 1701 * The "Addr. Offset" field in transformed instruction is 1702 * non-zero only for misaligned access. 1703 */ 1704 tinst = riscv_transformed_insn(env, env->bins, tval); 1705 } 1706 break; 1707 case RISCV_EXCP_INST_GUEST_PAGE_FAULT: 1708 case RISCV_EXCP_INST_ADDR_MIS: 1709 case RISCV_EXCP_INST_ACCESS_FAULT: 1710 case RISCV_EXCP_INST_PAGE_FAULT: 1711 write_gva = env->two_stage_lookup; 1712 tval = env->badaddr; 1713 if (env->two_stage_indirect_lookup) { 1714 /* 1715 * special pseudoinstruction for G-stage fault taken while 1716 * doing VS-stage page table walk. 1717 */ 1718 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; 1719 } 1720 break; 1721 case RISCV_EXCP_ILLEGAL_INST: 1722 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT: 1723 tval = env->bins; 1724 break; 1725 case RISCV_EXCP_BREAKPOINT: 1726 tval = env->badaddr; 1727 if (cs->watchpoint_hit) { 1728 tval = cs->watchpoint_hit->hitaddr; 1729 cs->watchpoint_hit = NULL; 1730 } 1731 break; 1732 default: 1733 break; 1734 } 1735 /* ecall is dispatched as one cause so translate based on mode */ 1736 if (cause == RISCV_EXCP_U_ECALL) { 1737 assert(env->priv <= 3); 1738 1739 if (env->priv == PRV_M) { 1740 cause = RISCV_EXCP_M_ECALL; 1741 } else if (env->priv == PRV_S && env->virt_enabled) { 1742 cause = RISCV_EXCP_VS_ECALL; 1743 } else if (env->priv == PRV_S && !env->virt_enabled) { 1744 cause = RISCV_EXCP_S_ECALL; 1745 } else if (env->priv == PRV_U) { 1746 cause = RISCV_EXCP_U_ECALL; 1747 } 1748 } 1749 } 1750 1751 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, 1752 riscv_cpu_get_trap_name(cause, async)); 1753 1754 qemu_log_mask(CPU_LOG_INT, 1755 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", " 1756 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n", 1757 __func__, env->mhartid, async, cause, env->pc, tval, 1758 riscv_cpu_get_trap_name(cause, async)); 1759 1760 if (env->priv <= PRV_S && cause < 64 && 1761 (((deleg >> cause) & 1) || s_injected || vs_injected)) { 1762 /* handle the trap in S-mode */ 1763 if (riscv_has_ext(env, RVH)) { 1764 uint64_t hdeleg = async ? env->hideleg : env->hedeleg; 1765 1766 if (env->virt_enabled && 1767 (((hdeleg >> cause) & 1) || vs_injected)) { 1768 /* Trap to VS mode */ 1769 /* 1770 * See if we need to adjust cause. Yes if its VS mode interrupt 1771 * no if hypervisor has delegated one of hs mode's interrupt 1772 */ 1773 if (async && (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || 1774 cause == IRQ_VS_EXT)) { 1775 cause = cause - 1; 1776 } 1777 write_gva = false; 1778 } else if (env->virt_enabled) { 1779 /* Trap into HS mode, from virt */ 1780 riscv_cpu_swap_hypervisor_regs(env); 1781 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, 1782 env->priv); 1783 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true); 1784 1785 htval = env->guest_phys_fault_addr; 1786 1787 virt = false; 1788 } else { 1789 /* Trap into HS mode */ 1790 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false); 1791 htval = env->guest_phys_fault_addr; 1792 } 1793 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva); 1794 } 1795 1796 s = env->mstatus; 1797 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); 1798 s = set_field(s, MSTATUS_SPP, env->priv); 1799 s = set_field(s, MSTATUS_SIE, 0); 1800 env->mstatus = s; 1801 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); 1802 env->sepc = env->pc; 1803 env->stval = tval; 1804 env->htval = htval; 1805 env->htinst = tinst; 1806 env->pc = (env->stvec >> 2 << 2) + 1807 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); 1808 riscv_cpu_set_mode(env, PRV_S, virt); 1809 } else { 1810 /* handle the trap in M-mode */ 1811 if (riscv_has_ext(env, RVH)) { 1812 if (env->virt_enabled) { 1813 riscv_cpu_swap_hypervisor_regs(env); 1814 } 1815 env->mstatus = set_field(env->mstatus, MSTATUS_MPV, 1816 env->virt_enabled); 1817 if (env->virt_enabled && tval) { 1818 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); 1819 } 1820 1821 mtval2 = env->guest_phys_fault_addr; 1822 1823 /* Trapping to M mode, virt is disabled */ 1824 virt = false; 1825 } 1826 1827 s = env->mstatus; 1828 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); 1829 s = set_field(s, MSTATUS_MPP, env->priv); 1830 s = set_field(s, MSTATUS_MIE, 0); 1831 env->mstatus = s; 1832 env->mcause = cause | ~(((target_ulong)-1) >> async); 1833 env->mepc = env->pc; 1834 env->mtval = tval; 1835 env->mtval2 = mtval2; 1836 env->mtinst = tinst; 1837 env->pc = (env->mtvec >> 2 << 2) + 1838 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); 1839 riscv_cpu_set_mode(env, PRV_M, virt); 1840 } 1841 1842 /* 1843 * NOTE: it is not necessary to yield load reservations here. It is only 1844 * necessary for an SC from "another hart" to cause a load reservation 1845 * to be yielded. Refer to the memory consistency model section of the 1846 * RISC-V ISA Specification. 1847 */ 1848 1849 env->two_stage_lookup = false; 1850 env->two_stage_indirect_lookup = false; 1851 } 1852 1853 #endif /* !CONFIG_USER_ONLY */ 1854