xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision 2c9d7471)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "pmu.h"
25 #include "exec/exec-all.h"
26 #include "instmap.h"
27 #include "tcg/tcg-op.h"
28 #include "trace.h"
29 #include "semihosting/common-semi.h"
30 #include "sysemu/cpu-timers.h"
31 #include "cpu_bits.h"
32 #include "debug.h"
33 
34 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
35 {
36 #ifdef CONFIG_USER_ONLY
37     return 0;
38 #else
39     return env->priv;
40 #endif
41 }
42 
43 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
44                           target_ulong *cs_base, uint32_t *pflags)
45 {
46     CPUState *cs = env_cpu(env);
47     RISCVCPU *cpu = RISCV_CPU(cs);
48 
49     uint32_t flags = 0;
50 
51     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
52     *cs_base = 0;
53 
54     if (riscv_has_ext(env, RVV) || cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) {
55         /*
56          * If env->vl equals to VLMAX, we can use generic vector operation
57          * expanders (GVEC) to accerlate the vector operations.
58          * However, as LMUL could be a fractional number. The maximum
59          * vector size can be operated might be less than 8 bytes,
60          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
61          * only when maxsz >= 8 bytes.
62          */
63         uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype);
64         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
65         uint32_t maxsz = vlmax << sew;
66         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
67                            (maxsz >= 8);
68         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
69         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
70         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
71                     FIELD_EX64(env->vtype, VTYPE, VLMUL));
72         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
73         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
74                     FIELD_EX64(env->vtype, VTYPE, VTA));
75         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
76                     FIELD_EX64(env->vtype, VTYPE, VMA));
77     } else {
78         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
79     }
80 
81 #ifdef CONFIG_USER_ONLY
82     flags |= TB_FLAGS_MSTATUS_FS;
83     flags |= TB_FLAGS_MSTATUS_VS;
84 #else
85     flags |= cpu_mmu_index(env, 0);
86     if (riscv_cpu_fp_enabled(env)) {
87         flags |= env->mstatus & MSTATUS_FS;
88     }
89 
90     if (riscv_cpu_vector_enabled(env)) {
91         flags |= env->mstatus & MSTATUS_VS;
92     }
93 
94     if (riscv_has_ext(env, RVH)) {
95         if (env->priv == PRV_M ||
96             (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
97             (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
98                 get_field(env->hstatus, HSTATUS_HU))) {
99             flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
100         }
101 
102         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
103                            get_field(env->mstatus_hs, MSTATUS_FS));
104 
105         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS,
106                            get_field(env->mstatus_hs, MSTATUS_VS));
107     }
108     if (riscv_feature(env, RISCV_FEATURE_DEBUG) && !icount_enabled()) {
109         flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER,
110                            riscv_itrigger_enabled(env));
111     }
112 #endif
113 
114     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
115     if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
116         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
117     }
118     if (env->cur_pmbase != 0) {
119         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
120     }
121 
122     *pflags = flags;
123 }
124 
125 void riscv_cpu_update_mask(CPURISCVState *env)
126 {
127     target_ulong mask = -1, base = 0;
128     /*
129      * TODO: Current RVJ spec does not specify
130      * how the extension interacts with XLEN.
131      */
132 #ifndef CONFIG_USER_ONLY
133     if (riscv_has_ext(env, RVJ)) {
134         switch (env->priv) {
135         case PRV_M:
136             if (env->mmte & M_PM_ENABLE) {
137                 mask = env->mpmmask;
138                 base = env->mpmbase;
139             }
140             break;
141         case PRV_S:
142             if (env->mmte & S_PM_ENABLE) {
143                 mask = env->spmmask;
144                 base = env->spmbase;
145             }
146             break;
147         case PRV_U:
148             if (env->mmte & U_PM_ENABLE) {
149                 mask = env->upmmask;
150                 base = env->upmbase;
151             }
152             break;
153         default:
154             g_assert_not_reached();
155         }
156     }
157 #endif
158     if (env->xl == MXL_RV32) {
159         env->cur_pmmask = mask & UINT32_MAX;
160         env->cur_pmbase = base & UINT32_MAX;
161     } else {
162         env->cur_pmmask = mask;
163         env->cur_pmbase = base;
164     }
165 }
166 
167 #ifndef CONFIG_USER_ONLY
168 
169 /*
170  * The HS-mode is allowed to configure priority only for the
171  * following VS-mode local interrupts:
172  *
173  * 0  (Reserved interrupt, reads as zero)
174  * 1  Supervisor software interrupt
175  * 4  (Reserved interrupt, reads as zero)
176  * 5  Supervisor timer interrupt
177  * 8  (Reserved interrupt, reads as zero)
178  * 13 (Reserved interrupt)
179  * 14 "
180  * 15 "
181  * 16 "
182  * 17 "
183  * 18 "
184  * 19 "
185  * 20 "
186  * 21 "
187  * 22 "
188  * 23 "
189  */
190 
191 static const int hviprio_index2irq[] = {
192     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
193 static const int hviprio_index2rdzero[] = {
194     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
195 
196 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
197 {
198     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
199         return -EINVAL;
200     }
201 
202     if (out_irq) {
203         *out_irq = hviprio_index2irq[index];
204     }
205 
206     if (out_rdzero) {
207         *out_rdzero = hviprio_index2rdzero[index];
208     }
209 
210     return 0;
211 }
212 
213 /*
214  * Default priorities of local interrupts are defined in the
215  * RISC-V Advanced Interrupt Architecture specification.
216  *
217  * ----------------------------------------------------------------
218  *  Default  |
219  *  Priority | Major Interrupt Numbers
220  * ----------------------------------------------------------------
221  *  Highest  | 47, 23, 46, 45, 22, 44,
222  *           | 43, 21, 42, 41, 20, 40
223  *           |
224  *           | 11 (0b),  3 (03),  7 (07)
225  *           |  9 (09),  1 (01),  5 (05)
226  *           | 12 (0c)
227  *           | 10 (0a),  2 (02),  6 (06)
228  *           |
229  *           | 39, 19, 38, 37, 18, 36,
230  *  Lowest   | 35, 17, 34, 33, 16, 32
231  * ----------------------------------------------------------------
232  */
233 static const uint8_t default_iprio[64] = {
234  /* Custom interrupts 48 to 63 */
235  [63] = IPRIO_MMAXIPRIO,
236  [62] = IPRIO_MMAXIPRIO,
237  [61] = IPRIO_MMAXIPRIO,
238  [60] = IPRIO_MMAXIPRIO,
239  [59] = IPRIO_MMAXIPRIO,
240  [58] = IPRIO_MMAXIPRIO,
241  [57] = IPRIO_MMAXIPRIO,
242  [56] = IPRIO_MMAXIPRIO,
243  [55] = IPRIO_MMAXIPRIO,
244  [54] = IPRIO_MMAXIPRIO,
245  [53] = IPRIO_MMAXIPRIO,
246  [52] = IPRIO_MMAXIPRIO,
247  [51] = IPRIO_MMAXIPRIO,
248  [50] = IPRIO_MMAXIPRIO,
249  [49] = IPRIO_MMAXIPRIO,
250  [48] = IPRIO_MMAXIPRIO,
251 
252  /* Custom interrupts 24 to 31 */
253  [31] = IPRIO_MMAXIPRIO,
254  [30] = IPRIO_MMAXIPRIO,
255  [29] = IPRIO_MMAXIPRIO,
256  [28] = IPRIO_MMAXIPRIO,
257  [27] = IPRIO_MMAXIPRIO,
258  [26] = IPRIO_MMAXIPRIO,
259  [25] = IPRIO_MMAXIPRIO,
260  [24] = IPRIO_MMAXIPRIO,
261 
262  [47] = IPRIO_DEFAULT_UPPER,
263  [23] = IPRIO_DEFAULT_UPPER + 1,
264  [46] = IPRIO_DEFAULT_UPPER + 2,
265  [45] = IPRIO_DEFAULT_UPPER + 3,
266  [22] = IPRIO_DEFAULT_UPPER + 4,
267  [44] = IPRIO_DEFAULT_UPPER + 5,
268 
269  [43] = IPRIO_DEFAULT_UPPER + 6,
270  [21] = IPRIO_DEFAULT_UPPER + 7,
271  [42] = IPRIO_DEFAULT_UPPER + 8,
272  [41] = IPRIO_DEFAULT_UPPER + 9,
273  [20] = IPRIO_DEFAULT_UPPER + 10,
274  [40] = IPRIO_DEFAULT_UPPER + 11,
275 
276  [11] = IPRIO_DEFAULT_M,
277  [3]  = IPRIO_DEFAULT_M + 1,
278  [7]  = IPRIO_DEFAULT_M + 2,
279 
280  [9]  = IPRIO_DEFAULT_S,
281  [1]  = IPRIO_DEFAULT_S + 1,
282  [5]  = IPRIO_DEFAULT_S + 2,
283 
284  [12] = IPRIO_DEFAULT_SGEXT,
285 
286  [10] = IPRIO_DEFAULT_VS,
287  [2]  = IPRIO_DEFAULT_VS + 1,
288  [6]  = IPRIO_DEFAULT_VS + 2,
289 
290  [39] = IPRIO_DEFAULT_LOWER,
291  [19] = IPRIO_DEFAULT_LOWER + 1,
292  [38] = IPRIO_DEFAULT_LOWER + 2,
293  [37] = IPRIO_DEFAULT_LOWER + 3,
294  [18] = IPRIO_DEFAULT_LOWER + 4,
295  [36] = IPRIO_DEFAULT_LOWER + 5,
296 
297  [35] = IPRIO_DEFAULT_LOWER + 6,
298  [17] = IPRIO_DEFAULT_LOWER + 7,
299  [34] = IPRIO_DEFAULT_LOWER + 8,
300  [33] = IPRIO_DEFAULT_LOWER + 9,
301  [16] = IPRIO_DEFAULT_LOWER + 10,
302  [32] = IPRIO_DEFAULT_LOWER + 11,
303 };
304 
305 uint8_t riscv_cpu_default_priority(int irq)
306 {
307     if (irq < 0 || irq > 63) {
308         return IPRIO_MMAXIPRIO;
309     }
310 
311     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
312 };
313 
314 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
315                                     int extirq, unsigned int extirq_def_prio,
316                                     uint64_t pending, uint8_t *iprio)
317 {
318     RISCVCPU *cpu = env_archcpu(env);
319     int irq, best_irq = RISCV_EXCP_NONE;
320     unsigned int prio, best_prio = UINT_MAX;
321 
322     if (!pending) {
323         return RISCV_EXCP_NONE;
324     }
325 
326     irq = ctz64(pending);
327     if (!((extirq == IRQ_M_EXT) ? cpu->cfg.ext_smaia : cpu->cfg.ext_ssaia)) {
328         return irq;
329     }
330 
331     pending = pending >> irq;
332     while (pending) {
333         prio = iprio[irq];
334         if (!prio) {
335             if (irq == extirq) {
336                 prio = extirq_def_prio;
337             } else {
338                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
339                        1 : IPRIO_MMAXIPRIO;
340             }
341         }
342         if ((pending & 0x1) && (prio <= best_prio)) {
343             best_irq = irq;
344             best_prio = prio;
345         }
346         irq++;
347         pending = pending >> 1;
348     }
349 
350     return best_irq;
351 }
352 
353 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
354 {
355     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
356     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
357     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
358 
359     return (env->mip | vsgein | vstip) & env->mie;
360 }
361 
362 int riscv_cpu_mirq_pending(CPURISCVState *env)
363 {
364     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
365                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
366 
367     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
368                                     irqs, env->miprio);
369 }
370 
371 int riscv_cpu_sirq_pending(CPURISCVState *env)
372 {
373     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
374                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
375 
376     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
377                                     irqs, env->siprio);
378 }
379 
380 int riscv_cpu_vsirq_pending(CPURISCVState *env)
381 {
382     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
383                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
384 
385     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
386                                     irqs >> 1, env->hviprio);
387 }
388 
389 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
390 {
391     int virq;
392     uint64_t irqs, pending, mie, hsie, vsie;
393 
394     /* Determine interrupt enable state of all privilege modes */
395     if (riscv_cpu_virt_enabled(env)) {
396         mie = 1;
397         hsie = 1;
398         vsie = (env->priv < PRV_S) ||
399                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
400     } else {
401         mie = (env->priv < PRV_M) ||
402               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
403         hsie = (env->priv < PRV_S) ||
404                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
405         vsie = 0;
406     }
407 
408     /* Determine all pending interrupts */
409     pending = riscv_cpu_all_pending(env);
410 
411     /* Check M-mode interrupts */
412     irqs = pending & ~env->mideleg & -mie;
413     if (irqs) {
414         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
415                                         irqs, env->miprio);
416     }
417 
418     /* Check HS-mode interrupts */
419     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
420     if (irqs) {
421         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
422                                         irqs, env->siprio);
423     }
424 
425     /* Check VS-mode interrupts */
426     irqs = pending & env->mideleg & env->hideleg & -vsie;
427     if (irqs) {
428         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
429                                         irqs >> 1, env->hviprio);
430         return (virq <= 0) ? virq : virq + 1;
431     }
432 
433     /* Indicate no pending interrupt */
434     return RISCV_EXCP_NONE;
435 }
436 
437 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
438 {
439     if (interrupt_request & CPU_INTERRUPT_HARD) {
440         RISCVCPU *cpu = RISCV_CPU(cs);
441         CPURISCVState *env = &cpu->env;
442         int interruptno = riscv_cpu_local_irq_pending(env);
443         if (interruptno >= 0) {
444             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
445             riscv_cpu_do_interrupt(cs);
446             return true;
447         }
448     }
449     return false;
450 }
451 
452 /* Return true is floating point support is currently enabled */
453 bool riscv_cpu_fp_enabled(CPURISCVState *env)
454 {
455     if (env->mstatus & MSTATUS_FS) {
456         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
457             return false;
458         }
459         return true;
460     }
461 
462     return false;
463 }
464 
465 /* Return true is vector support is currently enabled */
466 bool riscv_cpu_vector_enabled(CPURISCVState *env)
467 {
468     if (env->mstatus & MSTATUS_VS) {
469         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) {
470             return false;
471         }
472         return true;
473     }
474 
475     return false;
476 }
477 
478 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
479 {
480     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
481                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
482                             MSTATUS64_UXL | MSTATUS_VS;
483 
484     if (riscv_has_ext(env, RVF)) {
485         mstatus_mask |= MSTATUS_FS;
486     }
487     bool current_virt = riscv_cpu_virt_enabled(env);
488 
489     g_assert(riscv_has_ext(env, RVH));
490 
491     if (current_virt) {
492         /* Current V=1 and we are about to change to V=0 */
493         env->vsstatus = env->mstatus & mstatus_mask;
494         env->mstatus &= ~mstatus_mask;
495         env->mstatus |= env->mstatus_hs;
496 
497         env->vstvec = env->stvec;
498         env->stvec = env->stvec_hs;
499 
500         env->vsscratch = env->sscratch;
501         env->sscratch = env->sscratch_hs;
502 
503         env->vsepc = env->sepc;
504         env->sepc = env->sepc_hs;
505 
506         env->vscause = env->scause;
507         env->scause = env->scause_hs;
508 
509         env->vstval = env->stval;
510         env->stval = env->stval_hs;
511 
512         env->vsatp = env->satp;
513         env->satp = env->satp_hs;
514     } else {
515         /* Current V=0 and we are about to change to V=1 */
516         env->mstatus_hs = env->mstatus & mstatus_mask;
517         env->mstatus &= ~mstatus_mask;
518         env->mstatus |= env->vsstatus;
519 
520         env->stvec_hs = env->stvec;
521         env->stvec = env->vstvec;
522 
523         env->sscratch_hs = env->sscratch;
524         env->sscratch = env->vsscratch;
525 
526         env->sepc_hs = env->sepc;
527         env->sepc = env->vsepc;
528 
529         env->scause_hs = env->scause;
530         env->scause = env->vscause;
531 
532         env->stval_hs = env->stval;
533         env->stval = env->vstval;
534 
535         env->satp_hs = env->satp;
536         env->satp = env->vsatp;
537     }
538 }
539 
540 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
541 {
542     if (!riscv_has_ext(env, RVH)) {
543         return 0;
544     }
545 
546     return env->geilen;
547 }
548 
549 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
550 {
551     if (!riscv_has_ext(env, RVH)) {
552         return;
553     }
554 
555     if (geilen > (TARGET_LONG_BITS - 1)) {
556         return;
557     }
558 
559     env->geilen = geilen;
560 }
561 
562 bool riscv_cpu_virt_enabled(CPURISCVState *env)
563 {
564     if (!riscv_has_ext(env, RVH)) {
565         return false;
566     }
567 
568     return get_field(env->virt, VIRT_ONOFF);
569 }
570 
571 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
572 {
573     if (!riscv_has_ext(env, RVH)) {
574         return;
575     }
576 
577     /* Flush the TLB on all virt mode changes. */
578     if (get_field(env->virt, VIRT_ONOFF) != enable) {
579         tlb_flush(env_cpu(env));
580     }
581 
582     env->virt = set_field(env->virt, VIRT_ONOFF, enable);
583 
584     if (enable) {
585         /*
586          * The guest external interrupts from an interrupt controller are
587          * delivered only when the Guest/VM is running (i.e. V=1). This means
588          * any guest external interrupt which is triggered while the Guest/VM
589          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
590          * with sluggish response to serial console input and other I/O events.
591          *
592          * To solve this, we check and inject interrupt after setting V=1.
593          */
594         riscv_cpu_update_mip(env_archcpu(env), 0, 0);
595     }
596 }
597 
598 bool riscv_cpu_two_stage_lookup(int mmu_idx)
599 {
600     return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
601 }
602 
603 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
604 {
605     CPURISCVState *env = &cpu->env;
606     if (env->miclaim & interrupts) {
607         return -1;
608     } else {
609         env->miclaim |= interrupts;
610         return 0;
611     }
612 }
613 
614 uint64_t riscv_cpu_update_mip(RISCVCPU *cpu, uint64_t mask, uint64_t value)
615 {
616     CPURISCVState *env = &cpu->env;
617     CPUState *cs = CPU(cpu);
618     uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
619     bool locked = false;
620 
621     if (riscv_cpu_virt_enabled(env)) {
622         gein = get_field(env->hstatus, HSTATUS_VGEIN);
623         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
624     }
625 
626     /* No need to update mip for VSTIP */
627     mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask;
628     vstip = env->vstime_irq ? MIP_VSTIP : 0;
629 
630     if (!qemu_mutex_iothread_locked()) {
631         locked = true;
632         qemu_mutex_lock_iothread();
633     }
634 
635     env->mip = (env->mip & ~mask) | (value & mask);
636 
637     if (env->mip | vsgein | vstip) {
638         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
639     } else {
640         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
641     }
642 
643     if (locked) {
644         qemu_mutex_unlock_iothread();
645     }
646 
647     return old;
648 }
649 
650 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
651                              void *arg)
652 {
653     env->rdtime_fn = fn;
654     env->rdtime_fn_arg = arg;
655 }
656 
657 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
658                                    int (*rmw_fn)(void *arg,
659                                                  target_ulong reg,
660                                                  target_ulong *val,
661                                                  target_ulong new_val,
662                                                  target_ulong write_mask),
663                                    void *rmw_fn_arg)
664 {
665     if (priv <= PRV_M) {
666         env->aia_ireg_rmw_fn[priv] = rmw_fn;
667         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
668     }
669 }
670 
671 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
672 {
673     if (newpriv > PRV_M) {
674         g_assert_not_reached();
675     }
676     if (newpriv == PRV_H) {
677         newpriv = PRV_U;
678     }
679     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
680     env->priv = newpriv;
681     env->xl = cpu_recompute_xl(env);
682     riscv_cpu_update_mask(env);
683 
684     /*
685      * Clear the load reservation - otherwise a reservation placed in one
686      * context/process can be used by another, resulting in an SC succeeding
687      * incorrectly. Version 2.2 of the ISA specification explicitly requires
688      * this behaviour, while later revisions say that the kernel "should" use
689      * an SC instruction to force the yielding of a load reservation on a
690      * preemptive context switch. As a result, do both.
691      */
692     env->load_res = -1;
693 }
694 
695 /*
696  * get_physical_address_pmp - check PMP permission for this physical address
697  *
698  * Match the PMP region and check permission for this physical address and it's
699  * TLB page. Returns 0 if the permission checking was successful
700  *
701  * @env: CPURISCVState
702  * @prot: The returned protection attributes
703  * @tlb_size: TLB page size containing addr. It could be modified after PMP
704  *            permission checking. NULL if not set TLB page for addr.
705  * @addr: The physical address to be checked permission
706  * @access_type: The type of MMU access
707  * @mode: Indicates current privilege level.
708  */
709 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
710                                     target_ulong *tlb_size, hwaddr addr,
711                                     int size, MMUAccessType access_type,
712                                     int mode)
713 {
714     pmp_priv_t pmp_priv;
715     int pmp_index = -1;
716 
717     if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
718         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
719         return TRANSLATE_SUCCESS;
720     }
721 
722     pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
723                                    &pmp_priv, mode);
724     if (pmp_index < 0) {
725         *prot = 0;
726         return TRANSLATE_PMP_FAIL;
727     }
728 
729     *prot = pmp_priv_to_page_prot(pmp_priv);
730     if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
731         target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
732         target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
733 
734         *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
735     }
736 
737     return TRANSLATE_SUCCESS;
738 }
739 
740 /* get_physical_address - get the physical address for this virtual address
741  *
742  * Do a page table walk to obtain the physical address corresponding to a
743  * virtual address. Returns 0 if the translation was successful
744  *
745  * Adapted from Spike's mmu_t::translate and mmu_t::walk
746  *
747  * @env: CPURISCVState
748  * @physical: This will be set to the calculated physical address
749  * @prot: The returned protection attributes
750  * @addr: The virtual address to be translated
751  * @fault_pte_addr: If not NULL, this will be set to fault pte address
752  *                  when a error occurs on pte address translation.
753  *                  This will already be shifted to match htval.
754  * @access_type: The type of MMU access
755  * @mmu_idx: Indicates current privilege level
756  * @first_stage: Are we in first stage translation?
757  *               Second stage is used for hypervisor guest translation
758  * @two_stage: Are we going to perform two stage translation
759  * @is_debug: Is this access from a debugger or the monitor?
760  */
761 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
762                                 int *prot, target_ulong addr,
763                                 target_ulong *fault_pte_addr,
764                                 int access_type, int mmu_idx,
765                                 bool first_stage, bool two_stage,
766                                 bool is_debug)
767 {
768     /* NOTE: the env->pc value visible here will not be
769      * correct, but the value visible to the exception handler
770      * (riscv_cpu_do_interrupt) is correct */
771     MemTxResult res;
772     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
773     int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
774     bool use_background = false;
775     hwaddr ppn;
776     RISCVCPU *cpu = env_archcpu(env);
777     int napot_bits = 0;
778     target_ulong napot_mask;
779 
780     /*
781      * Check if we should use the background registers for the two
782      * stage translation. We don't need to check if we actually need
783      * two stage translation as that happened before this function
784      * was called. Background registers will be used if the guest has
785      * forced a two stage translation to be on (in HS or M mode).
786      */
787     if (!riscv_cpu_virt_enabled(env) && two_stage) {
788         use_background = true;
789     }
790 
791     /* MPRV does not affect the virtual-machine load/store
792        instructions, HLV, HLVX, and HSV. */
793     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
794         mode = get_field(env->hstatus, HSTATUS_SPVP);
795     } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
796         if (get_field(env->mstatus, MSTATUS_MPRV)) {
797             mode = get_field(env->mstatus, MSTATUS_MPP);
798         }
799     }
800 
801     if (first_stage == false) {
802         /* We are in stage 2 translation, this is similar to stage 1. */
803         /* Stage 2 is always taken as U-mode */
804         mode = PRV_U;
805     }
806 
807     if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
808         *physical = addr;
809         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
810         return TRANSLATE_SUCCESS;
811     }
812 
813     *prot = 0;
814 
815     hwaddr base;
816     int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
817 
818     if (first_stage == true) {
819         mxr = get_field(env->mstatus, MSTATUS_MXR);
820     } else {
821         mxr = get_field(env->vsstatus, MSTATUS_MXR);
822     }
823 
824     if (first_stage == true) {
825         if (use_background) {
826             if (riscv_cpu_mxl(env) == MXL_RV32) {
827                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
828                 vm = get_field(env->vsatp, SATP32_MODE);
829             } else {
830                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
831                 vm = get_field(env->vsatp, SATP64_MODE);
832             }
833         } else {
834             if (riscv_cpu_mxl(env) == MXL_RV32) {
835                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
836                 vm = get_field(env->satp, SATP32_MODE);
837             } else {
838                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
839                 vm = get_field(env->satp, SATP64_MODE);
840             }
841         }
842         widened = 0;
843     } else {
844         if (riscv_cpu_mxl(env) == MXL_RV32) {
845             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
846             vm = get_field(env->hgatp, SATP32_MODE);
847         } else {
848             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
849             vm = get_field(env->hgatp, SATP64_MODE);
850         }
851         widened = 2;
852     }
853     /* status.SUM will be ignored if execute on background */
854     sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
855     switch (vm) {
856     case VM_1_10_SV32:
857       levels = 2; ptidxbits = 10; ptesize = 4; break;
858     case VM_1_10_SV39:
859       levels = 3; ptidxbits = 9; ptesize = 8; break;
860     case VM_1_10_SV48:
861       levels = 4; ptidxbits = 9; ptesize = 8; break;
862     case VM_1_10_SV57:
863       levels = 5; ptidxbits = 9; ptesize = 8; break;
864     case VM_1_10_MBARE:
865         *physical = addr;
866         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
867         return TRANSLATE_SUCCESS;
868     default:
869       g_assert_not_reached();
870     }
871 
872     CPUState *cs = env_cpu(env);
873     int va_bits = PGSHIFT + levels * ptidxbits + widened;
874     target_ulong mask, masked_msbs;
875 
876     if (TARGET_LONG_BITS > (va_bits - 1)) {
877         mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
878     } else {
879         mask = 0;
880     }
881     masked_msbs = (addr >> (va_bits - 1)) & mask;
882 
883     if (masked_msbs != 0 && masked_msbs != mask) {
884         return TRANSLATE_FAIL;
885     }
886 
887     int ptshift = (levels - 1) * ptidxbits;
888     int i;
889 
890 #if !TCG_OVERSIZED_GUEST
891 restart:
892 #endif
893     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
894         target_ulong idx;
895         if (i == 0) {
896             idx = (addr >> (PGSHIFT + ptshift)) &
897                            ((1 << (ptidxbits + widened)) - 1);
898         } else {
899             idx = (addr >> (PGSHIFT + ptshift)) &
900                            ((1 << ptidxbits) - 1);
901         }
902 
903         /* check that physical address of PTE is legal */
904         hwaddr pte_addr;
905 
906         if (two_stage && first_stage) {
907             int vbase_prot;
908             hwaddr vbase;
909 
910             /* Do the second stage translation on the base PTE address. */
911             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
912                                                  base, NULL, MMU_DATA_LOAD,
913                                                  mmu_idx, false, true,
914                                                  is_debug);
915 
916             if (vbase_ret != TRANSLATE_SUCCESS) {
917                 if (fault_pte_addr) {
918                     *fault_pte_addr = (base + idx * ptesize) >> 2;
919                 }
920                 return TRANSLATE_G_STAGE_FAIL;
921             }
922 
923             pte_addr = vbase + idx * ptesize;
924         } else {
925             pte_addr = base + idx * ptesize;
926         }
927 
928         int pmp_prot;
929         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
930                                                sizeof(target_ulong),
931                                                MMU_DATA_LOAD, PRV_S);
932         if (pmp_ret != TRANSLATE_SUCCESS) {
933             return TRANSLATE_PMP_FAIL;
934         }
935 
936         target_ulong pte;
937         if (riscv_cpu_mxl(env) == MXL_RV32) {
938             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
939         } else {
940             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
941         }
942 
943         if (res != MEMTX_OK) {
944             return TRANSLATE_FAIL;
945         }
946 
947         if (riscv_cpu_sxl(env) == MXL_RV32) {
948             ppn = pte >> PTE_PPN_SHIFT;
949         } else if (cpu->cfg.ext_svpbmt || cpu->cfg.ext_svnapot) {
950             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
951         } else {
952             ppn = pte >> PTE_PPN_SHIFT;
953             if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
954                 return TRANSLATE_FAIL;
955             }
956         }
957 
958         if (!(pte & PTE_V)) {
959             /* Invalid PTE */
960             return TRANSLATE_FAIL;
961         } else if (!cpu->cfg.ext_svpbmt && (pte & PTE_PBMT)) {
962             return TRANSLATE_FAIL;
963         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
964             /* Inner PTE, continue walking */
965             if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
966                 return TRANSLATE_FAIL;
967             }
968             base = ppn << PGSHIFT;
969         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
970             /* Reserved leaf PTE flags: PTE_W */
971             return TRANSLATE_FAIL;
972         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
973             /* Reserved leaf PTE flags: PTE_W + PTE_X */
974             return TRANSLATE_FAIL;
975         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
976                    (!sum || access_type == MMU_INST_FETCH))) {
977             /* User PTE flags when not U mode and mstatus.SUM is not set,
978                or the access type is an instruction fetch */
979             return TRANSLATE_FAIL;
980         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
981             /* Supervisor PTE flags when not S mode */
982             return TRANSLATE_FAIL;
983         } else if (ppn & ((1ULL << ptshift) - 1)) {
984             /* Misaligned PPN */
985             return TRANSLATE_FAIL;
986         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
987                    ((pte & PTE_X) && mxr))) {
988             /* Read access check failed */
989             return TRANSLATE_FAIL;
990         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
991             /* Write access check failed */
992             return TRANSLATE_FAIL;
993         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
994             /* Fetch access check failed */
995             return TRANSLATE_FAIL;
996         } else {
997             /* if necessary, set accessed and dirty bits. */
998             target_ulong updated_pte = pte | PTE_A |
999                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
1000 
1001             /* Page table updates need to be atomic with MTTCG enabled */
1002             if (updated_pte != pte) {
1003                 /*
1004                  * - if accessed or dirty bits need updating, and the PTE is
1005                  *   in RAM, then we do so atomically with a compare and swap.
1006                  * - if the PTE is in IO space or ROM, then it can't be updated
1007                  *   and we return TRANSLATE_FAIL.
1008                  * - if the PTE changed by the time we went to update it, then
1009                  *   it is no longer valid and we must re-walk the page table.
1010                  */
1011                 MemoryRegion *mr;
1012                 hwaddr l = sizeof(target_ulong), addr1;
1013                 mr = address_space_translate(cs->as, pte_addr,
1014                     &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
1015                 if (memory_region_is_ram(mr)) {
1016                     target_ulong *pte_pa =
1017                         qemu_map_ram_ptr(mr->ram_block, addr1);
1018 #if TCG_OVERSIZED_GUEST
1019                     /* MTTCG is not enabled on oversized TCG guests so
1020                      * page table updates do not need to be atomic */
1021                     *pte_pa = pte = updated_pte;
1022 #else
1023                     target_ulong old_pte =
1024                         qatomic_cmpxchg(pte_pa, pte, updated_pte);
1025                     if (old_pte != pte) {
1026                         goto restart;
1027                     } else {
1028                         pte = updated_pte;
1029                     }
1030 #endif
1031                 } else {
1032                     /* misconfigured PTE in ROM (AD bits are not preset) or
1033                      * PTE is in IO space and can't be updated atomically */
1034                     return TRANSLATE_FAIL;
1035                 }
1036             }
1037 
1038             /* for superpage mappings, make a fake leaf PTE for the TLB's
1039                benefit. */
1040             target_ulong vpn = addr >> PGSHIFT;
1041 
1042             if (cpu->cfg.ext_svnapot && (pte & PTE_N)) {
1043                 napot_bits = ctzl(ppn) + 1;
1044                 if ((i != (levels - 1)) || (napot_bits != 4)) {
1045                     return TRANSLATE_FAIL;
1046                 }
1047             }
1048 
1049             napot_mask = (1 << napot_bits) - 1;
1050             *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1051                           (vpn & (((target_ulong)1 << ptshift) - 1))
1052                          ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1053 
1054             /* set permissions on the TLB entry */
1055             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
1056                 *prot |= PAGE_READ;
1057             }
1058             if ((pte & PTE_X)) {
1059                 *prot |= PAGE_EXEC;
1060             }
1061             /* add write permission on stores or if the page is already dirty,
1062                so that we TLB miss on later writes to update the dirty bit */
1063             if ((pte & PTE_W) &&
1064                     (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1065                 *prot |= PAGE_WRITE;
1066             }
1067             return TRANSLATE_SUCCESS;
1068         }
1069     }
1070     return TRANSLATE_FAIL;
1071 }
1072 
1073 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1074                                 MMUAccessType access_type, bool pmp_violation,
1075                                 bool first_stage, bool two_stage,
1076                                 bool two_stage_indirect)
1077 {
1078     CPUState *cs = env_cpu(env);
1079     int page_fault_exceptions, vm;
1080     uint64_t stap_mode;
1081 
1082     if (riscv_cpu_mxl(env) == MXL_RV32) {
1083         stap_mode = SATP32_MODE;
1084     } else {
1085         stap_mode = SATP64_MODE;
1086     }
1087 
1088     if (first_stage) {
1089         vm = get_field(env->satp, stap_mode);
1090     } else {
1091         vm = get_field(env->hgatp, stap_mode);
1092     }
1093 
1094     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1095 
1096     switch (access_type) {
1097     case MMU_INST_FETCH:
1098         if (riscv_cpu_virt_enabled(env) && !first_stage) {
1099             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1100         } else {
1101             cs->exception_index = page_fault_exceptions ?
1102                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1103         }
1104         break;
1105     case MMU_DATA_LOAD:
1106         if (two_stage && !first_stage) {
1107             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1108         } else {
1109             cs->exception_index = page_fault_exceptions ?
1110                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1111         }
1112         break;
1113     case MMU_DATA_STORE:
1114         if (two_stage && !first_stage) {
1115             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1116         } else {
1117             cs->exception_index = page_fault_exceptions ?
1118                 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1119         }
1120         break;
1121     default:
1122         g_assert_not_reached();
1123     }
1124     env->badaddr = address;
1125     env->two_stage_lookup = two_stage;
1126     env->two_stage_indirect_lookup = two_stage_indirect;
1127 }
1128 
1129 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1130 {
1131     RISCVCPU *cpu = RISCV_CPU(cs);
1132     CPURISCVState *env = &cpu->env;
1133     hwaddr phys_addr;
1134     int prot;
1135     int mmu_idx = cpu_mmu_index(&cpu->env, false);
1136 
1137     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1138                              true, riscv_cpu_virt_enabled(env), true)) {
1139         return -1;
1140     }
1141 
1142     if (riscv_cpu_virt_enabled(env)) {
1143         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1144                                  0, mmu_idx, false, true, true)) {
1145             return -1;
1146         }
1147     }
1148 
1149     return phys_addr & TARGET_PAGE_MASK;
1150 }
1151 
1152 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1153                                      vaddr addr, unsigned size,
1154                                      MMUAccessType access_type,
1155                                      int mmu_idx, MemTxAttrs attrs,
1156                                      MemTxResult response, uintptr_t retaddr)
1157 {
1158     RISCVCPU *cpu = RISCV_CPU(cs);
1159     CPURISCVState *env = &cpu->env;
1160 
1161     if (access_type == MMU_DATA_STORE) {
1162         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1163     } else if (access_type == MMU_DATA_LOAD) {
1164         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1165     } else {
1166         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1167     }
1168 
1169     env->badaddr = addr;
1170     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1171                             riscv_cpu_two_stage_lookup(mmu_idx);
1172     env->two_stage_indirect_lookup = false;
1173     cpu_loop_exit_restore(cs, retaddr);
1174 }
1175 
1176 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1177                                    MMUAccessType access_type, int mmu_idx,
1178                                    uintptr_t retaddr)
1179 {
1180     RISCVCPU *cpu = RISCV_CPU(cs);
1181     CPURISCVState *env = &cpu->env;
1182     switch (access_type) {
1183     case MMU_INST_FETCH:
1184         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1185         break;
1186     case MMU_DATA_LOAD:
1187         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1188         break;
1189     case MMU_DATA_STORE:
1190         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1191         break;
1192     default:
1193         g_assert_not_reached();
1194     }
1195     env->badaddr = addr;
1196     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1197                             riscv_cpu_two_stage_lookup(mmu_idx);
1198     env->two_stage_indirect_lookup = false;
1199     cpu_loop_exit_restore(cs, retaddr);
1200 }
1201 
1202 
1203 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1204 {
1205     enum riscv_pmu_event_idx pmu_event_type;
1206 
1207     switch (access_type) {
1208     case MMU_INST_FETCH:
1209         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1210         break;
1211     case MMU_DATA_LOAD:
1212         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1213         break;
1214     case MMU_DATA_STORE:
1215         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1216         break;
1217     default:
1218         return;
1219     }
1220 
1221     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1222 }
1223 
1224 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1225                         MMUAccessType access_type, int mmu_idx,
1226                         bool probe, uintptr_t retaddr)
1227 {
1228     RISCVCPU *cpu = RISCV_CPU(cs);
1229     CPURISCVState *env = &cpu->env;
1230     vaddr im_address;
1231     hwaddr pa = 0;
1232     int prot, prot2, prot_pmp;
1233     bool pmp_violation = false;
1234     bool first_stage_error = true;
1235     bool two_stage_lookup = false;
1236     bool two_stage_indirect_error = false;
1237     int ret = TRANSLATE_FAIL;
1238     int mode = mmu_idx;
1239     /* default TLB page size */
1240     target_ulong tlb_size = TARGET_PAGE_SIZE;
1241 
1242     env->guest_phys_fault_addr = 0;
1243 
1244     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1245                   __func__, address, access_type, mmu_idx);
1246 
1247     /* MPRV does not affect the virtual-machine load/store
1248        instructions, HLV, HLVX, and HSV. */
1249     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1250         mode = get_field(env->hstatus, HSTATUS_SPVP);
1251     } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1252                get_field(env->mstatus, MSTATUS_MPRV)) {
1253         mode = get_field(env->mstatus, MSTATUS_MPP);
1254         if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1255             two_stage_lookup = true;
1256         }
1257     }
1258 
1259     if (riscv_cpu_virt_enabled(env) ||
1260         ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1261          access_type != MMU_INST_FETCH)) {
1262         /* Two stage lookup */
1263         ret = get_physical_address(env, &pa, &prot, address,
1264                                    &env->guest_phys_fault_addr, access_type,
1265                                    mmu_idx, true, true, false);
1266 
1267         /*
1268          * A G-stage exception may be triggered during two state lookup.
1269          * And the env->guest_phys_fault_addr has already been set in
1270          * get_physical_address().
1271          */
1272         if (ret == TRANSLATE_G_STAGE_FAIL) {
1273             first_stage_error = false;
1274             two_stage_indirect_error = true;
1275             access_type = MMU_DATA_LOAD;
1276         }
1277 
1278         qemu_log_mask(CPU_LOG_MMU,
1279                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1280                       TARGET_FMT_plx " prot %d\n",
1281                       __func__, address, ret, pa, prot);
1282 
1283         if (ret == TRANSLATE_SUCCESS) {
1284             /* Second stage lookup */
1285             im_address = pa;
1286 
1287             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1288                                        access_type, mmu_idx, false, true,
1289                                        false);
1290 
1291             qemu_log_mask(CPU_LOG_MMU,
1292                     "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
1293                     TARGET_FMT_plx " prot %d\n",
1294                     __func__, im_address, ret, pa, prot2);
1295 
1296             prot &= prot2;
1297 
1298             if (ret == TRANSLATE_SUCCESS) {
1299                 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1300                                                size, access_type, mode);
1301 
1302                 qemu_log_mask(CPU_LOG_MMU,
1303                               "%s PMP address=" TARGET_FMT_plx " ret %d prot"
1304                               " %d tlb_size " TARGET_FMT_lu "\n",
1305                               __func__, pa, ret, prot_pmp, tlb_size);
1306 
1307                 prot &= prot_pmp;
1308             }
1309 
1310             if (ret != TRANSLATE_SUCCESS) {
1311                 /*
1312                  * Guest physical address translation failed, this is a HS
1313                  * level exception
1314                  */
1315                 first_stage_error = false;
1316                 env->guest_phys_fault_addr = (im_address |
1317                                               (address &
1318                                                (TARGET_PAGE_SIZE - 1))) >> 2;
1319             }
1320         }
1321     } else {
1322         pmu_tlb_fill_incr_ctr(cpu, access_type);
1323         /* Single stage lookup */
1324         ret = get_physical_address(env, &pa, &prot, address, NULL,
1325                                    access_type, mmu_idx, true, false, false);
1326 
1327         qemu_log_mask(CPU_LOG_MMU,
1328                       "%s address=%" VADDR_PRIx " ret %d physical "
1329                       TARGET_FMT_plx " prot %d\n",
1330                       __func__, address, ret, pa, prot);
1331 
1332         if (ret == TRANSLATE_SUCCESS) {
1333             ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1334                                            size, access_type, mode);
1335 
1336             qemu_log_mask(CPU_LOG_MMU,
1337                           "%s PMP address=" TARGET_FMT_plx " ret %d prot"
1338                           " %d tlb_size " TARGET_FMT_lu "\n",
1339                           __func__, pa, ret, prot_pmp, tlb_size);
1340 
1341             prot &= prot_pmp;
1342         }
1343     }
1344 
1345     if (ret == TRANSLATE_PMP_FAIL) {
1346         pmp_violation = true;
1347     }
1348 
1349     if (ret == TRANSLATE_SUCCESS) {
1350         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1351                      prot, mmu_idx, tlb_size);
1352         return true;
1353     } else if (probe) {
1354         return false;
1355     } else {
1356         raise_mmu_exception(env, address, access_type, pmp_violation,
1357                             first_stage_error,
1358                             riscv_cpu_virt_enabled(env) ||
1359                                 riscv_cpu_two_stage_lookup(mmu_idx),
1360                             two_stage_indirect_error);
1361         cpu_loop_exit_restore(cs, retaddr);
1362     }
1363 
1364     return true;
1365 }
1366 
1367 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1368                                            target_ulong insn,
1369                                            target_ulong taddr)
1370 {
1371     target_ulong xinsn = 0;
1372     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1373 
1374     /*
1375      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1376      * be uncompressed. The Quadrant 1 of RVC instruction space need
1377      * not be transformed because these instructions won't generate
1378      * any load/store trap.
1379      */
1380 
1381     if ((insn & 0x3) != 0x3) {
1382         /* Transform 16bit instruction into 32bit instruction */
1383         switch (GET_C_OP(insn)) {
1384         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1385             switch (GET_C_FUNC(insn)) {
1386             case OPC_RISC_C_FUNC_FLD_LQ:
1387                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1388                     xinsn = OPC_RISC_FLD;
1389                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1390                     access_rs1 = GET_C_RS1S(insn);
1391                     access_imm = GET_C_LD_IMM(insn);
1392                     access_size = 8;
1393                 }
1394                 break;
1395             case OPC_RISC_C_FUNC_LW: /* C.LW */
1396                 xinsn = OPC_RISC_LW;
1397                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1398                 access_rs1 = GET_C_RS1S(insn);
1399                 access_imm = GET_C_LW_IMM(insn);
1400                 access_size = 4;
1401                 break;
1402             case OPC_RISC_C_FUNC_FLW_LD:
1403                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1404                     xinsn = OPC_RISC_FLW;
1405                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1406                     access_rs1 = GET_C_RS1S(insn);
1407                     access_imm = GET_C_LW_IMM(insn);
1408                     access_size = 4;
1409                 } else { /* C.LD (RV64/RV128) */
1410                     xinsn = OPC_RISC_LD;
1411                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1412                     access_rs1 = GET_C_RS1S(insn);
1413                     access_imm = GET_C_LD_IMM(insn);
1414                     access_size = 8;
1415                 }
1416                 break;
1417             case OPC_RISC_C_FUNC_FSD_SQ:
1418                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1419                     xinsn = OPC_RISC_FSD;
1420                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1421                     access_rs1 = GET_C_RS1S(insn);
1422                     access_imm = GET_C_SD_IMM(insn);
1423                     access_size = 8;
1424                 }
1425                 break;
1426             case OPC_RISC_C_FUNC_SW: /* C.SW */
1427                 xinsn = OPC_RISC_SW;
1428                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1429                 access_rs1 = GET_C_RS1S(insn);
1430                 access_imm = GET_C_SW_IMM(insn);
1431                 access_size = 4;
1432                 break;
1433             case OPC_RISC_C_FUNC_FSW_SD:
1434                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1435                     xinsn = OPC_RISC_FSW;
1436                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1437                     access_rs1 = GET_C_RS1S(insn);
1438                     access_imm = GET_C_SW_IMM(insn);
1439                     access_size = 4;
1440                 } else { /* C.SD (RV64/RV128) */
1441                     xinsn = OPC_RISC_SD;
1442                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1443                     access_rs1 = GET_C_RS1S(insn);
1444                     access_imm = GET_C_SD_IMM(insn);
1445                     access_size = 8;
1446                 }
1447                 break;
1448             default:
1449                 break;
1450             }
1451             break;
1452         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1453             switch (GET_C_FUNC(insn)) {
1454             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1455                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1456                     xinsn = OPC_RISC_FLD;
1457                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1458                     access_rs1 = 2;
1459                     access_imm = GET_C_LDSP_IMM(insn);
1460                     access_size = 8;
1461                 }
1462                 break;
1463             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1464                 xinsn = OPC_RISC_LW;
1465                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1466                 access_rs1 = 2;
1467                 access_imm = GET_C_LWSP_IMM(insn);
1468                 access_size = 4;
1469                 break;
1470             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1471                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1472                     xinsn = OPC_RISC_FLW;
1473                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1474                     access_rs1 = 2;
1475                     access_imm = GET_C_LWSP_IMM(insn);
1476                     access_size = 4;
1477                 } else { /* C.LDSP (RV64/RV128) */
1478                     xinsn = OPC_RISC_LD;
1479                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1480                     access_rs1 = 2;
1481                     access_imm = GET_C_LDSP_IMM(insn);
1482                     access_size = 8;
1483                 }
1484                 break;
1485             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1486                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1487                     xinsn = OPC_RISC_FSD;
1488                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1489                     access_rs1 = 2;
1490                     access_imm = GET_C_SDSP_IMM(insn);
1491                     access_size = 8;
1492                 }
1493                 break;
1494             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1495                 xinsn = OPC_RISC_SW;
1496                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1497                 access_rs1 = 2;
1498                 access_imm = GET_C_SWSP_IMM(insn);
1499                 access_size = 4;
1500                 break;
1501             case 7:
1502                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1503                     xinsn = OPC_RISC_FSW;
1504                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1505                     access_rs1 = 2;
1506                     access_imm = GET_C_SWSP_IMM(insn);
1507                     access_size = 4;
1508                 } else { /* C.SDSP (RV64/RV128) */
1509                     xinsn = OPC_RISC_SD;
1510                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1511                     access_rs1 = 2;
1512                     access_imm = GET_C_SDSP_IMM(insn);
1513                     access_size = 8;
1514                 }
1515                 break;
1516             default:
1517                 break;
1518             }
1519             break;
1520         default:
1521             break;
1522         }
1523 
1524         /*
1525          * Clear Bit1 of transformed instruction to indicate that
1526          * original insruction was a 16bit instruction
1527          */
1528         xinsn &= ~((target_ulong)0x2);
1529     } else {
1530         /* Transform 32bit (or wider) instructions */
1531         switch (MASK_OP_MAJOR(insn)) {
1532         case OPC_RISC_ATOMIC:
1533             xinsn = insn;
1534             access_rs1 = GET_RS1(insn);
1535             access_size = 1 << GET_FUNCT3(insn);
1536             break;
1537         case OPC_RISC_LOAD:
1538         case OPC_RISC_FP_LOAD:
1539             xinsn = SET_I_IMM(insn, 0);
1540             access_rs1 = GET_RS1(insn);
1541             access_imm = GET_IMM(insn);
1542             access_size = 1 << GET_FUNCT3(insn);
1543             break;
1544         case OPC_RISC_STORE:
1545         case OPC_RISC_FP_STORE:
1546             xinsn = SET_S_IMM(insn, 0);
1547             access_rs1 = GET_RS1(insn);
1548             access_imm = GET_STORE_IMM(insn);
1549             access_size = 1 << GET_FUNCT3(insn);
1550             break;
1551         case OPC_RISC_SYSTEM:
1552             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1553                 xinsn = insn;
1554                 access_rs1 = GET_RS1(insn);
1555                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1556                 access_size = 1 << access_size;
1557             }
1558             break;
1559         default:
1560             break;
1561         }
1562     }
1563 
1564     if (access_size) {
1565         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1566                                (access_size - 1));
1567     }
1568 
1569     return xinsn;
1570 }
1571 #endif /* !CONFIG_USER_ONLY */
1572 
1573 /*
1574  * Handle Traps
1575  *
1576  * Adapted from Spike's processor_t::take_trap.
1577  *
1578  */
1579 void riscv_cpu_do_interrupt(CPUState *cs)
1580 {
1581 #if !defined(CONFIG_USER_ONLY)
1582 
1583     RISCVCPU *cpu = RISCV_CPU(cs);
1584     CPURISCVState *env = &cpu->env;
1585     bool write_gva = false;
1586     uint64_t s;
1587 
1588     /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1589      * so we mask off the MSB and separate into trap type and cause.
1590      */
1591     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1592     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1593     uint64_t deleg = async ? env->mideleg : env->medeleg;
1594     target_ulong tval = 0;
1595     target_ulong tinst = 0;
1596     target_ulong htval = 0;
1597     target_ulong mtval2 = 0;
1598 
1599     if  (cause == RISCV_EXCP_SEMIHOST) {
1600         do_common_semihosting(cs);
1601         env->pc += 4;
1602         return;
1603     }
1604 
1605     if (!async) {
1606         /* set tval to badaddr for traps with address information */
1607         switch (cause) {
1608         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1609         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1610         case RISCV_EXCP_LOAD_ADDR_MIS:
1611         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1612         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1613         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1614         case RISCV_EXCP_LOAD_PAGE_FAULT:
1615         case RISCV_EXCP_STORE_PAGE_FAULT:
1616             write_gva = env->two_stage_lookup;
1617             tval = env->badaddr;
1618             if (env->two_stage_indirect_lookup) {
1619                 /*
1620                  * special pseudoinstruction for G-stage fault taken while
1621                  * doing VS-stage page table walk.
1622                  */
1623                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1624             } else {
1625                 /*
1626                  * The "Addr. Offset" field in transformed instruction is
1627                  * non-zero only for misaligned access.
1628                  */
1629                 tinst = riscv_transformed_insn(env, env->bins, tval);
1630             }
1631             break;
1632         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1633         case RISCV_EXCP_INST_ADDR_MIS:
1634         case RISCV_EXCP_INST_ACCESS_FAULT:
1635         case RISCV_EXCP_INST_PAGE_FAULT:
1636             write_gva = env->two_stage_lookup;
1637             tval = env->badaddr;
1638             if (env->two_stage_indirect_lookup) {
1639                 /*
1640                  * special pseudoinstruction for G-stage fault taken while
1641                  * doing VS-stage page table walk.
1642                  */
1643                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1644             }
1645             break;
1646         case RISCV_EXCP_ILLEGAL_INST:
1647         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1648             tval = env->bins;
1649             break;
1650         default:
1651             break;
1652         }
1653         /* ecall is dispatched as one cause so translate based on mode */
1654         if (cause == RISCV_EXCP_U_ECALL) {
1655             assert(env->priv <= 3);
1656 
1657             if (env->priv == PRV_M) {
1658                 cause = RISCV_EXCP_M_ECALL;
1659             } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
1660                 cause = RISCV_EXCP_VS_ECALL;
1661             } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
1662                 cause = RISCV_EXCP_S_ECALL;
1663             } else if (env->priv == PRV_U) {
1664                 cause = RISCV_EXCP_U_ECALL;
1665             }
1666         }
1667     }
1668 
1669     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1670                      riscv_cpu_get_trap_name(cause, async));
1671 
1672     qemu_log_mask(CPU_LOG_INT,
1673                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1674                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1675                   __func__, env->mhartid, async, cause, env->pc, tval,
1676                   riscv_cpu_get_trap_name(cause, async));
1677 
1678     if (env->priv <= PRV_S &&
1679             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1680         /* handle the trap in S-mode */
1681         if (riscv_has_ext(env, RVH)) {
1682             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1683 
1684             if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
1685                 /* Trap to VS mode */
1686                 /*
1687                  * See if we need to adjust cause. Yes if its VS mode interrupt
1688                  * no if hypervisor has delegated one of hs mode's interrupt
1689                  */
1690                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1691                     cause == IRQ_VS_EXT) {
1692                     cause = cause - 1;
1693                 }
1694                 write_gva = false;
1695             } else if (riscv_cpu_virt_enabled(env)) {
1696                 /* Trap into HS mode, from virt */
1697                 riscv_cpu_swap_hypervisor_regs(env);
1698                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1699                                          env->priv);
1700                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1701                                          riscv_cpu_virt_enabled(env));
1702 
1703 
1704                 htval = env->guest_phys_fault_addr;
1705 
1706                 riscv_cpu_set_virt_enabled(env, 0);
1707             } else {
1708                 /* Trap into HS mode */
1709                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1710                 htval = env->guest_phys_fault_addr;
1711             }
1712             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1713         }
1714 
1715         s = env->mstatus;
1716         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1717         s = set_field(s, MSTATUS_SPP, env->priv);
1718         s = set_field(s, MSTATUS_SIE, 0);
1719         env->mstatus = s;
1720         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1721         env->sepc = env->pc;
1722         env->stval = tval;
1723         env->htval = htval;
1724         env->htinst = tinst;
1725         env->pc = (env->stvec >> 2 << 2) +
1726             ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1727         riscv_cpu_set_mode(env, PRV_S);
1728     } else {
1729         /* handle the trap in M-mode */
1730         if (riscv_has_ext(env, RVH)) {
1731             if (riscv_cpu_virt_enabled(env)) {
1732                 riscv_cpu_swap_hypervisor_regs(env);
1733             }
1734             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1735                                      riscv_cpu_virt_enabled(env));
1736             if (riscv_cpu_virt_enabled(env) && tval) {
1737                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1738             }
1739 
1740             mtval2 = env->guest_phys_fault_addr;
1741 
1742             /* Trapping to M mode, virt is disabled */
1743             riscv_cpu_set_virt_enabled(env, 0);
1744         }
1745 
1746         s = env->mstatus;
1747         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1748         s = set_field(s, MSTATUS_MPP, env->priv);
1749         s = set_field(s, MSTATUS_MIE, 0);
1750         env->mstatus = s;
1751         env->mcause = cause | ~(((target_ulong)-1) >> async);
1752         env->mepc = env->pc;
1753         env->mtval = tval;
1754         env->mtval2 = mtval2;
1755         env->mtinst = tinst;
1756         env->pc = (env->mtvec >> 2 << 2) +
1757             ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1758         riscv_cpu_set_mode(env, PRV_M);
1759     }
1760 
1761     /* NOTE: it is not necessary to yield load reservations here. It is only
1762      * necessary for an SC from "another hart" to cause a load reservation
1763      * to be yielded. Refer to the memory consistency model section of the
1764      * RISC-V ISA Specification.
1765      */
1766 
1767     env->two_stage_lookup = false;
1768     env->two_stage_indirect_lookup = false;
1769 #endif
1770     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1771 }
1772