xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision 28662921)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "pmu.h"
25 #include "exec/exec-all.h"
26 #include "instmap.h"
27 #include "tcg/tcg-op.h"
28 #include "trace.h"
29 #include "semihosting/common-semi.h"
30 #include "sysemu/cpu-timers.h"
31 #include "cpu_bits.h"
32 #include "debug.h"
33 
34 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
35 {
36 #ifdef CONFIG_USER_ONLY
37     return 0;
38 #else
39     return env->priv;
40 #endif
41 }
42 
43 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
44                           target_ulong *cs_base, uint32_t *pflags)
45 {
46     CPUState *cs = env_cpu(env);
47     RISCVCPU *cpu = RISCV_CPU(cs);
48 
49     uint32_t flags = 0;
50 
51     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
52     *cs_base = 0;
53 
54     if (cpu->cfg.ext_zve32f) {
55         /*
56          * If env->vl equals to VLMAX, we can use generic vector operation
57          * expanders (GVEC) to accerlate the vector operations.
58          * However, as LMUL could be a fractional number. The maximum
59          * vector size can be operated might be less than 8 bytes,
60          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
61          * only when maxsz >= 8 bytes.
62          */
63         uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
64         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
65         uint32_t maxsz = vlmax << sew;
66         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
67                            (maxsz >= 8);
68         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
69         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
70         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
71                     FIELD_EX64(env->vtype, VTYPE, VLMUL));
72         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
73         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
74                     FIELD_EX64(env->vtype, VTYPE, VTA));
75         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
76                     FIELD_EX64(env->vtype, VTYPE, VMA));
77     } else {
78         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
79     }
80 
81 #ifdef CONFIG_USER_ONLY
82     flags |= TB_FLAGS_MSTATUS_FS;
83     flags |= TB_FLAGS_MSTATUS_VS;
84 #else
85     flags |= cpu_mmu_index(env, 0);
86     if (riscv_cpu_fp_enabled(env)) {
87         flags |= env->mstatus & MSTATUS_FS;
88     }
89 
90     if (riscv_cpu_vector_enabled(env)) {
91         flags |= env->mstatus & MSTATUS_VS;
92     }
93 
94     if (riscv_has_ext(env, RVH)) {
95         if (env->priv == PRV_M ||
96             (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
97             (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
98                 get_field(env->hstatus, HSTATUS_HU))) {
99             flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
100         }
101 
102         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
103                            get_field(env->mstatus_hs, MSTATUS_FS));
104 
105         flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS,
106                            get_field(env->mstatus_hs, MSTATUS_VS));
107     }
108     if (cpu->cfg.debug && !icount_enabled()) {
109         flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
110     }
111 #endif
112 
113     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
114     if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
115         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
116     }
117     if (env->cur_pmbase != 0) {
118         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
119     }
120 
121     *pflags = flags;
122 }
123 
124 void riscv_cpu_update_mask(CPURISCVState *env)
125 {
126     target_ulong mask = -1, base = 0;
127     /*
128      * TODO: Current RVJ spec does not specify
129      * how the extension interacts with XLEN.
130      */
131 #ifndef CONFIG_USER_ONLY
132     if (riscv_has_ext(env, RVJ)) {
133         switch (env->priv) {
134         case PRV_M:
135             if (env->mmte & M_PM_ENABLE) {
136                 mask = env->mpmmask;
137                 base = env->mpmbase;
138             }
139             break;
140         case PRV_S:
141             if (env->mmte & S_PM_ENABLE) {
142                 mask = env->spmmask;
143                 base = env->spmbase;
144             }
145             break;
146         case PRV_U:
147             if (env->mmte & U_PM_ENABLE) {
148                 mask = env->upmmask;
149                 base = env->upmbase;
150             }
151             break;
152         default:
153             g_assert_not_reached();
154         }
155     }
156 #endif
157     if (env->xl == MXL_RV32) {
158         env->cur_pmmask = mask & UINT32_MAX;
159         env->cur_pmbase = base & UINT32_MAX;
160     } else {
161         env->cur_pmmask = mask;
162         env->cur_pmbase = base;
163     }
164 }
165 
166 #ifndef CONFIG_USER_ONLY
167 
168 /*
169  * The HS-mode is allowed to configure priority only for the
170  * following VS-mode local interrupts:
171  *
172  * 0  (Reserved interrupt, reads as zero)
173  * 1  Supervisor software interrupt
174  * 4  (Reserved interrupt, reads as zero)
175  * 5  Supervisor timer interrupt
176  * 8  (Reserved interrupt, reads as zero)
177  * 13 (Reserved interrupt)
178  * 14 "
179  * 15 "
180  * 16 "
181  * 17 "
182  * 18 "
183  * 19 "
184  * 20 "
185  * 21 "
186  * 22 "
187  * 23 "
188  */
189 
190 static const int hviprio_index2irq[] = {
191     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
192 static const int hviprio_index2rdzero[] = {
193     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
194 
195 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
196 {
197     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
198         return -EINVAL;
199     }
200 
201     if (out_irq) {
202         *out_irq = hviprio_index2irq[index];
203     }
204 
205     if (out_rdzero) {
206         *out_rdzero = hviprio_index2rdzero[index];
207     }
208 
209     return 0;
210 }
211 
212 /*
213  * Default priorities of local interrupts are defined in the
214  * RISC-V Advanced Interrupt Architecture specification.
215  *
216  * ----------------------------------------------------------------
217  *  Default  |
218  *  Priority | Major Interrupt Numbers
219  * ----------------------------------------------------------------
220  *  Highest  | 47, 23, 46, 45, 22, 44,
221  *           | 43, 21, 42, 41, 20, 40
222  *           |
223  *           | 11 (0b),  3 (03),  7 (07)
224  *           |  9 (09),  1 (01),  5 (05)
225  *           | 12 (0c)
226  *           | 10 (0a),  2 (02),  6 (06)
227  *           |
228  *           | 39, 19, 38, 37, 18, 36,
229  *  Lowest   | 35, 17, 34, 33, 16, 32
230  * ----------------------------------------------------------------
231  */
232 static const uint8_t default_iprio[64] = {
233  /* Custom interrupts 48 to 63 */
234  [63] = IPRIO_MMAXIPRIO,
235  [62] = IPRIO_MMAXIPRIO,
236  [61] = IPRIO_MMAXIPRIO,
237  [60] = IPRIO_MMAXIPRIO,
238  [59] = IPRIO_MMAXIPRIO,
239  [58] = IPRIO_MMAXIPRIO,
240  [57] = IPRIO_MMAXIPRIO,
241  [56] = IPRIO_MMAXIPRIO,
242  [55] = IPRIO_MMAXIPRIO,
243  [54] = IPRIO_MMAXIPRIO,
244  [53] = IPRIO_MMAXIPRIO,
245  [52] = IPRIO_MMAXIPRIO,
246  [51] = IPRIO_MMAXIPRIO,
247  [50] = IPRIO_MMAXIPRIO,
248  [49] = IPRIO_MMAXIPRIO,
249  [48] = IPRIO_MMAXIPRIO,
250 
251  /* Custom interrupts 24 to 31 */
252  [31] = IPRIO_MMAXIPRIO,
253  [30] = IPRIO_MMAXIPRIO,
254  [29] = IPRIO_MMAXIPRIO,
255  [28] = IPRIO_MMAXIPRIO,
256  [27] = IPRIO_MMAXIPRIO,
257  [26] = IPRIO_MMAXIPRIO,
258  [25] = IPRIO_MMAXIPRIO,
259  [24] = IPRIO_MMAXIPRIO,
260 
261  [47] = IPRIO_DEFAULT_UPPER,
262  [23] = IPRIO_DEFAULT_UPPER + 1,
263  [46] = IPRIO_DEFAULT_UPPER + 2,
264  [45] = IPRIO_DEFAULT_UPPER + 3,
265  [22] = IPRIO_DEFAULT_UPPER + 4,
266  [44] = IPRIO_DEFAULT_UPPER + 5,
267 
268  [43] = IPRIO_DEFAULT_UPPER + 6,
269  [21] = IPRIO_DEFAULT_UPPER + 7,
270  [42] = IPRIO_DEFAULT_UPPER + 8,
271  [41] = IPRIO_DEFAULT_UPPER + 9,
272  [20] = IPRIO_DEFAULT_UPPER + 10,
273  [40] = IPRIO_DEFAULT_UPPER + 11,
274 
275  [11] = IPRIO_DEFAULT_M,
276  [3]  = IPRIO_DEFAULT_M + 1,
277  [7]  = IPRIO_DEFAULT_M + 2,
278 
279  [9]  = IPRIO_DEFAULT_S,
280  [1]  = IPRIO_DEFAULT_S + 1,
281  [5]  = IPRIO_DEFAULT_S + 2,
282 
283  [12] = IPRIO_DEFAULT_SGEXT,
284 
285  [10] = IPRIO_DEFAULT_VS,
286  [2]  = IPRIO_DEFAULT_VS + 1,
287  [6]  = IPRIO_DEFAULT_VS + 2,
288 
289  [39] = IPRIO_DEFAULT_LOWER,
290  [19] = IPRIO_DEFAULT_LOWER + 1,
291  [38] = IPRIO_DEFAULT_LOWER + 2,
292  [37] = IPRIO_DEFAULT_LOWER + 3,
293  [18] = IPRIO_DEFAULT_LOWER + 4,
294  [36] = IPRIO_DEFAULT_LOWER + 5,
295 
296  [35] = IPRIO_DEFAULT_LOWER + 6,
297  [17] = IPRIO_DEFAULT_LOWER + 7,
298  [34] = IPRIO_DEFAULT_LOWER + 8,
299  [33] = IPRIO_DEFAULT_LOWER + 9,
300  [16] = IPRIO_DEFAULT_LOWER + 10,
301  [32] = IPRIO_DEFAULT_LOWER + 11,
302 };
303 
304 uint8_t riscv_cpu_default_priority(int irq)
305 {
306     if (irq < 0 || irq > 63) {
307         return IPRIO_MMAXIPRIO;
308     }
309 
310     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
311 };
312 
313 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
314                                     int extirq, unsigned int extirq_def_prio,
315                                     uint64_t pending, uint8_t *iprio)
316 {
317     int irq, best_irq = RISCV_EXCP_NONE;
318     unsigned int prio, best_prio = UINT_MAX;
319 
320     if (!pending) {
321         return RISCV_EXCP_NONE;
322     }
323 
324     irq = ctz64(pending);
325     if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
326                                   riscv_cpu_cfg(env)->ext_ssaia)) {
327         return irq;
328     }
329 
330     pending = pending >> irq;
331     while (pending) {
332         prio = iprio[irq];
333         if (!prio) {
334             if (irq == extirq) {
335                 prio = extirq_def_prio;
336             } else {
337                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
338                        1 : IPRIO_MMAXIPRIO;
339             }
340         }
341         if ((pending & 0x1) && (prio <= best_prio)) {
342             best_irq = irq;
343             best_prio = prio;
344         }
345         irq++;
346         pending = pending >> 1;
347     }
348 
349     return best_irq;
350 }
351 
352 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
353 {
354     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
355     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
356     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
357 
358     return (env->mip | vsgein | vstip) & env->mie;
359 }
360 
361 int riscv_cpu_mirq_pending(CPURISCVState *env)
362 {
363     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
364                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
365 
366     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
367                                     irqs, env->miprio);
368 }
369 
370 int riscv_cpu_sirq_pending(CPURISCVState *env)
371 {
372     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
373                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
374 
375     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
376                                     irqs, env->siprio);
377 }
378 
379 int riscv_cpu_vsirq_pending(CPURISCVState *env)
380 {
381     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
382                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
383 
384     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
385                                     irqs >> 1, env->hviprio);
386 }
387 
388 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
389 {
390     int virq;
391     uint64_t irqs, pending, mie, hsie, vsie;
392 
393     /* Determine interrupt enable state of all privilege modes */
394     if (riscv_cpu_virt_enabled(env)) {
395         mie = 1;
396         hsie = 1;
397         vsie = (env->priv < PRV_S) ||
398                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
399     } else {
400         mie = (env->priv < PRV_M) ||
401               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
402         hsie = (env->priv < PRV_S) ||
403                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
404         vsie = 0;
405     }
406 
407     /* Determine all pending interrupts */
408     pending = riscv_cpu_all_pending(env);
409 
410     /* Check M-mode interrupts */
411     irqs = pending & ~env->mideleg & -mie;
412     if (irqs) {
413         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
414                                         irqs, env->miprio);
415     }
416 
417     /* Check HS-mode interrupts */
418     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
419     if (irqs) {
420         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
421                                         irqs, env->siprio);
422     }
423 
424     /* Check VS-mode interrupts */
425     irqs = pending & env->mideleg & env->hideleg & -vsie;
426     if (irqs) {
427         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
428                                         irqs >> 1, env->hviprio);
429         return (virq <= 0) ? virq : virq + 1;
430     }
431 
432     /* Indicate no pending interrupt */
433     return RISCV_EXCP_NONE;
434 }
435 
436 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
437 {
438     if (interrupt_request & CPU_INTERRUPT_HARD) {
439         RISCVCPU *cpu = RISCV_CPU(cs);
440         CPURISCVState *env = &cpu->env;
441         int interruptno = riscv_cpu_local_irq_pending(env);
442         if (interruptno >= 0) {
443             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
444             riscv_cpu_do_interrupt(cs);
445             return true;
446         }
447     }
448     return false;
449 }
450 
451 /* Return true is floating point support is currently enabled */
452 bool riscv_cpu_fp_enabled(CPURISCVState *env)
453 {
454     if (env->mstatus & MSTATUS_FS) {
455         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
456             return false;
457         }
458         return true;
459     }
460 
461     return false;
462 }
463 
464 /* Return true is vector support is currently enabled */
465 bool riscv_cpu_vector_enabled(CPURISCVState *env)
466 {
467     if (env->mstatus & MSTATUS_VS) {
468         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) {
469             return false;
470         }
471         return true;
472     }
473 
474     return false;
475 }
476 
477 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
478 {
479     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
480                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
481                             MSTATUS64_UXL | MSTATUS_VS;
482 
483     if (riscv_has_ext(env, RVF)) {
484         mstatus_mask |= MSTATUS_FS;
485     }
486     bool current_virt = riscv_cpu_virt_enabled(env);
487 
488     g_assert(riscv_has_ext(env, RVH));
489 
490     if (current_virt) {
491         /* Current V=1 and we are about to change to V=0 */
492         env->vsstatus = env->mstatus & mstatus_mask;
493         env->mstatus &= ~mstatus_mask;
494         env->mstatus |= env->mstatus_hs;
495 
496         env->vstvec = env->stvec;
497         env->stvec = env->stvec_hs;
498 
499         env->vsscratch = env->sscratch;
500         env->sscratch = env->sscratch_hs;
501 
502         env->vsepc = env->sepc;
503         env->sepc = env->sepc_hs;
504 
505         env->vscause = env->scause;
506         env->scause = env->scause_hs;
507 
508         env->vstval = env->stval;
509         env->stval = env->stval_hs;
510 
511         env->vsatp = env->satp;
512         env->satp = env->satp_hs;
513     } else {
514         /* Current V=0 and we are about to change to V=1 */
515         env->mstatus_hs = env->mstatus & mstatus_mask;
516         env->mstatus &= ~mstatus_mask;
517         env->mstatus |= env->vsstatus;
518 
519         env->stvec_hs = env->stvec;
520         env->stvec = env->vstvec;
521 
522         env->sscratch_hs = env->sscratch;
523         env->sscratch = env->vsscratch;
524 
525         env->sepc_hs = env->sepc;
526         env->sepc = env->vsepc;
527 
528         env->scause_hs = env->scause;
529         env->scause = env->vscause;
530 
531         env->stval_hs = env->stval;
532         env->stval = env->vstval;
533 
534         env->satp_hs = env->satp;
535         env->satp = env->vsatp;
536     }
537 }
538 
539 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
540 {
541     if (!riscv_has_ext(env, RVH)) {
542         return 0;
543     }
544 
545     return env->geilen;
546 }
547 
548 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
549 {
550     if (!riscv_has_ext(env, RVH)) {
551         return;
552     }
553 
554     if (geilen > (TARGET_LONG_BITS - 1)) {
555         return;
556     }
557 
558     env->geilen = geilen;
559 }
560 
561 bool riscv_cpu_virt_enabled(CPURISCVState *env)
562 {
563     return get_field(env->virt, VIRT_ONOFF);
564 }
565 
566 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
567 {
568     if (!riscv_has_ext(env, RVH)) {
569         return;
570     }
571 
572     /* Flush the TLB on all virt mode changes. */
573     if (get_field(env->virt, VIRT_ONOFF) != enable) {
574         tlb_flush(env_cpu(env));
575     }
576 
577     env->virt = set_field(env->virt, VIRT_ONOFF, enable);
578 
579     if (enable) {
580         /*
581          * The guest external interrupts from an interrupt controller are
582          * delivered only when the Guest/VM is running (i.e. V=1). This means
583          * any guest external interrupt which is triggered while the Guest/VM
584          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
585          * with sluggish response to serial console input and other I/O events.
586          *
587          * To solve this, we check and inject interrupt after setting V=1.
588          */
589         riscv_cpu_update_mip(env, 0, 0);
590     }
591 }
592 
593 bool riscv_cpu_two_stage_lookup(int mmu_idx)
594 {
595     return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
596 }
597 
598 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
599 {
600     CPURISCVState *env = &cpu->env;
601     if (env->miclaim & interrupts) {
602         return -1;
603     } else {
604         env->miclaim |= interrupts;
605         return 0;
606     }
607 }
608 
609 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
610                               uint64_t value)
611 {
612     CPUState *cs = env_cpu(env);
613     uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
614 
615     if (riscv_cpu_virt_enabled(env)) {
616         gein = get_field(env->hstatus, HSTATUS_VGEIN);
617         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
618     }
619 
620     vstip = env->vstime_irq ? MIP_VSTIP : 0;
621 
622     QEMU_IOTHREAD_LOCK_GUARD();
623 
624     env->mip = (env->mip & ~mask) | (value & mask);
625 
626     if (env->mip | vsgein | vstip) {
627         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
628     } else {
629         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
630     }
631 
632     return old;
633 }
634 
635 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
636                              void *arg)
637 {
638     env->rdtime_fn = fn;
639     env->rdtime_fn_arg = arg;
640 }
641 
642 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
643                                    int (*rmw_fn)(void *arg,
644                                                  target_ulong reg,
645                                                  target_ulong *val,
646                                                  target_ulong new_val,
647                                                  target_ulong write_mask),
648                                    void *rmw_fn_arg)
649 {
650     if (priv <= PRV_M) {
651         env->aia_ireg_rmw_fn[priv] = rmw_fn;
652         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
653     }
654 }
655 
656 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
657 {
658     if (newpriv > PRV_M) {
659         g_assert_not_reached();
660     }
661     if (newpriv == PRV_H) {
662         newpriv = PRV_U;
663     }
664     if (icount_enabled() && newpriv != env->priv) {
665         riscv_itrigger_update_priv(env);
666     }
667     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
668     env->priv = newpriv;
669     env->xl = cpu_recompute_xl(env);
670     riscv_cpu_update_mask(env);
671 
672     /*
673      * Clear the load reservation - otherwise a reservation placed in one
674      * context/process can be used by another, resulting in an SC succeeding
675      * incorrectly. Version 2.2 of the ISA specification explicitly requires
676      * this behaviour, while later revisions say that the kernel "should" use
677      * an SC instruction to force the yielding of a load reservation on a
678      * preemptive context switch. As a result, do both.
679      */
680     env->load_res = -1;
681 }
682 
683 /*
684  * get_physical_address_pmp - check PMP permission for this physical address
685  *
686  * Match the PMP region and check permission for this physical address and it's
687  * TLB page. Returns 0 if the permission checking was successful
688  *
689  * @env: CPURISCVState
690  * @prot: The returned protection attributes
691  * @tlb_size: TLB page size containing addr. It could be modified after PMP
692  *            permission checking. NULL if not set TLB page for addr.
693  * @addr: The physical address to be checked permission
694  * @access_type: The type of MMU access
695  * @mode: Indicates current privilege level.
696  */
697 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
698                                     target_ulong *tlb_size, hwaddr addr,
699                                     int size, MMUAccessType access_type,
700                                     int mode)
701 {
702     pmp_priv_t pmp_priv;
703     int pmp_index = -1;
704 
705     if (!riscv_cpu_cfg(env)->pmp) {
706         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
707         return TRANSLATE_SUCCESS;
708     }
709 
710     pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
711                                    &pmp_priv, mode);
712     if (pmp_index < 0) {
713         *prot = 0;
714         return TRANSLATE_PMP_FAIL;
715     }
716 
717     *prot = pmp_priv_to_page_prot(pmp_priv);
718     if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
719         target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
720         target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
721 
722         *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
723     }
724 
725     return TRANSLATE_SUCCESS;
726 }
727 
728 /* get_physical_address - get the physical address for this virtual address
729  *
730  * Do a page table walk to obtain the physical address corresponding to a
731  * virtual address. Returns 0 if the translation was successful
732  *
733  * Adapted from Spike's mmu_t::translate and mmu_t::walk
734  *
735  * @env: CPURISCVState
736  * @physical: This will be set to the calculated physical address
737  * @prot: The returned protection attributes
738  * @addr: The virtual address to be translated
739  * @fault_pte_addr: If not NULL, this will be set to fault pte address
740  *                  when a error occurs on pte address translation.
741  *                  This will already be shifted to match htval.
742  * @access_type: The type of MMU access
743  * @mmu_idx: Indicates current privilege level
744  * @first_stage: Are we in first stage translation?
745  *               Second stage is used for hypervisor guest translation
746  * @two_stage: Are we going to perform two stage translation
747  * @is_debug: Is this access from a debugger or the monitor?
748  */
749 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
750                                 int *prot, target_ulong addr,
751                                 target_ulong *fault_pte_addr,
752                                 int access_type, int mmu_idx,
753                                 bool first_stage, bool two_stage,
754                                 bool is_debug)
755 {
756     /* NOTE: the env->pc value visible here will not be
757      * correct, but the value visible to the exception handler
758      * (riscv_cpu_do_interrupt) is correct */
759     MemTxResult res;
760     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
761     int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
762     bool use_background = false;
763     hwaddr ppn;
764     int napot_bits = 0;
765     target_ulong napot_mask;
766 
767     /*
768      * Check if we should use the background registers for the two
769      * stage translation. We don't need to check if we actually need
770      * two stage translation as that happened before this function
771      * was called. Background registers will be used if the guest has
772      * forced a two stage translation to be on (in HS or M mode).
773      */
774     if (!riscv_cpu_virt_enabled(env) && two_stage) {
775         use_background = true;
776     }
777 
778     /* MPRV does not affect the virtual-machine load/store
779        instructions, HLV, HLVX, and HSV. */
780     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
781         mode = get_field(env->hstatus, HSTATUS_SPVP);
782     } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
783         if (get_field(env->mstatus, MSTATUS_MPRV)) {
784             mode = get_field(env->mstatus, MSTATUS_MPP);
785         }
786     }
787 
788     if (first_stage == false) {
789         /* We are in stage 2 translation, this is similar to stage 1. */
790         /* Stage 2 is always taken as U-mode */
791         mode = PRV_U;
792     }
793 
794     if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
795         *physical = addr;
796         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
797         return TRANSLATE_SUCCESS;
798     }
799 
800     *prot = 0;
801 
802     hwaddr base;
803     int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
804 
805     if (first_stage == true) {
806         mxr = get_field(env->mstatus, MSTATUS_MXR);
807     } else {
808         mxr = get_field(env->vsstatus, MSTATUS_MXR);
809     }
810 
811     if (first_stage == true) {
812         if (use_background) {
813             if (riscv_cpu_mxl(env) == MXL_RV32) {
814                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
815                 vm = get_field(env->vsatp, SATP32_MODE);
816             } else {
817                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
818                 vm = get_field(env->vsatp, SATP64_MODE);
819             }
820         } else {
821             if (riscv_cpu_mxl(env) == MXL_RV32) {
822                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
823                 vm = get_field(env->satp, SATP32_MODE);
824             } else {
825                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
826                 vm = get_field(env->satp, SATP64_MODE);
827             }
828         }
829         widened = 0;
830     } else {
831         if (riscv_cpu_mxl(env) == MXL_RV32) {
832             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
833             vm = get_field(env->hgatp, SATP32_MODE);
834         } else {
835             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
836             vm = get_field(env->hgatp, SATP64_MODE);
837         }
838         widened = 2;
839     }
840     /* status.SUM will be ignored if execute on background */
841     sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
842     switch (vm) {
843     case VM_1_10_SV32:
844       levels = 2; ptidxbits = 10; ptesize = 4; break;
845     case VM_1_10_SV39:
846       levels = 3; ptidxbits = 9; ptesize = 8; break;
847     case VM_1_10_SV48:
848       levels = 4; ptidxbits = 9; ptesize = 8; break;
849     case VM_1_10_SV57:
850       levels = 5; ptidxbits = 9; ptesize = 8; break;
851     case VM_1_10_MBARE:
852         *physical = addr;
853         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
854         return TRANSLATE_SUCCESS;
855     default:
856       g_assert_not_reached();
857     }
858 
859     CPUState *cs = env_cpu(env);
860     int va_bits = PGSHIFT + levels * ptidxbits + widened;
861     target_ulong mask, masked_msbs;
862 
863     if (TARGET_LONG_BITS > (va_bits - 1)) {
864         mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
865     } else {
866         mask = 0;
867     }
868     masked_msbs = (addr >> (va_bits - 1)) & mask;
869 
870     if (masked_msbs != 0 && masked_msbs != mask) {
871         return TRANSLATE_FAIL;
872     }
873 
874     int ptshift = (levels - 1) * ptidxbits;
875     int i;
876 
877 #if !TCG_OVERSIZED_GUEST
878 restart:
879 #endif
880     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
881         target_ulong idx;
882         if (i == 0) {
883             idx = (addr >> (PGSHIFT + ptshift)) &
884                            ((1 << (ptidxbits + widened)) - 1);
885         } else {
886             idx = (addr >> (PGSHIFT + ptshift)) &
887                            ((1 << ptidxbits) - 1);
888         }
889 
890         /* check that physical address of PTE is legal */
891         hwaddr pte_addr;
892 
893         if (two_stage && first_stage) {
894             int vbase_prot;
895             hwaddr vbase;
896 
897             /* Do the second stage translation on the base PTE address. */
898             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
899                                                  base, NULL, MMU_DATA_LOAD,
900                                                  mmu_idx, false, true,
901                                                  is_debug);
902 
903             if (vbase_ret != TRANSLATE_SUCCESS) {
904                 if (fault_pte_addr) {
905                     *fault_pte_addr = (base + idx * ptesize) >> 2;
906                 }
907                 return TRANSLATE_G_STAGE_FAIL;
908             }
909 
910             pte_addr = vbase + idx * ptesize;
911         } else {
912             pte_addr = base + idx * ptesize;
913         }
914 
915         int pmp_prot;
916         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
917                                                sizeof(target_ulong),
918                                                MMU_DATA_LOAD, PRV_S);
919         if (pmp_ret != TRANSLATE_SUCCESS) {
920             return TRANSLATE_PMP_FAIL;
921         }
922 
923         target_ulong pte;
924         if (riscv_cpu_mxl(env) == MXL_RV32) {
925             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
926         } else {
927             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
928         }
929 
930         if (res != MEMTX_OK) {
931             return TRANSLATE_FAIL;
932         }
933 
934         bool pbmte = env->menvcfg & MENVCFG_PBMTE;
935         bool hade = env->menvcfg & MENVCFG_HADE;
936 
937         if (first_stage && two_stage && riscv_cpu_virt_enabled(env)) {
938             pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
939             hade = hade && (env->henvcfg & HENVCFG_HADE);
940         }
941 
942         if (riscv_cpu_sxl(env) == MXL_RV32) {
943             ppn = pte >> PTE_PPN_SHIFT;
944         } else if (pbmte || riscv_cpu_cfg(env)->ext_svnapot) {
945             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
946         } else {
947             ppn = pte >> PTE_PPN_SHIFT;
948             if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
949                 return TRANSLATE_FAIL;
950             }
951         }
952 
953         if (!(pte & PTE_V)) {
954             /* Invalid PTE */
955             return TRANSLATE_FAIL;
956         } else if (!pbmte && (pte & PTE_PBMT)) {
957             return TRANSLATE_FAIL;
958         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
959             /* Inner PTE, continue walking */
960             if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
961                 return TRANSLATE_FAIL;
962             }
963             base = ppn << PGSHIFT;
964         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
965             /* Reserved leaf PTE flags: PTE_W */
966             return TRANSLATE_FAIL;
967         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
968             /* Reserved leaf PTE flags: PTE_W + PTE_X */
969             return TRANSLATE_FAIL;
970         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
971                    (!sum || access_type == MMU_INST_FETCH))) {
972             /* User PTE flags when not U mode and mstatus.SUM is not set,
973                or the access type is an instruction fetch */
974             return TRANSLATE_FAIL;
975         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
976             /* Supervisor PTE flags when not S mode */
977             return TRANSLATE_FAIL;
978         } else if (ppn & ((1ULL << ptshift) - 1)) {
979             /* Misaligned PPN */
980             return TRANSLATE_FAIL;
981         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
982                    ((pte & PTE_X) && mxr))) {
983             /* Read access check failed */
984             return TRANSLATE_FAIL;
985         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
986             /* Write access check failed */
987             return TRANSLATE_FAIL;
988         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
989             /* Fetch access check failed */
990             return TRANSLATE_FAIL;
991         } else {
992             /* if necessary, set accessed and dirty bits. */
993             target_ulong updated_pte = pte | PTE_A |
994                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
995 
996             /* Page table updates need to be atomic with MTTCG enabled */
997             if (updated_pte != pte) {
998                 if (!hade) {
999                     return TRANSLATE_FAIL;
1000                 }
1001 
1002                 /*
1003                  * - if accessed or dirty bits need updating, and the PTE is
1004                  *   in RAM, then we do so atomically with a compare and swap.
1005                  * - if the PTE is in IO space or ROM, then it can't be updated
1006                  *   and we return TRANSLATE_FAIL.
1007                  * - if the PTE changed by the time we went to update it, then
1008                  *   it is no longer valid and we must re-walk the page table.
1009                  */
1010                 MemoryRegion *mr;
1011                 hwaddr l = sizeof(target_ulong), addr1;
1012                 mr = address_space_translate(cs->as, pte_addr,
1013                     &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
1014                 if (memory_region_is_ram(mr)) {
1015                     target_ulong *pte_pa =
1016                         qemu_map_ram_ptr(mr->ram_block, addr1);
1017 #if TCG_OVERSIZED_GUEST
1018                     /* MTTCG is not enabled on oversized TCG guests so
1019                      * page table updates do not need to be atomic */
1020                     *pte_pa = pte = updated_pte;
1021 #else
1022                     target_ulong old_pte =
1023                         qatomic_cmpxchg(pte_pa, pte, updated_pte);
1024                     if (old_pte != pte) {
1025                         goto restart;
1026                     } else {
1027                         pte = updated_pte;
1028                     }
1029 #endif
1030                 } else {
1031                     /* misconfigured PTE in ROM (AD bits are not preset) or
1032                      * PTE is in IO space and can't be updated atomically */
1033                     return TRANSLATE_FAIL;
1034                 }
1035             }
1036 
1037             /* for superpage mappings, make a fake leaf PTE for the TLB's
1038                benefit. */
1039             target_ulong vpn = addr >> PGSHIFT;
1040 
1041             if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1042                 napot_bits = ctzl(ppn) + 1;
1043                 if ((i != (levels - 1)) || (napot_bits != 4)) {
1044                     return TRANSLATE_FAIL;
1045                 }
1046             }
1047 
1048             napot_mask = (1 << napot_bits) - 1;
1049             *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1050                           (vpn & (((target_ulong)1 << ptshift) - 1))
1051                          ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1052 
1053             /* set permissions on the TLB entry */
1054             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
1055                 *prot |= PAGE_READ;
1056             }
1057             if ((pte & PTE_X)) {
1058                 *prot |= PAGE_EXEC;
1059             }
1060             /* add write permission on stores or if the page is already dirty,
1061                so that we TLB miss on later writes to update the dirty bit */
1062             if ((pte & PTE_W) &&
1063                     (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1064                 *prot |= PAGE_WRITE;
1065             }
1066             return TRANSLATE_SUCCESS;
1067         }
1068     }
1069     return TRANSLATE_FAIL;
1070 }
1071 
1072 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1073                                 MMUAccessType access_type, bool pmp_violation,
1074                                 bool first_stage, bool two_stage,
1075                                 bool two_stage_indirect)
1076 {
1077     CPUState *cs = env_cpu(env);
1078     int page_fault_exceptions, vm;
1079     uint64_t stap_mode;
1080 
1081     if (riscv_cpu_mxl(env) == MXL_RV32) {
1082         stap_mode = SATP32_MODE;
1083     } else {
1084         stap_mode = SATP64_MODE;
1085     }
1086 
1087     if (first_stage) {
1088         vm = get_field(env->satp, stap_mode);
1089     } else {
1090         vm = get_field(env->hgatp, stap_mode);
1091     }
1092 
1093     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1094 
1095     switch (access_type) {
1096     case MMU_INST_FETCH:
1097         if (riscv_cpu_virt_enabled(env) && !first_stage) {
1098             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1099         } else {
1100             cs->exception_index = page_fault_exceptions ?
1101                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1102         }
1103         break;
1104     case MMU_DATA_LOAD:
1105         if (two_stage && !first_stage) {
1106             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1107         } else {
1108             cs->exception_index = page_fault_exceptions ?
1109                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1110         }
1111         break;
1112     case MMU_DATA_STORE:
1113         if (two_stage && !first_stage) {
1114             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1115         } else {
1116             cs->exception_index = page_fault_exceptions ?
1117                 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1118         }
1119         break;
1120     default:
1121         g_assert_not_reached();
1122     }
1123     env->badaddr = address;
1124     env->two_stage_lookup = two_stage;
1125     env->two_stage_indirect_lookup = two_stage_indirect;
1126 }
1127 
1128 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1129 {
1130     RISCVCPU *cpu = RISCV_CPU(cs);
1131     CPURISCVState *env = &cpu->env;
1132     hwaddr phys_addr;
1133     int prot;
1134     int mmu_idx = cpu_mmu_index(&cpu->env, false);
1135 
1136     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1137                              true, riscv_cpu_virt_enabled(env), true)) {
1138         return -1;
1139     }
1140 
1141     if (riscv_cpu_virt_enabled(env)) {
1142         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1143                                  0, mmu_idx, false, true, true)) {
1144             return -1;
1145         }
1146     }
1147 
1148     return phys_addr & TARGET_PAGE_MASK;
1149 }
1150 
1151 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1152                                      vaddr addr, unsigned size,
1153                                      MMUAccessType access_type,
1154                                      int mmu_idx, MemTxAttrs attrs,
1155                                      MemTxResult response, uintptr_t retaddr)
1156 {
1157     RISCVCPU *cpu = RISCV_CPU(cs);
1158     CPURISCVState *env = &cpu->env;
1159 
1160     if (access_type == MMU_DATA_STORE) {
1161         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1162     } else if (access_type == MMU_DATA_LOAD) {
1163         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1164     } else {
1165         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1166     }
1167 
1168     env->badaddr = addr;
1169     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1170                             riscv_cpu_two_stage_lookup(mmu_idx);
1171     env->two_stage_indirect_lookup = false;
1172     cpu_loop_exit_restore(cs, retaddr);
1173 }
1174 
1175 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1176                                    MMUAccessType access_type, int mmu_idx,
1177                                    uintptr_t retaddr)
1178 {
1179     RISCVCPU *cpu = RISCV_CPU(cs);
1180     CPURISCVState *env = &cpu->env;
1181     switch (access_type) {
1182     case MMU_INST_FETCH:
1183         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1184         break;
1185     case MMU_DATA_LOAD:
1186         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1187         break;
1188     case MMU_DATA_STORE:
1189         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1190         break;
1191     default:
1192         g_assert_not_reached();
1193     }
1194     env->badaddr = addr;
1195     env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1196                             riscv_cpu_two_stage_lookup(mmu_idx);
1197     env->two_stage_indirect_lookup = false;
1198     cpu_loop_exit_restore(cs, retaddr);
1199 }
1200 
1201 
1202 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1203 {
1204     enum riscv_pmu_event_idx pmu_event_type;
1205 
1206     switch (access_type) {
1207     case MMU_INST_FETCH:
1208         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1209         break;
1210     case MMU_DATA_LOAD:
1211         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1212         break;
1213     case MMU_DATA_STORE:
1214         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1215         break;
1216     default:
1217         return;
1218     }
1219 
1220     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1221 }
1222 
1223 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1224                         MMUAccessType access_type, int mmu_idx,
1225                         bool probe, uintptr_t retaddr)
1226 {
1227     RISCVCPU *cpu = RISCV_CPU(cs);
1228     CPURISCVState *env = &cpu->env;
1229     vaddr im_address;
1230     hwaddr pa = 0;
1231     int prot, prot2, prot_pmp;
1232     bool pmp_violation = false;
1233     bool first_stage_error = true;
1234     bool two_stage_lookup = false;
1235     bool two_stage_indirect_error = false;
1236     int ret = TRANSLATE_FAIL;
1237     int mode = mmu_idx;
1238     /* default TLB page size */
1239     target_ulong tlb_size = TARGET_PAGE_SIZE;
1240 
1241     env->guest_phys_fault_addr = 0;
1242 
1243     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1244                   __func__, address, access_type, mmu_idx);
1245 
1246     /* MPRV does not affect the virtual-machine load/store
1247        instructions, HLV, HLVX, and HSV. */
1248     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1249         mode = get_field(env->hstatus, HSTATUS_SPVP);
1250     } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1251                get_field(env->mstatus, MSTATUS_MPRV)) {
1252         mode = get_field(env->mstatus, MSTATUS_MPP);
1253         if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1254             two_stage_lookup = true;
1255         }
1256     }
1257 
1258     pmu_tlb_fill_incr_ctr(cpu, access_type);
1259     if (riscv_cpu_virt_enabled(env) ||
1260         ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1261          access_type != MMU_INST_FETCH)) {
1262         /* Two stage lookup */
1263         ret = get_physical_address(env, &pa, &prot, address,
1264                                    &env->guest_phys_fault_addr, access_type,
1265                                    mmu_idx, true, true, false);
1266 
1267         /*
1268          * A G-stage exception may be triggered during two state lookup.
1269          * And the env->guest_phys_fault_addr has already been set in
1270          * get_physical_address().
1271          */
1272         if (ret == TRANSLATE_G_STAGE_FAIL) {
1273             first_stage_error = false;
1274             two_stage_indirect_error = true;
1275             access_type = MMU_DATA_LOAD;
1276         }
1277 
1278         qemu_log_mask(CPU_LOG_MMU,
1279                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1280                       HWADDR_FMT_plx " prot %d\n",
1281                       __func__, address, ret, pa, prot);
1282 
1283         if (ret == TRANSLATE_SUCCESS) {
1284             /* Second stage lookup */
1285             im_address = pa;
1286 
1287             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1288                                        access_type, mmu_idx, false, true,
1289                                        false);
1290 
1291             qemu_log_mask(CPU_LOG_MMU,
1292                     "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
1293                     HWADDR_FMT_plx " prot %d\n",
1294                     __func__, im_address, ret, pa, prot2);
1295 
1296             prot &= prot2;
1297 
1298             if (ret == TRANSLATE_SUCCESS) {
1299                 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1300                                                size, access_type, mode);
1301 
1302                 qemu_log_mask(CPU_LOG_MMU,
1303                               "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1304                               " %d tlb_size " TARGET_FMT_lu "\n",
1305                               __func__, pa, ret, prot_pmp, tlb_size);
1306 
1307                 prot &= prot_pmp;
1308             }
1309 
1310             if (ret != TRANSLATE_SUCCESS) {
1311                 /*
1312                  * Guest physical address translation failed, this is a HS
1313                  * level exception
1314                  */
1315                 first_stage_error = false;
1316                 env->guest_phys_fault_addr = (im_address |
1317                                               (address &
1318                                                (TARGET_PAGE_SIZE - 1))) >> 2;
1319             }
1320         }
1321     } else {
1322         /* Single stage lookup */
1323         ret = get_physical_address(env, &pa, &prot, address, NULL,
1324                                    access_type, mmu_idx, true, false, false);
1325 
1326         qemu_log_mask(CPU_LOG_MMU,
1327                       "%s address=%" VADDR_PRIx " ret %d physical "
1328                       HWADDR_FMT_plx " prot %d\n",
1329                       __func__, address, ret, pa, prot);
1330 
1331         if (ret == TRANSLATE_SUCCESS) {
1332             ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1333                                            size, access_type, mode);
1334 
1335             qemu_log_mask(CPU_LOG_MMU,
1336                           "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1337                           " %d tlb_size " TARGET_FMT_lu "\n",
1338                           __func__, pa, ret, prot_pmp, tlb_size);
1339 
1340             prot &= prot_pmp;
1341         }
1342     }
1343 
1344     if (ret == TRANSLATE_PMP_FAIL) {
1345         pmp_violation = true;
1346     }
1347 
1348     if (ret == TRANSLATE_SUCCESS) {
1349         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1350                      prot, mmu_idx, tlb_size);
1351         return true;
1352     } else if (probe) {
1353         return false;
1354     } else {
1355         raise_mmu_exception(env, address, access_type, pmp_violation,
1356                             first_stage_error,
1357                             riscv_cpu_virt_enabled(env) ||
1358                                 riscv_cpu_two_stage_lookup(mmu_idx),
1359                             two_stage_indirect_error);
1360         cpu_loop_exit_restore(cs, retaddr);
1361     }
1362 
1363     return true;
1364 }
1365 
1366 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1367                                            target_ulong insn,
1368                                            target_ulong taddr)
1369 {
1370     target_ulong xinsn = 0;
1371     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1372 
1373     /*
1374      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1375      * be uncompressed. The Quadrant 1 of RVC instruction space need
1376      * not be transformed because these instructions won't generate
1377      * any load/store trap.
1378      */
1379 
1380     if ((insn & 0x3) != 0x3) {
1381         /* Transform 16bit instruction into 32bit instruction */
1382         switch (GET_C_OP(insn)) {
1383         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1384             switch (GET_C_FUNC(insn)) {
1385             case OPC_RISC_C_FUNC_FLD_LQ:
1386                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1387                     xinsn = OPC_RISC_FLD;
1388                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1389                     access_rs1 = GET_C_RS1S(insn);
1390                     access_imm = GET_C_LD_IMM(insn);
1391                     access_size = 8;
1392                 }
1393                 break;
1394             case OPC_RISC_C_FUNC_LW: /* C.LW */
1395                 xinsn = OPC_RISC_LW;
1396                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1397                 access_rs1 = GET_C_RS1S(insn);
1398                 access_imm = GET_C_LW_IMM(insn);
1399                 access_size = 4;
1400                 break;
1401             case OPC_RISC_C_FUNC_FLW_LD:
1402                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1403                     xinsn = OPC_RISC_FLW;
1404                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1405                     access_rs1 = GET_C_RS1S(insn);
1406                     access_imm = GET_C_LW_IMM(insn);
1407                     access_size = 4;
1408                 } else { /* C.LD (RV64/RV128) */
1409                     xinsn = OPC_RISC_LD;
1410                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1411                     access_rs1 = GET_C_RS1S(insn);
1412                     access_imm = GET_C_LD_IMM(insn);
1413                     access_size = 8;
1414                 }
1415                 break;
1416             case OPC_RISC_C_FUNC_FSD_SQ:
1417                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1418                     xinsn = OPC_RISC_FSD;
1419                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1420                     access_rs1 = GET_C_RS1S(insn);
1421                     access_imm = GET_C_SD_IMM(insn);
1422                     access_size = 8;
1423                 }
1424                 break;
1425             case OPC_RISC_C_FUNC_SW: /* C.SW */
1426                 xinsn = OPC_RISC_SW;
1427                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1428                 access_rs1 = GET_C_RS1S(insn);
1429                 access_imm = GET_C_SW_IMM(insn);
1430                 access_size = 4;
1431                 break;
1432             case OPC_RISC_C_FUNC_FSW_SD:
1433                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1434                     xinsn = OPC_RISC_FSW;
1435                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1436                     access_rs1 = GET_C_RS1S(insn);
1437                     access_imm = GET_C_SW_IMM(insn);
1438                     access_size = 4;
1439                 } else { /* C.SD (RV64/RV128) */
1440                     xinsn = OPC_RISC_SD;
1441                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1442                     access_rs1 = GET_C_RS1S(insn);
1443                     access_imm = GET_C_SD_IMM(insn);
1444                     access_size = 8;
1445                 }
1446                 break;
1447             default:
1448                 break;
1449             }
1450             break;
1451         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1452             switch (GET_C_FUNC(insn)) {
1453             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1454                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1455                     xinsn = OPC_RISC_FLD;
1456                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1457                     access_rs1 = 2;
1458                     access_imm = GET_C_LDSP_IMM(insn);
1459                     access_size = 8;
1460                 }
1461                 break;
1462             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1463                 xinsn = OPC_RISC_LW;
1464                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1465                 access_rs1 = 2;
1466                 access_imm = GET_C_LWSP_IMM(insn);
1467                 access_size = 4;
1468                 break;
1469             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1470                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1471                     xinsn = OPC_RISC_FLW;
1472                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1473                     access_rs1 = 2;
1474                     access_imm = GET_C_LWSP_IMM(insn);
1475                     access_size = 4;
1476                 } else { /* C.LDSP (RV64/RV128) */
1477                     xinsn = OPC_RISC_LD;
1478                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1479                     access_rs1 = 2;
1480                     access_imm = GET_C_LDSP_IMM(insn);
1481                     access_size = 8;
1482                 }
1483                 break;
1484             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1485                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1486                     xinsn = OPC_RISC_FSD;
1487                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1488                     access_rs1 = 2;
1489                     access_imm = GET_C_SDSP_IMM(insn);
1490                     access_size = 8;
1491                 }
1492                 break;
1493             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1494                 xinsn = OPC_RISC_SW;
1495                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1496                 access_rs1 = 2;
1497                 access_imm = GET_C_SWSP_IMM(insn);
1498                 access_size = 4;
1499                 break;
1500             case 7:
1501                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1502                     xinsn = OPC_RISC_FSW;
1503                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1504                     access_rs1 = 2;
1505                     access_imm = GET_C_SWSP_IMM(insn);
1506                     access_size = 4;
1507                 } else { /* C.SDSP (RV64/RV128) */
1508                     xinsn = OPC_RISC_SD;
1509                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1510                     access_rs1 = 2;
1511                     access_imm = GET_C_SDSP_IMM(insn);
1512                     access_size = 8;
1513                 }
1514                 break;
1515             default:
1516                 break;
1517             }
1518             break;
1519         default:
1520             break;
1521         }
1522 
1523         /*
1524          * Clear Bit1 of transformed instruction to indicate that
1525          * original insruction was a 16bit instruction
1526          */
1527         xinsn &= ~((target_ulong)0x2);
1528     } else {
1529         /* Transform 32bit (or wider) instructions */
1530         switch (MASK_OP_MAJOR(insn)) {
1531         case OPC_RISC_ATOMIC:
1532             xinsn = insn;
1533             access_rs1 = GET_RS1(insn);
1534             access_size = 1 << GET_FUNCT3(insn);
1535             break;
1536         case OPC_RISC_LOAD:
1537         case OPC_RISC_FP_LOAD:
1538             xinsn = SET_I_IMM(insn, 0);
1539             access_rs1 = GET_RS1(insn);
1540             access_imm = GET_IMM(insn);
1541             access_size = 1 << GET_FUNCT3(insn);
1542             break;
1543         case OPC_RISC_STORE:
1544         case OPC_RISC_FP_STORE:
1545             xinsn = SET_S_IMM(insn, 0);
1546             access_rs1 = GET_RS1(insn);
1547             access_imm = GET_STORE_IMM(insn);
1548             access_size = 1 << GET_FUNCT3(insn);
1549             break;
1550         case OPC_RISC_SYSTEM:
1551             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1552                 xinsn = insn;
1553                 access_rs1 = GET_RS1(insn);
1554                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1555                 access_size = 1 << access_size;
1556             }
1557             break;
1558         default:
1559             break;
1560         }
1561     }
1562 
1563     if (access_size) {
1564         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1565                                (access_size - 1));
1566     }
1567 
1568     return xinsn;
1569 }
1570 #endif /* !CONFIG_USER_ONLY */
1571 
1572 /*
1573  * Handle Traps
1574  *
1575  * Adapted from Spike's processor_t::take_trap.
1576  *
1577  */
1578 void riscv_cpu_do_interrupt(CPUState *cs)
1579 {
1580 #if !defined(CONFIG_USER_ONLY)
1581 
1582     RISCVCPU *cpu = RISCV_CPU(cs);
1583     CPURISCVState *env = &cpu->env;
1584     bool write_gva = false;
1585     uint64_t s;
1586 
1587     /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1588      * so we mask off the MSB and separate into trap type and cause.
1589      */
1590     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1591     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1592     uint64_t deleg = async ? env->mideleg : env->medeleg;
1593     target_ulong tval = 0;
1594     target_ulong tinst = 0;
1595     target_ulong htval = 0;
1596     target_ulong mtval2 = 0;
1597 
1598     if  (cause == RISCV_EXCP_SEMIHOST) {
1599         do_common_semihosting(cs);
1600         env->pc += 4;
1601         return;
1602     }
1603 
1604     if (!async) {
1605         /* set tval to badaddr for traps with address information */
1606         switch (cause) {
1607         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1608         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1609         case RISCV_EXCP_LOAD_ADDR_MIS:
1610         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1611         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1612         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1613         case RISCV_EXCP_LOAD_PAGE_FAULT:
1614         case RISCV_EXCP_STORE_PAGE_FAULT:
1615             write_gva = env->two_stage_lookup;
1616             tval = env->badaddr;
1617             if (env->two_stage_indirect_lookup) {
1618                 /*
1619                  * special pseudoinstruction for G-stage fault taken while
1620                  * doing VS-stage page table walk.
1621                  */
1622                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1623             } else {
1624                 /*
1625                  * The "Addr. Offset" field in transformed instruction is
1626                  * non-zero only for misaligned access.
1627                  */
1628                 tinst = riscv_transformed_insn(env, env->bins, tval);
1629             }
1630             break;
1631         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1632         case RISCV_EXCP_INST_ADDR_MIS:
1633         case RISCV_EXCP_INST_ACCESS_FAULT:
1634         case RISCV_EXCP_INST_PAGE_FAULT:
1635             write_gva = env->two_stage_lookup;
1636             tval = env->badaddr;
1637             if (env->two_stage_indirect_lookup) {
1638                 /*
1639                  * special pseudoinstruction for G-stage fault taken while
1640                  * doing VS-stage page table walk.
1641                  */
1642                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1643             }
1644             break;
1645         case RISCV_EXCP_ILLEGAL_INST:
1646         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1647             tval = env->bins;
1648             break;
1649         case RISCV_EXCP_BREAKPOINT:
1650             if (cs->watchpoint_hit) {
1651                 tval = cs->watchpoint_hit->hitaddr;
1652                 cs->watchpoint_hit = NULL;
1653             }
1654             break;
1655         default:
1656             break;
1657         }
1658         /* ecall is dispatched as one cause so translate based on mode */
1659         if (cause == RISCV_EXCP_U_ECALL) {
1660             assert(env->priv <= 3);
1661 
1662             if (env->priv == PRV_M) {
1663                 cause = RISCV_EXCP_M_ECALL;
1664             } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
1665                 cause = RISCV_EXCP_VS_ECALL;
1666             } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
1667                 cause = RISCV_EXCP_S_ECALL;
1668             } else if (env->priv == PRV_U) {
1669                 cause = RISCV_EXCP_U_ECALL;
1670             }
1671         }
1672     }
1673 
1674     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1675                      riscv_cpu_get_trap_name(cause, async));
1676 
1677     qemu_log_mask(CPU_LOG_INT,
1678                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1679                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1680                   __func__, env->mhartid, async, cause, env->pc, tval,
1681                   riscv_cpu_get_trap_name(cause, async));
1682 
1683     if (env->priv <= PRV_S &&
1684             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1685         /* handle the trap in S-mode */
1686         if (riscv_has_ext(env, RVH)) {
1687             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1688 
1689             if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
1690                 /* Trap to VS mode */
1691                 /*
1692                  * See if we need to adjust cause. Yes if its VS mode interrupt
1693                  * no if hypervisor has delegated one of hs mode's interrupt
1694                  */
1695                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1696                     cause == IRQ_VS_EXT) {
1697                     cause = cause - 1;
1698                 }
1699                 write_gva = false;
1700             } else if (riscv_cpu_virt_enabled(env)) {
1701                 /* Trap into HS mode, from virt */
1702                 riscv_cpu_swap_hypervisor_regs(env);
1703                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1704                                          env->priv);
1705                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1706 
1707                 htval = env->guest_phys_fault_addr;
1708 
1709                 riscv_cpu_set_virt_enabled(env, 0);
1710             } else {
1711                 /* Trap into HS mode */
1712                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1713                 htval = env->guest_phys_fault_addr;
1714             }
1715             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1716         }
1717 
1718         s = env->mstatus;
1719         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1720         s = set_field(s, MSTATUS_SPP, env->priv);
1721         s = set_field(s, MSTATUS_SIE, 0);
1722         env->mstatus = s;
1723         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1724         env->sepc = env->pc;
1725         env->stval = tval;
1726         env->htval = htval;
1727         env->htinst = tinst;
1728         env->pc = (env->stvec >> 2 << 2) +
1729             ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1730         riscv_cpu_set_mode(env, PRV_S);
1731     } else {
1732         /* handle the trap in M-mode */
1733         if (riscv_has_ext(env, RVH)) {
1734             if (riscv_cpu_virt_enabled(env)) {
1735                 riscv_cpu_swap_hypervisor_regs(env);
1736             }
1737             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1738                                      riscv_cpu_virt_enabled(env));
1739             if (riscv_cpu_virt_enabled(env) && tval) {
1740                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1741             }
1742 
1743             mtval2 = env->guest_phys_fault_addr;
1744 
1745             /* Trapping to M mode, virt is disabled */
1746             riscv_cpu_set_virt_enabled(env, 0);
1747         }
1748 
1749         s = env->mstatus;
1750         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1751         s = set_field(s, MSTATUS_MPP, env->priv);
1752         s = set_field(s, MSTATUS_MIE, 0);
1753         env->mstatus = s;
1754         env->mcause = cause | ~(((target_ulong)-1) >> async);
1755         env->mepc = env->pc;
1756         env->mtval = tval;
1757         env->mtval2 = mtval2;
1758         env->mtinst = tinst;
1759         env->pc = (env->mtvec >> 2 << 2) +
1760             ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1761         riscv_cpu_set_mode(env, PRV_M);
1762     }
1763 
1764     /* NOTE: it is not necessary to yield load reservations here. It is only
1765      * necessary for an SC from "another hart" to cause a load reservation
1766      * to be yielded. Refer to the memory consistency model section of the
1767      * RISC-V ISA Specification.
1768      */
1769 
1770     env->two_stage_lookup = false;
1771     env->two_stage_indirect_lookup = false;
1772 #endif
1773     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1774 }
1775