xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision 1f447aec)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "tcg-op.h"
25 #include "trace.h"
26 
27 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
28 {
29 #ifdef CONFIG_USER_ONLY
30     return 0;
31 #else
32     return env->priv;
33 #endif
34 }
35 
36 #ifndef CONFIG_USER_ONLY
37 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
38 {
39     target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
40     target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
41     target_ulong pending = atomic_read(&env->mip) & env->mie;
42     target_ulong mie = env->priv < PRV_M || (env->priv == PRV_M && mstatus_mie);
43     target_ulong sie = env->priv < PRV_S || (env->priv == PRV_S && mstatus_sie);
44     target_ulong irqs = (pending & ~env->mideleg & -mie) |
45                         (pending &  env->mideleg & -sie);
46 
47     if (irqs) {
48         return ctz64(irqs); /* since non-zero */
49     } else {
50         return EXCP_NONE; /* indicates no pending interrupt */
51     }
52 }
53 #endif
54 
55 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
56 {
57 #if !defined(CONFIG_USER_ONLY)
58     if (interrupt_request & CPU_INTERRUPT_HARD) {
59         RISCVCPU *cpu = RISCV_CPU(cs);
60         CPURISCVState *env = &cpu->env;
61         int interruptno = riscv_cpu_local_irq_pending(env);
62         if (interruptno >= 0) {
63             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
64             riscv_cpu_do_interrupt(cs);
65             return true;
66         }
67     }
68 #endif
69     return false;
70 }
71 
72 #if !defined(CONFIG_USER_ONLY)
73 
74 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
75 {
76     CPURISCVState *env = &cpu->env;
77     if (env->miclaim & interrupts) {
78         return -1;
79     } else {
80         env->miclaim |= interrupts;
81         return 0;
82     }
83 }
84 
85 struct CpuAsyncInfo {
86     uint32_t new_mip;
87 };
88 
89 static void riscv_cpu_update_mip_irqs_async(CPUState *target_cpu_state,
90                                             run_on_cpu_data data)
91 {
92     struct CpuAsyncInfo *info = (struct CpuAsyncInfo *) data.host_ptr;
93 
94     if (info->new_mip) {
95         cpu_interrupt(target_cpu_state, CPU_INTERRUPT_HARD);
96     } else {
97         cpu_reset_interrupt(target_cpu_state, CPU_INTERRUPT_HARD);
98     }
99 
100     g_free(info);
101 }
102 
103 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
104 {
105     CPURISCVState *env = &cpu->env;
106     CPUState *cs = CPU(cpu);
107     struct CpuAsyncInfo *info;
108     uint32_t old, new, cmp = atomic_read(&env->mip);
109 
110     do {
111         old = cmp;
112         new = (old & ~mask) | (value & mask);
113         cmp = atomic_cmpxchg(&env->mip, old, new);
114     } while (old != cmp);
115 
116     info = g_new(struct CpuAsyncInfo, 1);
117     info->new_mip = new;
118 
119     async_run_on_cpu(cs, riscv_cpu_update_mip_irqs_async,
120                      RUN_ON_CPU_HOST_PTR(info));
121 
122     return old;
123 }
124 
125 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
126 {
127     if (newpriv > PRV_M) {
128         g_assert_not_reached();
129     }
130     if (newpriv == PRV_H) {
131         newpriv = PRV_U;
132     }
133     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
134     env->priv = newpriv;
135 }
136 
137 /* get_physical_address - get the physical address for this virtual address
138  *
139  * Do a page table walk to obtain the physical address corresponding to a
140  * virtual address. Returns 0 if the translation was successful
141  *
142  * Adapted from Spike's mmu_t::translate and mmu_t::walk
143  *
144  */
145 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
146                                 int *prot, target_ulong addr,
147                                 int access_type, int mmu_idx)
148 {
149     /* NOTE: the env->pc value visible here will not be
150      * correct, but the value visible to the exception handler
151      * (riscv_cpu_do_interrupt) is correct */
152 
153     int mode = mmu_idx;
154 
155     if (mode == PRV_M && access_type != MMU_INST_FETCH) {
156         if (get_field(env->mstatus, MSTATUS_MPRV)) {
157             mode = get_field(env->mstatus, MSTATUS_MPP);
158         }
159     }
160 
161     if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
162         *physical = addr;
163         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
164         return TRANSLATE_SUCCESS;
165     }
166 
167     *prot = 0;
168 
169     target_ulong base;
170     int levels, ptidxbits, ptesize, vm, sum;
171     int mxr = get_field(env->mstatus, MSTATUS_MXR);
172 
173     if (env->priv_ver >= PRIV_VERSION_1_10_0) {
174         base = get_field(env->satp, SATP_PPN) << PGSHIFT;
175         sum = get_field(env->mstatus, MSTATUS_SUM);
176         vm = get_field(env->satp, SATP_MODE);
177         switch (vm) {
178         case VM_1_10_SV32:
179           levels = 2; ptidxbits = 10; ptesize = 4; break;
180         case VM_1_10_SV39:
181           levels = 3; ptidxbits = 9; ptesize = 8; break;
182         case VM_1_10_SV48:
183           levels = 4; ptidxbits = 9; ptesize = 8; break;
184         case VM_1_10_SV57:
185           levels = 5; ptidxbits = 9; ptesize = 8; break;
186         case VM_1_10_MBARE:
187             *physical = addr;
188             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
189             return TRANSLATE_SUCCESS;
190         default:
191           g_assert_not_reached();
192         }
193     } else {
194         base = env->sptbr << PGSHIFT;
195         sum = !get_field(env->mstatus, MSTATUS_PUM);
196         vm = get_field(env->mstatus, MSTATUS_VM);
197         switch (vm) {
198         case VM_1_09_SV32:
199           levels = 2; ptidxbits = 10; ptesize = 4; break;
200         case VM_1_09_SV39:
201           levels = 3; ptidxbits = 9; ptesize = 8; break;
202         case VM_1_09_SV48:
203           levels = 4; ptidxbits = 9; ptesize = 8; break;
204         case VM_1_09_MBARE:
205             *physical = addr;
206             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
207             return TRANSLATE_SUCCESS;
208         default:
209           g_assert_not_reached();
210         }
211     }
212 
213     CPUState *cs = env_cpu(env);
214     int va_bits = PGSHIFT + levels * ptidxbits;
215     target_ulong mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
216     target_ulong masked_msbs = (addr >> (va_bits - 1)) & mask;
217     if (masked_msbs != 0 && masked_msbs != mask) {
218         return TRANSLATE_FAIL;
219     }
220 
221     int ptshift = (levels - 1) * ptidxbits;
222     int i;
223 
224 #if !TCG_OVERSIZED_GUEST
225 restart:
226 #endif
227     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
228         target_ulong idx = (addr >> (PGSHIFT + ptshift)) &
229                            ((1 << ptidxbits) - 1);
230 
231         /* check that physical address of PTE is legal */
232         target_ulong pte_addr = base + idx * ptesize;
233 
234         if (riscv_feature(env, RISCV_FEATURE_PMP) &&
235             !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
236             1 << MMU_DATA_LOAD, PRV_S)) {
237             return TRANSLATE_PMP_FAIL;
238         }
239 #if defined(TARGET_RISCV32)
240         target_ulong pte = ldl_phys(cs->as, pte_addr);
241 #elif defined(TARGET_RISCV64)
242         target_ulong pte = ldq_phys(cs->as, pte_addr);
243 #endif
244         target_ulong ppn = pte >> PTE_PPN_SHIFT;
245 
246         if (!(pte & PTE_V)) {
247             /* Invalid PTE */
248             return TRANSLATE_FAIL;
249         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
250             /* Inner PTE, continue walking */
251             base = ppn << PGSHIFT;
252         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
253             /* Reserved leaf PTE flags: PTE_W */
254             return TRANSLATE_FAIL;
255         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
256             /* Reserved leaf PTE flags: PTE_W + PTE_X */
257             return TRANSLATE_FAIL;
258         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
259                    (!sum || access_type == MMU_INST_FETCH))) {
260             /* User PTE flags when not U mode and mstatus.SUM is not set,
261                or the access type is an instruction fetch */
262             return TRANSLATE_FAIL;
263         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
264             /* Supervisor PTE flags when not S mode */
265             return TRANSLATE_FAIL;
266         } else if (ppn & ((1ULL << ptshift) - 1)) {
267             /* Misaligned PPN */
268             return TRANSLATE_FAIL;
269         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
270                    ((pte & PTE_X) && mxr))) {
271             /* Read access check failed */
272             return TRANSLATE_FAIL;
273         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
274             /* Write access check failed */
275             return TRANSLATE_FAIL;
276         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
277             /* Fetch access check failed */
278             return TRANSLATE_FAIL;
279         } else {
280             /* if necessary, set accessed and dirty bits. */
281             target_ulong updated_pte = pte | PTE_A |
282                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
283 
284             /* Page table updates need to be atomic with MTTCG enabled */
285             if (updated_pte != pte) {
286                 /*
287                  * - if accessed or dirty bits need updating, and the PTE is
288                  *   in RAM, then we do so atomically with a compare and swap.
289                  * - if the PTE is in IO space or ROM, then it can't be updated
290                  *   and we return TRANSLATE_FAIL.
291                  * - if the PTE changed by the time we went to update it, then
292                  *   it is no longer valid and we must re-walk the page table.
293                  */
294                 MemoryRegion *mr;
295                 hwaddr l = sizeof(target_ulong), addr1;
296                 mr = address_space_translate(cs->as, pte_addr,
297                     &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
298                 if (memory_region_is_ram(mr)) {
299                     target_ulong *pte_pa =
300                         qemu_map_ram_ptr(mr->ram_block, addr1);
301 #if TCG_OVERSIZED_GUEST
302                     /* MTTCG is not enabled on oversized TCG guests so
303                      * page table updates do not need to be atomic */
304                     *pte_pa = pte = updated_pte;
305 #else
306                     target_ulong old_pte =
307                         atomic_cmpxchg(pte_pa, pte, updated_pte);
308                     if (old_pte != pte) {
309                         goto restart;
310                     } else {
311                         pte = updated_pte;
312                     }
313 #endif
314                 } else {
315                     /* misconfigured PTE in ROM (AD bits are not preset) or
316                      * PTE is in IO space and can't be updated atomically */
317                     return TRANSLATE_FAIL;
318                 }
319             }
320 
321             /* for superpage mappings, make a fake leaf PTE for the TLB's
322                benefit. */
323             target_ulong vpn = addr >> PGSHIFT;
324             *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
325 
326             /* set permissions on the TLB entry */
327             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
328                 *prot |= PAGE_READ;
329             }
330             if ((pte & PTE_X)) {
331                 *prot |= PAGE_EXEC;
332             }
333             /* add write permission on stores or if the page is already dirty,
334                so that we TLB miss on later writes to update the dirty bit */
335             if ((pte & PTE_W) &&
336                     (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
337                 *prot |= PAGE_WRITE;
338             }
339             return TRANSLATE_SUCCESS;
340         }
341     }
342     return TRANSLATE_FAIL;
343 }
344 
345 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
346                                 MMUAccessType access_type, bool pmp_violation)
347 {
348     CPUState *cs = env_cpu(env);
349     int page_fault_exceptions =
350         (env->priv_ver >= PRIV_VERSION_1_10_0) &&
351         get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
352         !pmp_violation;
353     switch (access_type) {
354     case MMU_INST_FETCH:
355         cs->exception_index = page_fault_exceptions ?
356             RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
357         break;
358     case MMU_DATA_LOAD:
359         cs->exception_index = page_fault_exceptions ?
360             RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
361         break;
362     case MMU_DATA_STORE:
363         cs->exception_index = page_fault_exceptions ?
364             RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
365         break;
366     default:
367         g_assert_not_reached();
368     }
369     env->badaddr = address;
370 }
371 
372 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
373 {
374     RISCVCPU *cpu = RISCV_CPU(cs);
375     hwaddr phys_addr;
376     int prot;
377     int mmu_idx = cpu_mmu_index(&cpu->env, false);
378 
379     if (get_physical_address(&cpu->env, &phys_addr, &prot, addr, 0, mmu_idx)) {
380         return -1;
381     }
382     return phys_addr;
383 }
384 
385 void riscv_cpu_unassigned_access(CPUState *cs, hwaddr addr, bool is_write,
386                                  bool is_exec, int unused, unsigned size)
387 {
388     RISCVCPU *cpu = RISCV_CPU(cs);
389     CPURISCVState *env = &cpu->env;
390 
391     if (is_write) {
392         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
393     } else {
394         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
395     }
396 
397     env->badaddr = addr;
398     riscv_raise_exception(&cpu->env, cs->exception_index, GETPC());
399 }
400 
401 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
402                                    MMUAccessType access_type, int mmu_idx,
403                                    uintptr_t retaddr)
404 {
405     RISCVCPU *cpu = RISCV_CPU(cs);
406     CPURISCVState *env = &cpu->env;
407     switch (access_type) {
408     case MMU_INST_FETCH:
409         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
410         break;
411     case MMU_DATA_LOAD:
412         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
413         break;
414     case MMU_DATA_STORE:
415         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
416         break;
417     default:
418         g_assert_not_reached();
419     }
420     env->badaddr = addr;
421     riscv_raise_exception(env, cs->exception_index, retaddr);
422 }
423 #endif
424 
425 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
426                         MMUAccessType access_type, int mmu_idx,
427                         bool probe, uintptr_t retaddr)
428 {
429 #ifndef CONFIG_USER_ONLY
430     RISCVCPU *cpu = RISCV_CPU(cs);
431     CPURISCVState *env = &cpu->env;
432     hwaddr pa = 0;
433     int prot;
434     bool pmp_violation = false;
435     int ret = TRANSLATE_FAIL;
436     int mode = mmu_idx;
437 
438     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
439                   __func__, address, access_type, mmu_idx);
440 
441     ret = get_physical_address(env, &pa, &prot, address, access_type, mmu_idx);
442 
443     if (mode == PRV_M && access_type != MMU_INST_FETCH) {
444         if (get_field(env->mstatus, MSTATUS_MPRV)) {
445             mode = get_field(env->mstatus, MSTATUS_MPP);
446         }
447     }
448 
449     qemu_log_mask(CPU_LOG_MMU,
450                   "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx
451                   " prot %d\n", __func__, address, ret, pa, prot);
452 
453     if (riscv_feature(env, RISCV_FEATURE_PMP) &&
454         (ret == TRANSLATE_SUCCESS) &&
455         !pmp_hart_has_privs(env, pa, TARGET_PAGE_SIZE, 1 << access_type,
456         mode)) {
457         ret = TRANSLATE_PMP_FAIL;
458     }
459     if (ret == TRANSLATE_PMP_FAIL) {
460         pmp_violation = true;
461     }
462     if (ret == TRANSLATE_SUCCESS) {
463         tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
464                      prot, mmu_idx, TARGET_PAGE_SIZE);
465         return true;
466     } else if (probe) {
467         return false;
468     } else {
469         raise_mmu_exception(env, address, access_type, pmp_violation);
470         riscv_raise_exception(env, cs->exception_index, retaddr);
471     }
472 #else
473     switch (access_type) {
474     case MMU_INST_FETCH:
475         cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
476         break;
477     case MMU_DATA_LOAD:
478         cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
479         break;
480     case MMU_DATA_STORE:
481         cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
482         break;
483     }
484     cpu_loop_exit_restore(cs, retaddr);
485 #endif
486 }
487 
488 /*
489  * Handle Traps
490  *
491  * Adapted from Spike's processor_t::take_trap.
492  *
493  */
494 void riscv_cpu_do_interrupt(CPUState *cs)
495 {
496 #if !defined(CONFIG_USER_ONLY)
497 
498     RISCVCPU *cpu = RISCV_CPU(cs);
499     CPURISCVState *env = &cpu->env;
500 
501     /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
502      * so we mask off the MSB and separate into trap type and cause.
503      */
504     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
505     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
506     target_ulong deleg = async ? env->mideleg : env->medeleg;
507     target_ulong tval = 0;
508 
509     static const int ecall_cause_map[] = {
510         [PRV_U] = RISCV_EXCP_U_ECALL,
511         [PRV_S] = RISCV_EXCP_S_ECALL,
512         [PRV_H] = RISCV_EXCP_H_ECALL,
513         [PRV_M] = RISCV_EXCP_M_ECALL
514     };
515 
516     if (!async) {
517         /* set tval to badaddr for traps with address information */
518         switch (cause) {
519         case RISCV_EXCP_INST_ADDR_MIS:
520         case RISCV_EXCP_INST_ACCESS_FAULT:
521         case RISCV_EXCP_LOAD_ADDR_MIS:
522         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
523         case RISCV_EXCP_LOAD_ACCESS_FAULT:
524         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
525         case RISCV_EXCP_INST_PAGE_FAULT:
526         case RISCV_EXCP_LOAD_PAGE_FAULT:
527         case RISCV_EXCP_STORE_PAGE_FAULT:
528             tval = env->badaddr;
529             break;
530         default:
531             break;
532         }
533         /* ecall is dispatched as one cause so translate based on mode */
534         if (cause == RISCV_EXCP_U_ECALL) {
535             assert(env->priv <= 3);
536             cause = ecall_cause_map[env->priv];
537         }
538     }
539 
540     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 16 ?
541         (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
542 
543     if (env->priv <= PRV_S &&
544             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
545         /* handle the trap in S-mode */
546         target_ulong s = env->mstatus;
547         s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
548             get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
549         s = set_field(s, MSTATUS_SPP, env->priv);
550         s = set_field(s, MSTATUS_SIE, 0);
551         env->mstatus = s;
552         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
553         env->sepc = env->pc;
554         env->sbadaddr = tval;
555         env->pc = (env->stvec >> 2 << 2) +
556             ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
557         riscv_cpu_set_mode(env, PRV_S);
558     } else {
559         /* handle the trap in M-mode */
560         target_ulong s = env->mstatus;
561         s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
562             get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
563         s = set_field(s, MSTATUS_MPP, env->priv);
564         s = set_field(s, MSTATUS_MIE, 0);
565         env->mstatus = s;
566         env->mcause = cause | ~(((target_ulong)-1) >> async);
567         env->mepc = env->pc;
568         env->mbadaddr = tval;
569         env->pc = (env->mtvec >> 2 << 2) +
570             ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
571         riscv_cpu_set_mode(env, PRV_M);
572     }
573 
574     /* NOTE: it is not necessary to yield load reservations here. It is only
575      * necessary for an SC from "another hart" to cause a load reservation
576      * to be yielded. Refer to the memory consistency model section of the
577      * RISC-V ISA Specification.
578      */
579 
580 #endif
581     cs->exception_index = EXCP_NONE; /* mark handled to qemu */
582 }
583