1 /* 2 * RISC-V CPU helpers for qemu. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/main-loop.h" 23 #include "cpu.h" 24 #include "internals.h" 25 #include "pmu.h" 26 #include "exec/exec-all.h" 27 #include "instmap.h" 28 #include "tcg/tcg-op.h" 29 #include "trace.h" 30 #include "semihosting/common-semi.h" 31 #include "sysemu/cpu-timers.h" 32 #include "cpu_bits.h" 33 #include "debug.h" 34 #include "tcg/oversized-guest.h" 35 36 int riscv_env_mmu_index(CPURISCVState *env, bool ifetch) 37 { 38 #ifdef CONFIG_USER_ONLY 39 return 0; 40 #else 41 bool virt = env->virt_enabled; 42 int mode = env->priv; 43 44 /* All priv -> mmu_idx mapping are here */ 45 if (!ifetch) { 46 uint64_t status = env->mstatus; 47 48 if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) { 49 mode = get_field(env->mstatus, MSTATUS_MPP); 50 virt = get_field(env->mstatus, MSTATUS_MPV) && 51 (mode != PRV_M); 52 if (virt) { 53 status = env->vsstatus; 54 } 55 } 56 if (mode == PRV_S && get_field(status, MSTATUS_SUM)) { 57 mode = MMUIdx_S_SUM; 58 } 59 } 60 61 return mode | (virt ? MMU_2STAGE_BIT : 0); 62 #endif 63 } 64 65 void cpu_get_tb_cpu_state(CPURISCVState *env, vaddr *pc, 66 uint64_t *cs_base, uint32_t *pflags) 67 { 68 RISCVCPU *cpu = env_archcpu(env); 69 RISCVExtStatus fs, vs; 70 uint32_t flags = 0; 71 72 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc; 73 *cs_base = 0; 74 75 if (cpu->cfg.ext_zve32f) { 76 /* 77 * If env->vl equals to VLMAX, we can use generic vector operation 78 * expanders (GVEC) to accerlate the vector operations. 79 * However, as LMUL could be a fractional number. The maximum 80 * vector size can be operated might be less than 8 bytes, 81 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true 82 * only when maxsz >= 8 bytes. 83 */ 84 85 /* lmul encoded as in DisasContext::lmul */ 86 int8_t lmul = sextract32(FIELD_EX64(env->vtype, VTYPE, VLMUL), 0, 3); 87 uint32_t vsew = FIELD_EX64(env->vtype, VTYPE, VSEW); 88 uint32_t vlmax = vext_get_vlmax(cpu->cfg.vlenb, vsew, lmul); 89 uint32_t maxsz = vlmax << vsew; 90 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) && 91 (maxsz >= 8); 92 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill); 93 flags = FIELD_DP32(flags, TB_FLAGS, SEW, vsew); 94 flags = FIELD_DP32(flags, TB_FLAGS, LMUL, 95 FIELD_EX64(env->vtype, VTYPE, VLMUL)); 96 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax); 97 flags = FIELD_DP32(flags, TB_FLAGS, VTA, 98 FIELD_EX64(env->vtype, VTYPE, VTA)); 99 flags = FIELD_DP32(flags, TB_FLAGS, VMA, 100 FIELD_EX64(env->vtype, VTYPE, VMA)); 101 flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0); 102 } else { 103 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1); 104 } 105 106 #ifdef CONFIG_USER_ONLY 107 fs = EXT_STATUS_DIRTY; 108 vs = EXT_STATUS_DIRTY; 109 #else 110 flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv); 111 112 flags |= riscv_env_mmu_index(env, 0); 113 fs = get_field(env->mstatus, MSTATUS_FS); 114 vs = get_field(env->mstatus, MSTATUS_VS); 115 116 if (env->virt_enabled) { 117 flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1); 118 /* 119 * Merge DISABLED and !DIRTY states using MIN. 120 * We will set both fields when dirtying. 121 */ 122 fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS)); 123 vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS)); 124 } 125 126 /* With Zfinx, floating point is enabled/disabled by Smstateen. */ 127 if (!riscv_has_ext(env, RVF)) { 128 fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE) 129 ? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED; 130 } 131 132 if (cpu->cfg.debug && !icount_enabled()) { 133 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled); 134 } 135 #endif 136 137 flags = FIELD_DP32(flags, TB_FLAGS, FS, fs); 138 flags = FIELD_DP32(flags, TB_FLAGS, VS, vs); 139 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl); 140 flags = FIELD_DP32(flags, TB_FLAGS, AXL, cpu_address_xl(env)); 141 if (env->cur_pmmask != 0) { 142 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1); 143 } 144 if (env->cur_pmbase != 0) { 145 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1); 146 } 147 148 *pflags = flags; 149 } 150 151 void riscv_cpu_update_mask(CPURISCVState *env) 152 { 153 target_ulong mask = 0, base = 0; 154 RISCVMXL xl = env->xl; 155 /* 156 * TODO: Current RVJ spec does not specify 157 * how the extension interacts with XLEN. 158 */ 159 #ifndef CONFIG_USER_ONLY 160 int mode = cpu_address_mode(env); 161 xl = cpu_get_xl(env, mode); 162 if (riscv_has_ext(env, RVJ)) { 163 switch (mode) { 164 case PRV_M: 165 if (env->mmte & M_PM_ENABLE) { 166 mask = env->mpmmask; 167 base = env->mpmbase; 168 } 169 break; 170 case PRV_S: 171 if (env->mmte & S_PM_ENABLE) { 172 mask = env->spmmask; 173 base = env->spmbase; 174 } 175 break; 176 case PRV_U: 177 if (env->mmte & U_PM_ENABLE) { 178 mask = env->upmmask; 179 base = env->upmbase; 180 } 181 break; 182 default: 183 g_assert_not_reached(); 184 } 185 } 186 #endif 187 if (xl == MXL_RV32) { 188 env->cur_pmmask = mask & UINT32_MAX; 189 env->cur_pmbase = base & UINT32_MAX; 190 } else { 191 env->cur_pmmask = mask; 192 env->cur_pmbase = base; 193 } 194 } 195 196 #ifndef CONFIG_USER_ONLY 197 198 /* 199 * The HS-mode is allowed to configure priority only for the 200 * following VS-mode local interrupts: 201 * 202 * 0 (Reserved interrupt, reads as zero) 203 * 1 Supervisor software interrupt 204 * 4 (Reserved interrupt, reads as zero) 205 * 5 Supervisor timer interrupt 206 * 8 (Reserved interrupt, reads as zero) 207 * 13 (Reserved interrupt) 208 * 14 " 209 * 15 " 210 * 16 " 211 * 17 " 212 * 18 " 213 * 19 " 214 * 20 " 215 * 21 " 216 * 22 " 217 * 23 " 218 */ 219 220 static const int hviprio_index2irq[] = { 221 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 }; 222 static const int hviprio_index2rdzero[] = { 223 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 224 225 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero) 226 { 227 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) { 228 return -EINVAL; 229 } 230 231 if (out_irq) { 232 *out_irq = hviprio_index2irq[index]; 233 } 234 235 if (out_rdzero) { 236 *out_rdzero = hviprio_index2rdzero[index]; 237 } 238 239 return 0; 240 } 241 242 /* 243 * Default priorities of local interrupts are defined in the 244 * RISC-V Advanced Interrupt Architecture specification. 245 * 246 * ---------------------------------------------------------------- 247 * Default | 248 * Priority | Major Interrupt Numbers 249 * ---------------------------------------------------------------- 250 * Highest | 47, 23, 46, 45, 22, 44, 251 * | 43, 21, 42, 41, 20, 40 252 * | 253 * | 11 (0b), 3 (03), 7 (07) 254 * | 9 (09), 1 (01), 5 (05) 255 * | 12 (0c) 256 * | 10 (0a), 2 (02), 6 (06) 257 * | 258 * | 39, 19, 38, 37, 18, 36, 259 * Lowest | 35, 17, 34, 33, 16, 32 260 * ---------------------------------------------------------------- 261 */ 262 static const uint8_t default_iprio[64] = { 263 /* Custom interrupts 48 to 63 */ 264 [63] = IPRIO_MMAXIPRIO, 265 [62] = IPRIO_MMAXIPRIO, 266 [61] = IPRIO_MMAXIPRIO, 267 [60] = IPRIO_MMAXIPRIO, 268 [59] = IPRIO_MMAXIPRIO, 269 [58] = IPRIO_MMAXIPRIO, 270 [57] = IPRIO_MMAXIPRIO, 271 [56] = IPRIO_MMAXIPRIO, 272 [55] = IPRIO_MMAXIPRIO, 273 [54] = IPRIO_MMAXIPRIO, 274 [53] = IPRIO_MMAXIPRIO, 275 [52] = IPRIO_MMAXIPRIO, 276 [51] = IPRIO_MMAXIPRIO, 277 [50] = IPRIO_MMAXIPRIO, 278 [49] = IPRIO_MMAXIPRIO, 279 [48] = IPRIO_MMAXIPRIO, 280 281 /* Custom interrupts 24 to 31 */ 282 [31] = IPRIO_MMAXIPRIO, 283 [30] = IPRIO_MMAXIPRIO, 284 [29] = IPRIO_MMAXIPRIO, 285 [28] = IPRIO_MMAXIPRIO, 286 [27] = IPRIO_MMAXIPRIO, 287 [26] = IPRIO_MMAXIPRIO, 288 [25] = IPRIO_MMAXIPRIO, 289 [24] = IPRIO_MMAXIPRIO, 290 291 [47] = IPRIO_DEFAULT_UPPER, 292 [23] = IPRIO_DEFAULT_UPPER + 1, 293 [46] = IPRIO_DEFAULT_UPPER + 2, 294 [45] = IPRIO_DEFAULT_UPPER + 3, 295 [22] = IPRIO_DEFAULT_UPPER + 4, 296 [44] = IPRIO_DEFAULT_UPPER + 5, 297 298 [43] = IPRIO_DEFAULT_UPPER + 6, 299 [21] = IPRIO_DEFAULT_UPPER + 7, 300 [42] = IPRIO_DEFAULT_UPPER + 8, 301 [41] = IPRIO_DEFAULT_UPPER + 9, 302 [20] = IPRIO_DEFAULT_UPPER + 10, 303 [40] = IPRIO_DEFAULT_UPPER + 11, 304 305 [11] = IPRIO_DEFAULT_M, 306 [3] = IPRIO_DEFAULT_M + 1, 307 [7] = IPRIO_DEFAULT_M + 2, 308 309 [9] = IPRIO_DEFAULT_S, 310 [1] = IPRIO_DEFAULT_S + 1, 311 [5] = IPRIO_DEFAULT_S + 2, 312 313 [12] = IPRIO_DEFAULT_SGEXT, 314 315 [10] = IPRIO_DEFAULT_VS, 316 [2] = IPRIO_DEFAULT_VS + 1, 317 [6] = IPRIO_DEFAULT_VS + 2, 318 319 [39] = IPRIO_DEFAULT_LOWER, 320 [19] = IPRIO_DEFAULT_LOWER + 1, 321 [38] = IPRIO_DEFAULT_LOWER + 2, 322 [37] = IPRIO_DEFAULT_LOWER + 3, 323 [18] = IPRIO_DEFAULT_LOWER + 4, 324 [36] = IPRIO_DEFAULT_LOWER + 5, 325 326 [35] = IPRIO_DEFAULT_LOWER + 6, 327 [17] = IPRIO_DEFAULT_LOWER + 7, 328 [34] = IPRIO_DEFAULT_LOWER + 8, 329 [33] = IPRIO_DEFAULT_LOWER + 9, 330 [16] = IPRIO_DEFAULT_LOWER + 10, 331 [32] = IPRIO_DEFAULT_LOWER + 11, 332 }; 333 334 uint8_t riscv_cpu_default_priority(int irq) 335 { 336 if (irq < 0 || irq > 63) { 337 return IPRIO_MMAXIPRIO; 338 } 339 340 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO; 341 }; 342 343 static int riscv_cpu_pending_to_irq(CPURISCVState *env, 344 int extirq, unsigned int extirq_def_prio, 345 uint64_t pending, uint8_t *iprio) 346 { 347 int irq, best_irq = RISCV_EXCP_NONE; 348 unsigned int prio, best_prio = UINT_MAX; 349 350 if (!pending) { 351 return RISCV_EXCP_NONE; 352 } 353 354 irq = ctz64(pending); 355 if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia : 356 riscv_cpu_cfg(env)->ext_ssaia)) { 357 return irq; 358 } 359 360 pending = pending >> irq; 361 while (pending) { 362 prio = iprio[irq]; 363 if (!prio) { 364 if (irq == extirq) { 365 prio = extirq_def_prio; 366 } else { 367 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ? 368 1 : IPRIO_MMAXIPRIO; 369 } 370 } 371 if ((pending & 0x1) && (prio <= best_prio)) { 372 best_irq = irq; 373 best_prio = prio; 374 } 375 irq++; 376 pending = pending >> 1; 377 } 378 379 return best_irq; 380 } 381 382 /* 383 * Doesn't report interrupts inserted using mvip from M-mode firmware or 384 * using hvip bits 13:63 from HS-mode. Those are returned in 385 * riscv_cpu_sirq_pending() and riscv_cpu_vsirq_pending(). 386 */ 387 uint64_t riscv_cpu_all_pending(CPURISCVState *env) 388 { 389 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN); 390 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 391 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0; 392 393 return (env->mip | vsgein | vstip) & env->mie; 394 } 395 396 int riscv_cpu_mirq_pending(CPURISCVState *env) 397 { 398 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg & 399 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 400 401 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 402 irqs, env->miprio); 403 } 404 405 int riscv_cpu_sirq_pending(CPURISCVState *env) 406 { 407 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & 408 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 409 uint64_t irqs_f = env->mvip & env->mvien & ~env->mideleg & env->sie; 410 411 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 412 irqs | irqs_f, env->siprio); 413 } 414 415 int riscv_cpu_vsirq_pending(CPURISCVState *env) 416 { 417 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & env->hideleg; 418 uint64_t irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie; 419 uint64_t vsbits; 420 421 /* Bring VS-level bits to correct position */ 422 vsbits = irqs & VS_MODE_INTERRUPTS; 423 irqs &= ~VS_MODE_INTERRUPTS; 424 irqs |= vsbits >> 1; 425 426 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 427 (irqs | irqs_f_vs), env->hviprio); 428 } 429 430 static int riscv_cpu_local_irq_pending(CPURISCVState *env) 431 { 432 uint64_t irqs, pending, mie, hsie, vsie, irqs_f, irqs_f_vs; 433 uint64_t vsbits, irq_delegated; 434 int virq; 435 436 /* Determine interrupt enable state of all privilege modes */ 437 if (env->virt_enabled) { 438 mie = 1; 439 hsie = 1; 440 vsie = (env->priv < PRV_S) || 441 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 442 } else { 443 mie = (env->priv < PRV_M) || 444 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE)); 445 hsie = (env->priv < PRV_S) || 446 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 447 vsie = 0; 448 } 449 450 /* Determine all pending interrupts */ 451 pending = riscv_cpu_all_pending(env); 452 453 /* Check M-mode interrupts */ 454 irqs = pending & ~env->mideleg & -mie; 455 if (irqs) { 456 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 457 irqs, env->miprio); 458 } 459 460 /* Check for virtual S-mode interrupts. */ 461 irqs_f = env->mvip & (env->mvien & ~env->mideleg) & env->sie; 462 463 /* Check HS-mode interrupts */ 464 irqs = ((pending & env->mideleg & ~env->hideleg) | irqs_f) & -hsie; 465 if (irqs) { 466 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 467 irqs, env->siprio); 468 } 469 470 /* Check for virtual VS-mode interrupts. */ 471 irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie; 472 473 /* Check VS-mode interrupts */ 474 irq_delegated = pending & env->mideleg & env->hideleg; 475 476 /* Bring VS-level bits to correct position */ 477 vsbits = irq_delegated & VS_MODE_INTERRUPTS; 478 irq_delegated &= ~VS_MODE_INTERRUPTS; 479 irq_delegated |= vsbits >> 1; 480 481 irqs = (irq_delegated | irqs_f_vs) & -vsie; 482 if (irqs) { 483 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 484 irqs, env->hviprio); 485 if (virq <= 0 || (virq > 12 && virq <= 63)) { 486 return virq; 487 } else { 488 return virq + 1; 489 } 490 } 491 492 /* Indicate no pending interrupt */ 493 return RISCV_EXCP_NONE; 494 } 495 496 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 497 { 498 if (interrupt_request & CPU_INTERRUPT_HARD) { 499 RISCVCPU *cpu = RISCV_CPU(cs); 500 CPURISCVState *env = &cpu->env; 501 int interruptno = riscv_cpu_local_irq_pending(env); 502 if (interruptno >= 0) { 503 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; 504 riscv_cpu_do_interrupt(cs); 505 return true; 506 } 507 } 508 return false; 509 } 510 511 /* Return true is floating point support is currently enabled */ 512 bool riscv_cpu_fp_enabled(CPURISCVState *env) 513 { 514 if (env->mstatus & MSTATUS_FS) { 515 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) { 516 return false; 517 } 518 return true; 519 } 520 521 return false; 522 } 523 524 /* Return true is vector support is currently enabled */ 525 bool riscv_cpu_vector_enabled(CPURISCVState *env) 526 { 527 if (env->mstatus & MSTATUS_VS) { 528 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) { 529 return false; 530 } 531 return true; 532 } 533 534 return false; 535 } 536 537 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) 538 { 539 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | 540 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE | 541 MSTATUS64_UXL | MSTATUS_VS; 542 543 if (riscv_has_ext(env, RVF)) { 544 mstatus_mask |= MSTATUS_FS; 545 } 546 bool current_virt = env->virt_enabled; 547 548 g_assert(riscv_has_ext(env, RVH)); 549 550 if (current_virt) { 551 /* Current V=1 and we are about to change to V=0 */ 552 env->vsstatus = env->mstatus & mstatus_mask; 553 env->mstatus &= ~mstatus_mask; 554 env->mstatus |= env->mstatus_hs; 555 556 env->vstvec = env->stvec; 557 env->stvec = env->stvec_hs; 558 559 env->vsscratch = env->sscratch; 560 env->sscratch = env->sscratch_hs; 561 562 env->vsepc = env->sepc; 563 env->sepc = env->sepc_hs; 564 565 env->vscause = env->scause; 566 env->scause = env->scause_hs; 567 568 env->vstval = env->stval; 569 env->stval = env->stval_hs; 570 571 env->vsatp = env->satp; 572 env->satp = env->satp_hs; 573 } else { 574 /* Current V=0 and we are about to change to V=1 */ 575 env->mstatus_hs = env->mstatus & mstatus_mask; 576 env->mstatus &= ~mstatus_mask; 577 env->mstatus |= env->vsstatus; 578 579 env->stvec_hs = env->stvec; 580 env->stvec = env->vstvec; 581 582 env->sscratch_hs = env->sscratch; 583 env->sscratch = env->vsscratch; 584 585 env->sepc_hs = env->sepc; 586 env->sepc = env->vsepc; 587 588 env->scause_hs = env->scause; 589 env->scause = env->vscause; 590 591 env->stval_hs = env->stval; 592 env->stval = env->vstval; 593 594 env->satp_hs = env->satp; 595 env->satp = env->vsatp; 596 } 597 } 598 599 target_ulong riscv_cpu_get_geilen(CPURISCVState *env) 600 { 601 if (!riscv_has_ext(env, RVH)) { 602 return 0; 603 } 604 605 return env->geilen; 606 } 607 608 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen) 609 { 610 if (!riscv_has_ext(env, RVH)) { 611 return; 612 } 613 614 if (geilen > (TARGET_LONG_BITS - 1)) { 615 return; 616 } 617 618 env->geilen = geilen; 619 } 620 621 /* This function can only be called to set virt when RVH is enabled */ 622 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable) 623 { 624 /* Flush the TLB on all virt mode changes. */ 625 if (env->virt_enabled != enable) { 626 tlb_flush(env_cpu(env)); 627 } 628 629 env->virt_enabled = enable; 630 631 if (enable) { 632 /* 633 * The guest external interrupts from an interrupt controller are 634 * delivered only when the Guest/VM is running (i.e. V=1). This means 635 * any guest external interrupt which is triggered while the Guest/VM 636 * is not running (i.e. V=0) will be missed on QEMU resulting in guest 637 * with sluggish response to serial console input and other I/O events. 638 * 639 * To solve this, we check and inject interrupt after setting V=1. 640 */ 641 riscv_cpu_update_mip(env, 0, 0); 642 } 643 } 644 645 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts) 646 { 647 CPURISCVState *env = &cpu->env; 648 if (env->miclaim & interrupts) { 649 return -1; 650 } else { 651 env->miclaim |= interrupts; 652 return 0; 653 } 654 } 655 656 void riscv_cpu_interrupt(CPURISCVState *env) 657 { 658 uint64_t gein, vsgein = 0, vstip = 0, irqf = 0; 659 CPUState *cs = env_cpu(env); 660 661 BQL_LOCK_GUARD(); 662 663 if (env->virt_enabled) { 664 gein = get_field(env->hstatus, HSTATUS_VGEIN); 665 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 666 irqf = env->hvien & env->hvip & env->vsie; 667 } else { 668 irqf = env->mvien & env->mvip & env->sie; 669 } 670 671 vstip = env->vstime_irq ? MIP_VSTIP : 0; 672 673 if (env->mip | vsgein | vstip | irqf) { 674 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 675 } else { 676 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 677 } 678 } 679 680 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask, uint64_t value) 681 { 682 uint64_t old = env->mip; 683 684 /* No need to update mip for VSTIP */ 685 mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask; 686 687 BQL_LOCK_GUARD(); 688 689 env->mip = (env->mip & ~mask) | (value & mask); 690 691 riscv_cpu_interrupt(env); 692 693 return old; 694 } 695 696 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *), 697 void *arg) 698 { 699 env->rdtime_fn = fn; 700 env->rdtime_fn_arg = arg; 701 } 702 703 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv, 704 int (*rmw_fn)(void *arg, 705 target_ulong reg, 706 target_ulong *val, 707 target_ulong new_val, 708 target_ulong write_mask), 709 void *rmw_fn_arg) 710 { 711 if (priv <= PRV_M) { 712 env->aia_ireg_rmw_fn[priv] = rmw_fn; 713 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg; 714 } 715 } 716 717 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) 718 { 719 g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED); 720 721 if (icount_enabled() && newpriv != env->priv) { 722 riscv_itrigger_update_priv(env); 723 } 724 /* tlb_flush is unnecessary as mode is contained in mmu_idx */ 725 env->priv = newpriv; 726 env->xl = cpu_recompute_xl(env); 727 riscv_cpu_update_mask(env); 728 729 /* 730 * Clear the load reservation - otherwise a reservation placed in one 731 * context/process can be used by another, resulting in an SC succeeding 732 * incorrectly. Version 2.2 of the ISA specification explicitly requires 733 * this behaviour, while later revisions say that the kernel "should" use 734 * an SC instruction to force the yielding of a load reservation on a 735 * preemptive context switch. As a result, do both. 736 */ 737 env->load_res = -1; 738 } 739 740 /* 741 * get_physical_address_pmp - check PMP permission for this physical address 742 * 743 * Match the PMP region and check permission for this physical address and it's 744 * TLB page. Returns 0 if the permission checking was successful 745 * 746 * @env: CPURISCVState 747 * @prot: The returned protection attributes 748 * @addr: The physical address to be checked permission 749 * @access_type: The type of MMU access 750 * @mode: Indicates current privilege level. 751 */ 752 static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr, 753 int size, MMUAccessType access_type, 754 int mode) 755 { 756 pmp_priv_t pmp_priv; 757 bool pmp_has_privs; 758 759 if (!riscv_cpu_cfg(env)->pmp) { 760 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 761 return TRANSLATE_SUCCESS; 762 } 763 764 pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type, 765 &pmp_priv, mode); 766 if (!pmp_has_privs) { 767 *prot = 0; 768 return TRANSLATE_PMP_FAIL; 769 } 770 771 *prot = pmp_priv_to_page_prot(pmp_priv); 772 773 return TRANSLATE_SUCCESS; 774 } 775 776 /* 777 * get_physical_address - get the physical address for this virtual address 778 * 779 * Do a page table walk to obtain the physical address corresponding to a 780 * virtual address. Returns 0 if the translation was successful 781 * 782 * Adapted from Spike's mmu_t::translate and mmu_t::walk 783 * 784 * @env: CPURISCVState 785 * @physical: This will be set to the calculated physical address 786 * @prot: The returned protection attributes 787 * @addr: The virtual address or guest physical address to be translated 788 * @fault_pte_addr: If not NULL, this will be set to fault pte address 789 * when a error occurs on pte address translation. 790 * This will already be shifted to match htval. 791 * @access_type: The type of MMU access 792 * @mmu_idx: Indicates current privilege level 793 * @first_stage: Are we in first stage translation? 794 * Second stage is used for hypervisor guest translation 795 * @two_stage: Are we going to perform two stage translation 796 * @is_debug: Is this access from a debugger or the monitor? 797 */ 798 static int get_physical_address(CPURISCVState *env, hwaddr *physical, 799 int *ret_prot, vaddr addr, 800 target_ulong *fault_pte_addr, 801 int access_type, int mmu_idx, 802 bool first_stage, bool two_stage, 803 bool is_debug) 804 { 805 /* 806 * NOTE: the env->pc value visible here will not be 807 * correct, but the value visible to the exception handler 808 * (riscv_cpu_do_interrupt) is correct 809 */ 810 MemTxResult res; 811 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 812 int mode = mmuidx_priv(mmu_idx); 813 bool use_background = false; 814 hwaddr ppn; 815 int napot_bits = 0; 816 target_ulong napot_mask; 817 818 /* 819 * Check if we should use the background registers for the two 820 * stage translation. We don't need to check if we actually need 821 * two stage translation as that happened before this function 822 * was called. Background registers will be used if the guest has 823 * forced a two stage translation to be on (in HS or M mode). 824 */ 825 if (!env->virt_enabled && two_stage) { 826 use_background = true; 827 } 828 829 if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) { 830 *physical = addr; 831 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 832 return TRANSLATE_SUCCESS; 833 } 834 835 *ret_prot = 0; 836 837 hwaddr base; 838 int levels, ptidxbits, ptesize, vm, widened; 839 840 if (first_stage == true) { 841 if (use_background) { 842 if (riscv_cpu_mxl(env) == MXL_RV32) { 843 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT; 844 vm = get_field(env->vsatp, SATP32_MODE); 845 } else { 846 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT; 847 vm = get_field(env->vsatp, SATP64_MODE); 848 } 849 } else { 850 if (riscv_cpu_mxl(env) == MXL_RV32) { 851 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT; 852 vm = get_field(env->satp, SATP32_MODE); 853 } else { 854 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT; 855 vm = get_field(env->satp, SATP64_MODE); 856 } 857 } 858 widened = 0; 859 } else { 860 if (riscv_cpu_mxl(env) == MXL_RV32) { 861 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT; 862 vm = get_field(env->hgatp, SATP32_MODE); 863 } else { 864 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT; 865 vm = get_field(env->hgatp, SATP64_MODE); 866 } 867 widened = 2; 868 } 869 870 switch (vm) { 871 case VM_1_10_SV32: 872 levels = 2; ptidxbits = 10; ptesize = 4; break; 873 case VM_1_10_SV39: 874 levels = 3; ptidxbits = 9; ptesize = 8; break; 875 case VM_1_10_SV48: 876 levels = 4; ptidxbits = 9; ptesize = 8; break; 877 case VM_1_10_SV57: 878 levels = 5; ptidxbits = 9; ptesize = 8; break; 879 case VM_1_10_MBARE: 880 *physical = addr; 881 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 882 return TRANSLATE_SUCCESS; 883 default: 884 g_assert_not_reached(); 885 } 886 887 CPUState *cs = env_cpu(env); 888 int va_bits = PGSHIFT + levels * ptidxbits + widened; 889 890 if (first_stage == true) { 891 target_ulong mask, masked_msbs; 892 893 if (TARGET_LONG_BITS > (va_bits - 1)) { 894 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; 895 } else { 896 mask = 0; 897 } 898 masked_msbs = (addr >> (va_bits - 1)) & mask; 899 900 if (masked_msbs != 0 && masked_msbs != mask) { 901 return TRANSLATE_FAIL; 902 } 903 } else { 904 if (vm != VM_1_10_SV32 && addr >> va_bits != 0) { 905 return TRANSLATE_FAIL; 906 } 907 } 908 909 bool pbmte = env->menvcfg & MENVCFG_PBMTE; 910 bool svade = riscv_cpu_cfg(env)->ext_svade; 911 bool svadu = riscv_cpu_cfg(env)->ext_svadu; 912 bool adue = svadu ? env->menvcfg & MENVCFG_ADUE : !svade; 913 914 if (first_stage && two_stage && env->virt_enabled) { 915 pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE); 916 adue = adue && (env->henvcfg & HENVCFG_ADUE); 917 } 918 919 int ptshift = (levels - 1) * ptidxbits; 920 target_ulong pte; 921 hwaddr pte_addr; 922 int i; 923 924 #if !TCG_OVERSIZED_GUEST 925 restart: 926 #endif 927 for (i = 0; i < levels; i++, ptshift -= ptidxbits) { 928 target_ulong idx; 929 if (i == 0) { 930 idx = (addr >> (PGSHIFT + ptshift)) & 931 ((1 << (ptidxbits + widened)) - 1); 932 } else { 933 idx = (addr >> (PGSHIFT + ptshift)) & 934 ((1 << ptidxbits) - 1); 935 } 936 937 /* check that physical address of PTE is legal */ 938 939 if (two_stage && first_stage) { 940 int vbase_prot; 941 hwaddr vbase; 942 943 /* Do the second stage translation on the base PTE address. */ 944 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, 945 base, NULL, MMU_DATA_LOAD, 946 MMUIdx_U, false, true, 947 is_debug); 948 949 if (vbase_ret != TRANSLATE_SUCCESS) { 950 if (fault_pte_addr) { 951 *fault_pte_addr = (base + idx * ptesize) >> 2; 952 } 953 return TRANSLATE_G_STAGE_FAIL; 954 } 955 956 pte_addr = vbase + idx * ptesize; 957 } else { 958 pte_addr = base + idx * ptesize; 959 } 960 961 int pmp_prot; 962 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr, 963 sizeof(target_ulong), 964 MMU_DATA_LOAD, PRV_S); 965 if (pmp_ret != TRANSLATE_SUCCESS) { 966 return TRANSLATE_PMP_FAIL; 967 } 968 969 if (riscv_cpu_mxl(env) == MXL_RV32) { 970 pte = address_space_ldl(cs->as, pte_addr, attrs, &res); 971 } else { 972 pte = address_space_ldq(cs->as, pte_addr, attrs, &res); 973 } 974 975 if (res != MEMTX_OK) { 976 return TRANSLATE_FAIL; 977 } 978 979 if (riscv_cpu_sxl(env) == MXL_RV32) { 980 ppn = pte >> PTE_PPN_SHIFT; 981 } else { 982 if (pte & PTE_RESERVED) { 983 return TRANSLATE_FAIL; 984 } 985 986 if (!pbmte && (pte & PTE_PBMT)) { 987 return TRANSLATE_FAIL; 988 } 989 990 if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) { 991 return TRANSLATE_FAIL; 992 } 993 994 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT; 995 } 996 997 if (!(pte & PTE_V)) { 998 /* Invalid PTE */ 999 return TRANSLATE_FAIL; 1000 } 1001 if (pte & (PTE_R | PTE_W | PTE_X)) { 1002 goto leaf; 1003 } 1004 1005 /* Inner PTE, continue walking */ 1006 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) { 1007 return TRANSLATE_FAIL; 1008 } 1009 base = ppn << PGSHIFT; 1010 } 1011 1012 /* No leaf pte at any translation level. */ 1013 return TRANSLATE_FAIL; 1014 1015 leaf: 1016 if (ppn & ((1ULL << ptshift) - 1)) { 1017 /* Misaligned PPN */ 1018 return TRANSLATE_FAIL; 1019 } 1020 if (!pbmte && (pte & PTE_PBMT)) { 1021 /* Reserved without Svpbmt. */ 1022 return TRANSLATE_FAIL; 1023 } 1024 1025 /* Check for reserved combinations of RWX flags. */ 1026 switch (pte & (PTE_R | PTE_W | PTE_X)) { 1027 case PTE_W: 1028 case PTE_W | PTE_X: 1029 return TRANSLATE_FAIL; 1030 } 1031 1032 int prot = 0; 1033 if (pte & PTE_R) { 1034 prot |= PAGE_READ; 1035 } 1036 if (pte & PTE_W) { 1037 prot |= PAGE_WRITE; 1038 } 1039 if (pte & PTE_X) { 1040 bool mxr = false; 1041 1042 /* 1043 * Use mstatus for first stage or for the second stage without 1044 * virt_enabled (MPRV+MPV) 1045 */ 1046 if (first_stage || !env->virt_enabled) { 1047 mxr = get_field(env->mstatus, MSTATUS_MXR); 1048 } 1049 1050 /* MPRV+MPV case, check VSSTATUS */ 1051 if (first_stage && two_stage && !env->virt_enabled) { 1052 mxr |= get_field(env->vsstatus, MSTATUS_MXR); 1053 } 1054 1055 /* 1056 * Setting MXR at HS-level overrides both VS-stage and G-stage 1057 * execute-only permissions 1058 */ 1059 if (env->virt_enabled) { 1060 mxr |= get_field(env->mstatus_hs, MSTATUS_MXR); 1061 } 1062 1063 if (mxr) { 1064 prot |= PAGE_READ; 1065 } 1066 prot |= PAGE_EXEC; 1067 } 1068 1069 if (pte & PTE_U) { 1070 if (mode != PRV_U) { 1071 if (!mmuidx_sum(mmu_idx)) { 1072 return TRANSLATE_FAIL; 1073 } 1074 /* SUM allows only read+write, not execute. */ 1075 prot &= PAGE_READ | PAGE_WRITE; 1076 } 1077 } else if (mode != PRV_S) { 1078 /* Supervisor PTE flags when not S mode */ 1079 return TRANSLATE_FAIL; 1080 } 1081 1082 if (!((prot >> access_type) & 1)) { 1083 /* Access check failed */ 1084 return TRANSLATE_FAIL; 1085 } 1086 1087 target_ulong updated_pte = pte; 1088 1089 /* 1090 * If ADUE is enabled, set accessed and dirty bits. 1091 * Otherwise raise an exception if necessary. 1092 */ 1093 if (adue) { 1094 updated_pte |= PTE_A | (access_type == MMU_DATA_STORE ? PTE_D : 0); 1095 } else if (!(pte & PTE_A) || 1096 (access_type == MMU_DATA_STORE && !(pte & PTE_D))) { 1097 return TRANSLATE_FAIL; 1098 } 1099 1100 /* Page table updates need to be atomic with MTTCG enabled */ 1101 if (updated_pte != pte && !is_debug) { 1102 if (!adue) { 1103 return TRANSLATE_FAIL; 1104 } 1105 1106 /* 1107 * - if accessed or dirty bits need updating, and the PTE is 1108 * in RAM, then we do so atomically with a compare and swap. 1109 * - if the PTE is in IO space or ROM, then it can't be updated 1110 * and we return TRANSLATE_FAIL. 1111 * - if the PTE changed by the time we went to update it, then 1112 * it is no longer valid and we must re-walk the page table. 1113 */ 1114 MemoryRegion *mr; 1115 hwaddr l = sizeof(target_ulong), addr1; 1116 mr = address_space_translate(cs->as, pte_addr, &addr1, &l, 1117 false, MEMTXATTRS_UNSPECIFIED); 1118 if (memory_region_is_ram(mr)) { 1119 target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1); 1120 #if TCG_OVERSIZED_GUEST 1121 /* 1122 * MTTCG is not enabled on oversized TCG guests so 1123 * page table updates do not need to be atomic 1124 */ 1125 *pte_pa = pte = updated_pte; 1126 #else 1127 target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte); 1128 if (old_pte != pte) { 1129 goto restart; 1130 } 1131 pte = updated_pte; 1132 #endif 1133 } else { 1134 /* 1135 * Misconfigured PTE in ROM (AD bits are not preset) or 1136 * PTE is in IO space and can't be updated atomically. 1137 */ 1138 return TRANSLATE_FAIL; 1139 } 1140 } 1141 1142 /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */ 1143 target_ulong vpn = addr >> PGSHIFT; 1144 1145 if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) { 1146 napot_bits = ctzl(ppn) + 1; 1147 if ((i != (levels - 1)) || (napot_bits != 4)) { 1148 return TRANSLATE_FAIL; 1149 } 1150 } 1151 1152 napot_mask = (1 << napot_bits) - 1; 1153 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) | 1154 (vpn & (((target_ulong)1 << ptshift) - 1)) 1155 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK); 1156 1157 /* 1158 * Remove write permission unless this is a store, or the page is 1159 * already dirty, so that we TLB miss on later writes to update 1160 * the dirty bit. 1161 */ 1162 if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) { 1163 prot &= ~PAGE_WRITE; 1164 } 1165 *ret_prot = prot; 1166 1167 return TRANSLATE_SUCCESS; 1168 } 1169 1170 static void raise_mmu_exception(CPURISCVState *env, target_ulong address, 1171 MMUAccessType access_type, bool pmp_violation, 1172 bool first_stage, bool two_stage, 1173 bool two_stage_indirect) 1174 { 1175 CPUState *cs = env_cpu(env); 1176 1177 switch (access_type) { 1178 case MMU_INST_FETCH: 1179 if (env->virt_enabled && !first_stage) { 1180 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; 1181 } else { 1182 cs->exception_index = pmp_violation ? 1183 RISCV_EXCP_INST_ACCESS_FAULT : RISCV_EXCP_INST_PAGE_FAULT; 1184 } 1185 break; 1186 case MMU_DATA_LOAD: 1187 if (two_stage && !first_stage) { 1188 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; 1189 } else { 1190 cs->exception_index = pmp_violation ? 1191 RISCV_EXCP_LOAD_ACCESS_FAULT : RISCV_EXCP_LOAD_PAGE_FAULT; 1192 } 1193 break; 1194 case MMU_DATA_STORE: 1195 if (two_stage && !first_stage) { 1196 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; 1197 } else { 1198 cs->exception_index = pmp_violation ? 1199 RISCV_EXCP_STORE_AMO_ACCESS_FAULT : 1200 RISCV_EXCP_STORE_PAGE_FAULT; 1201 } 1202 break; 1203 default: 1204 g_assert_not_reached(); 1205 } 1206 env->badaddr = address; 1207 env->two_stage_lookup = two_stage; 1208 env->two_stage_indirect_lookup = two_stage_indirect; 1209 } 1210 1211 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 1212 { 1213 RISCVCPU *cpu = RISCV_CPU(cs); 1214 CPURISCVState *env = &cpu->env; 1215 hwaddr phys_addr; 1216 int prot; 1217 int mmu_idx = riscv_env_mmu_index(&cpu->env, false); 1218 1219 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx, 1220 true, env->virt_enabled, true)) { 1221 return -1; 1222 } 1223 1224 if (env->virt_enabled) { 1225 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL, 1226 0, MMUIdx_U, false, true, true)) { 1227 return -1; 1228 } 1229 } 1230 1231 return phys_addr & TARGET_PAGE_MASK; 1232 } 1233 1234 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 1235 vaddr addr, unsigned size, 1236 MMUAccessType access_type, 1237 int mmu_idx, MemTxAttrs attrs, 1238 MemTxResult response, uintptr_t retaddr) 1239 { 1240 RISCVCPU *cpu = RISCV_CPU(cs); 1241 CPURISCVState *env = &cpu->env; 1242 1243 if (access_type == MMU_DATA_STORE) { 1244 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1245 } else if (access_type == MMU_DATA_LOAD) { 1246 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 1247 } else { 1248 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT; 1249 } 1250 1251 env->badaddr = addr; 1252 env->two_stage_lookup = mmuidx_2stage(mmu_idx); 1253 env->two_stage_indirect_lookup = false; 1254 cpu_loop_exit_restore(cs, retaddr); 1255 } 1256 1257 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 1258 MMUAccessType access_type, int mmu_idx, 1259 uintptr_t retaddr) 1260 { 1261 RISCVCPU *cpu = RISCV_CPU(cs); 1262 CPURISCVState *env = &cpu->env; 1263 switch (access_type) { 1264 case MMU_INST_FETCH: 1265 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; 1266 break; 1267 case MMU_DATA_LOAD: 1268 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; 1269 break; 1270 case MMU_DATA_STORE: 1271 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; 1272 break; 1273 default: 1274 g_assert_not_reached(); 1275 } 1276 env->badaddr = addr; 1277 env->two_stage_lookup = mmuidx_2stage(mmu_idx); 1278 env->two_stage_indirect_lookup = false; 1279 cpu_loop_exit_restore(cs, retaddr); 1280 } 1281 1282 1283 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type) 1284 { 1285 enum riscv_pmu_event_idx pmu_event_type; 1286 1287 switch (access_type) { 1288 case MMU_INST_FETCH: 1289 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS; 1290 break; 1291 case MMU_DATA_LOAD: 1292 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS; 1293 break; 1294 case MMU_DATA_STORE: 1295 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS; 1296 break; 1297 default: 1298 return; 1299 } 1300 1301 riscv_pmu_incr_ctr(cpu, pmu_event_type); 1302 } 1303 1304 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 1305 MMUAccessType access_type, int mmu_idx, 1306 bool probe, uintptr_t retaddr) 1307 { 1308 RISCVCPU *cpu = RISCV_CPU(cs); 1309 CPURISCVState *env = &cpu->env; 1310 vaddr im_address; 1311 hwaddr pa = 0; 1312 int prot, prot2, prot_pmp; 1313 bool pmp_violation = false; 1314 bool first_stage_error = true; 1315 bool two_stage_lookup = mmuidx_2stage(mmu_idx); 1316 bool two_stage_indirect_error = false; 1317 int ret = TRANSLATE_FAIL; 1318 int mode = mmuidx_priv(mmu_idx); 1319 /* default TLB page size */ 1320 target_ulong tlb_size = TARGET_PAGE_SIZE; 1321 1322 env->guest_phys_fault_addr = 0; 1323 1324 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", 1325 __func__, address, access_type, mmu_idx); 1326 1327 pmu_tlb_fill_incr_ctr(cpu, access_type); 1328 if (two_stage_lookup) { 1329 /* Two stage lookup */ 1330 ret = get_physical_address(env, &pa, &prot, address, 1331 &env->guest_phys_fault_addr, access_type, 1332 mmu_idx, true, true, false); 1333 1334 /* 1335 * A G-stage exception may be triggered during two state lookup. 1336 * And the env->guest_phys_fault_addr has already been set in 1337 * get_physical_address(). 1338 */ 1339 if (ret == TRANSLATE_G_STAGE_FAIL) { 1340 first_stage_error = false; 1341 two_stage_indirect_error = true; 1342 } 1343 1344 qemu_log_mask(CPU_LOG_MMU, 1345 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " 1346 HWADDR_FMT_plx " prot %d\n", 1347 __func__, address, ret, pa, prot); 1348 1349 if (ret == TRANSLATE_SUCCESS) { 1350 /* Second stage lookup */ 1351 im_address = pa; 1352 1353 ret = get_physical_address(env, &pa, &prot2, im_address, NULL, 1354 access_type, MMUIdx_U, false, true, 1355 false); 1356 1357 qemu_log_mask(CPU_LOG_MMU, 1358 "%s 2nd-stage address=%" VADDR_PRIx 1359 " ret %d physical " 1360 HWADDR_FMT_plx " prot %d\n", 1361 __func__, im_address, ret, pa, prot2); 1362 1363 prot &= prot2; 1364 1365 if (ret == TRANSLATE_SUCCESS) { 1366 ret = get_physical_address_pmp(env, &prot_pmp, pa, 1367 size, access_type, mode); 1368 tlb_size = pmp_get_tlb_size(env, pa); 1369 1370 qemu_log_mask(CPU_LOG_MMU, 1371 "%s PMP address=" HWADDR_FMT_plx " ret %d prot" 1372 " %d tlb_size " TARGET_FMT_lu "\n", 1373 __func__, pa, ret, prot_pmp, tlb_size); 1374 1375 prot &= prot_pmp; 1376 } 1377 1378 if (ret != TRANSLATE_SUCCESS) { 1379 /* 1380 * Guest physical address translation failed, this is a HS 1381 * level exception 1382 */ 1383 first_stage_error = false; 1384 env->guest_phys_fault_addr = (im_address | 1385 (address & 1386 (TARGET_PAGE_SIZE - 1))) >> 2; 1387 } 1388 } 1389 } else { 1390 /* Single stage lookup */ 1391 ret = get_physical_address(env, &pa, &prot, address, NULL, 1392 access_type, mmu_idx, true, false, false); 1393 1394 qemu_log_mask(CPU_LOG_MMU, 1395 "%s address=%" VADDR_PRIx " ret %d physical " 1396 HWADDR_FMT_plx " prot %d\n", 1397 __func__, address, ret, pa, prot); 1398 1399 if (ret == TRANSLATE_SUCCESS) { 1400 ret = get_physical_address_pmp(env, &prot_pmp, pa, 1401 size, access_type, mode); 1402 tlb_size = pmp_get_tlb_size(env, pa); 1403 1404 qemu_log_mask(CPU_LOG_MMU, 1405 "%s PMP address=" HWADDR_FMT_plx " ret %d prot" 1406 " %d tlb_size " TARGET_FMT_lu "\n", 1407 __func__, pa, ret, prot_pmp, tlb_size); 1408 1409 prot &= prot_pmp; 1410 } 1411 } 1412 1413 if (ret == TRANSLATE_PMP_FAIL) { 1414 pmp_violation = true; 1415 } 1416 1417 if (ret == TRANSLATE_SUCCESS) { 1418 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), 1419 prot, mmu_idx, tlb_size); 1420 return true; 1421 } else if (probe) { 1422 return false; 1423 } else { 1424 raise_mmu_exception(env, address, access_type, pmp_violation, 1425 first_stage_error, two_stage_lookup, 1426 two_stage_indirect_error); 1427 cpu_loop_exit_restore(cs, retaddr); 1428 } 1429 1430 return true; 1431 } 1432 1433 static target_ulong riscv_transformed_insn(CPURISCVState *env, 1434 target_ulong insn, 1435 target_ulong taddr) 1436 { 1437 target_ulong xinsn = 0; 1438 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0; 1439 1440 /* 1441 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to 1442 * be uncompressed. The Quadrant 1 of RVC instruction space need 1443 * not be transformed because these instructions won't generate 1444 * any load/store trap. 1445 */ 1446 1447 if ((insn & 0x3) != 0x3) { 1448 /* Transform 16bit instruction into 32bit instruction */ 1449 switch (GET_C_OP(insn)) { 1450 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */ 1451 switch (GET_C_FUNC(insn)) { 1452 case OPC_RISC_C_FUNC_FLD_LQ: 1453 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */ 1454 xinsn = OPC_RISC_FLD; 1455 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1456 access_rs1 = GET_C_RS1S(insn); 1457 access_imm = GET_C_LD_IMM(insn); 1458 access_size = 8; 1459 } 1460 break; 1461 case OPC_RISC_C_FUNC_LW: /* C.LW */ 1462 xinsn = OPC_RISC_LW; 1463 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1464 access_rs1 = GET_C_RS1S(insn); 1465 access_imm = GET_C_LW_IMM(insn); 1466 access_size = 4; 1467 break; 1468 case OPC_RISC_C_FUNC_FLW_LD: 1469 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */ 1470 xinsn = OPC_RISC_FLW; 1471 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1472 access_rs1 = GET_C_RS1S(insn); 1473 access_imm = GET_C_LW_IMM(insn); 1474 access_size = 4; 1475 } else { /* C.LD (RV64/RV128) */ 1476 xinsn = OPC_RISC_LD; 1477 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1478 access_rs1 = GET_C_RS1S(insn); 1479 access_imm = GET_C_LD_IMM(insn); 1480 access_size = 8; 1481 } 1482 break; 1483 case OPC_RISC_C_FUNC_FSD_SQ: 1484 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */ 1485 xinsn = OPC_RISC_FSD; 1486 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1487 access_rs1 = GET_C_RS1S(insn); 1488 access_imm = GET_C_SD_IMM(insn); 1489 access_size = 8; 1490 } 1491 break; 1492 case OPC_RISC_C_FUNC_SW: /* C.SW */ 1493 xinsn = OPC_RISC_SW; 1494 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1495 access_rs1 = GET_C_RS1S(insn); 1496 access_imm = GET_C_SW_IMM(insn); 1497 access_size = 4; 1498 break; 1499 case OPC_RISC_C_FUNC_FSW_SD: 1500 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */ 1501 xinsn = OPC_RISC_FSW; 1502 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1503 access_rs1 = GET_C_RS1S(insn); 1504 access_imm = GET_C_SW_IMM(insn); 1505 access_size = 4; 1506 } else { /* C.SD (RV64/RV128) */ 1507 xinsn = OPC_RISC_SD; 1508 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1509 access_rs1 = GET_C_RS1S(insn); 1510 access_imm = GET_C_SD_IMM(insn); 1511 access_size = 8; 1512 } 1513 break; 1514 default: 1515 break; 1516 } 1517 break; 1518 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */ 1519 switch (GET_C_FUNC(insn)) { 1520 case OPC_RISC_C_FUNC_FLDSP_LQSP: 1521 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */ 1522 xinsn = OPC_RISC_FLD; 1523 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1524 access_rs1 = 2; 1525 access_imm = GET_C_LDSP_IMM(insn); 1526 access_size = 8; 1527 } 1528 break; 1529 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */ 1530 xinsn = OPC_RISC_LW; 1531 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1532 access_rs1 = 2; 1533 access_imm = GET_C_LWSP_IMM(insn); 1534 access_size = 4; 1535 break; 1536 case OPC_RISC_C_FUNC_FLWSP_LDSP: 1537 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */ 1538 xinsn = OPC_RISC_FLW; 1539 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1540 access_rs1 = 2; 1541 access_imm = GET_C_LWSP_IMM(insn); 1542 access_size = 4; 1543 } else { /* C.LDSP (RV64/RV128) */ 1544 xinsn = OPC_RISC_LD; 1545 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1546 access_rs1 = 2; 1547 access_imm = GET_C_LDSP_IMM(insn); 1548 access_size = 8; 1549 } 1550 break; 1551 case OPC_RISC_C_FUNC_FSDSP_SQSP: 1552 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */ 1553 xinsn = OPC_RISC_FSD; 1554 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1555 access_rs1 = 2; 1556 access_imm = GET_C_SDSP_IMM(insn); 1557 access_size = 8; 1558 } 1559 break; 1560 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */ 1561 xinsn = OPC_RISC_SW; 1562 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1563 access_rs1 = 2; 1564 access_imm = GET_C_SWSP_IMM(insn); 1565 access_size = 4; 1566 break; 1567 case 7: 1568 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */ 1569 xinsn = OPC_RISC_FSW; 1570 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1571 access_rs1 = 2; 1572 access_imm = GET_C_SWSP_IMM(insn); 1573 access_size = 4; 1574 } else { /* C.SDSP (RV64/RV128) */ 1575 xinsn = OPC_RISC_SD; 1576 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1577 access_rs1 = 2; 1578 access_imm = GET_C_SDSP_IMM(insn); 1579 access_size = 8; 1580 } 1581 break; 1582 default: 1583 break; 1584 } 1585 break; 1586 default: 1587 break; 1588 } 1589 1590 /* 1591 * Clear Bit1 of transformed instruction to indicate that 1592 * original insruction was a 16bit instruction 1593 */ 1594 xinsn &= ~((target_ulong)0x2); 1595 } else { 1596 /* Transform 32bit (or wider) instructions */ 1597 switch (MASK_OP_MAJOR(insn)) { 1598 case OPC_RISC_ATOMIC: 1599 xinsn = insn; 1600 access_rs1 = GET_RS1(insn); 1601 access_size = 1 << GET_FUNCT3(insn); 1602 break; 1603 case OPC_RISC_LOAD: 1604 case OPC_RISC_FP_LOAD: 1605 xinsn = SET_I_IMM(insn, 0); 1606 access_rs1 = GET_RS1(insn); 1607 access_imm = GET_IMM(insn); 1608 access_size = 1 << GET_FUNCT3(insn); 1609 break; 1610 case OPC_RISC_STORE: 1611 case OPC_RISC_FP_STORE: 1612 xinsn = SET_S_IMM(insn, 0); 1613 access_rs1 = GET_RS1(insn); 1614 access_imm = GET_STORE_IMM(insn); 1615 access_size = 1 << GET_FUNCT3(insn); 1616 break; 1617 case OPC_RISC_SYSTEM: 1618 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) { 1619 xinsn = insn; 1620 access_rs1 = GET_RS1(insn); 1621 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3); 1622 access_size = 1 << access_size; 1623 } 1624 break; 1625 default: 1626 break; 1627 } 1628 } 1629 1630 if (access_size) { 1631 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) & 1632 (access_size - 1)); 1633 } 1634 1635 return xinsn; 1636 } 1637 #endif /* !CONFIG_USER_ONLY */ 1638 1639 /* 1640 * Handle Traps 1641 * 1642 * Adapted from Spike's processor_t::take_trap. 1643 * 1644 */ 1645 void riscv_cpu_do_interrupt(CPUState *cs) 1646 { 1647 #if !defined(CONFIG_USER_ONLY) 1648 1649 RISCVCPU *cpu = RISCV_CPU(cs); 1650 CPURISCVState *env = &cpu->env; 1651 bool write_gva = false; 1652 uint64_t s; 1653 1654 /* 1655 * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide 1656 * so we mask off the MSB and separate into trap type and cause. 1657 */ 1658 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); 1659 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; 1660 uint64_t deleg = async ? env->mideleg : env->medeleg; 1661 bool s_injected = env->mvip & (1 << cause) & env->mvien && 1662 !(env->mip & (1 << cause)); 1663 bool vs_injected = env->hvip & (1 << cause) & env->hvien && 1664 !(env->mip & (1 << cause)); 1665 target_ulong tval = 0; 1666 target_ulong tinst = 0; 1667 target_ulong htval = 0; 1668 target_ulong mtval2 = 0; 1669 1670 if (!async) { 1671 /* set tval to badaddr for traps with address information */ 1672 switch (cause) { 1673 case RISCV_EXCP_SEMIHOST: 1674 do_common_semihosting(cs); 1675 env->pc += 4; 1676 return; 1677 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: 1678 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: 1679 case RISCV_EXCP_LOAD_ADDR_MIS: 1680 case RISCV_EXCP_STORE_AMO_ADDR_MIS: 1681 case RISCV_EXCP_LOAD_ACCESS_FAULT: 1682 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: 1683 case RISCV_EXCP_LOAD_PAGE_FAULT: 1684 case RISCV_EXCP_STORE_PAGE_FAULT: 1685 write_gva = env->two_stage_lookup; 1686 tval = env->badaddr; 1687 if (env->two_stage_indirect_lookup) { 1688 /* 1689 * special pseudoinstruction for G-stage fault taken while 1690 * doing VS-stage page table walk. 1691 */ 1692 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; 1693 } else { 1694 /* 1695 * The "Addr. Offset" field in transformed instruction is 1696 * non-zero only for misaligned access. 1697 */ 1698 tinst = riscv_transformed_insn(env, env->bins, tval); 1699 } 1700 break; 1701 case RISCV_EXCP_INST_GUEST_PAGE_FAULT: 1702 case RISCV_EXCP_INST_ADDR_MIS: 1703 case RISCV_EXCP_INST_ACCESS_FAULT: 1704 case RISCV_EXCP_INST_PAGE_FAULT: 1705 write_gva = env->two_stage_lookup; 1706 tval = env->badaddr; 1707 if (env->two_stage_indirect_lookup) { 1708 /* 1709 * special pseudoinstruction for G-stage fault taken while 1710 * doing VS-stage page table walk. 1711 */ 1712 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; 1713 } 1714 break; 1715 case RISCV_EXCP_ILLEGAL_INST: 1716 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT: 1717 tval = env->bins; 1718 break; 1719 case RISCV_EXCP_BREAKPOINT: 1720 if (cs->watchpoint_hit) { 1721 tval = cs->watchpoint_hit->hitaddr; 1722 cs->watchpoint_hit = NULL; 1723 } 1724 break; 1725 default: 1726 break; 1727 } 1728 /* ecall is dispatched as one cause so translate based on mode */ 1729 if (cause == RISCV_EXCP_U_ECALL) { 1730 assert(env->priv <= 3); 1731 1732 if (env->priv == PRV_M) { 1733 cause = RISCV_EXCP_M_ECALL; 1734 } else if (env->priv == PRV_S && env->virt_enabled) { 1735 cause = RISCV_EXCP_VS_ECALL; 1736 } else if (env->priv == PRV_S && !env->virt_enabled) { 1737 cause = RISCV_EXCP_S_ECALL; 1738 } else if (env->priv == PRV_U) { 1739 cause = RISCV_EXCP_U_ECALL; 1740 } 1741 } 1742 } 1743 1744 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, 1745 riscv_cpu_get_trap_name(cause, async)); 1746 1747 qemu_log_mask(CPU_LOG_INT, 1748 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", " 1749 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n", 1750 __func__, env->mhartid, async, cause, env->pc, tval, 1751 riscv_cpu_get_trap_name(cause, async)); 1752 1753 if (env->priv <= PRV_S && cause < 64 && 1754 (((deleg >> cause) & 1) || s_injected || vs_injected)) { 1755 /* handle the trap in S-mode */ 1756 if (riscv_has_ext(env, RVH)) { 1757 uint64_t hdeleg = async ? env->hideleg : env->hedeleg; 1758 1759 if (env->virt_enabled && 1760 (((hdeleg >> cause) & 1) || vs_injected)) { 1761 /* Trap to VS mode */ 1762 /* 1763 * See if we need to adjust cause. Yes if its VS mode interrupt 1764 * no if hypervisor has delegated one of hs mode's interrupt 1765 */ 1766 if (async && (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || 1767 cause == IRQ_VS_EXT)) { 1768 cause = cause - 1; 1769 } 1770 write_gva = false; 1771 } else if (env->virt_enabled) { 1772 /* Trap into HS mode, from virt */ 1773 riscv_cpu_swap_hypervisor_regs(env); 1774 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, 1775 env->priv); 1776 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true); 1777 1778 htval = env->guest_phys_fault_addr; 1779 1780 riscv_cpu_set_virt_enabled(env, 0); 1781 } else { 1782 /* Trap into HS mode */ 1783 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false); 1784 htval = env->guest_phys_fault_addr; 1785 } 1786 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva); 1787 } 1788 1789 s = env->mstatus; 1790 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); 1791 s = set_field(s, MSTATUS_SPP, env->priv); 1792 s = set_field(s, MSTATUS_SIE, 0); 1793 env->mstatus = s; 1794 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); 1795 env->sepc = env->pc; 1796 env->stval = tval; 1797 env->htval = htval; 1798 env->htinst = tinst; 1799 env->pc = (env->stvec >> 2 << 2) + 1800 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); 1801 riscv_cpu_set_mode(env, PRV_S); 1802 } else { 1803 /* handle the trap in M-mode */ 1804 if (riscv_has_ext(env, RVH)) { 1805 if (env->virt_enabled) { 1806 riscv_cpu_swap_hypervisor_regs(env); 1807 } 1808 env->mstatus = set_field(env->mstatus, MSTATUS_MPV, 1809 env->virt_enabled); 1810 if (env->virt_enabled && tval) { 1811 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); 1812 } 1813 1814 mtval2 = env->guest_phys_fault_addr; 1815 1816 /* Trapping to M mode, virt is disabled */ 1817 riscv_cpu_set_virt_enabled(env, 0); 1818 } 1819 1820 s = env->mstatus; 1821 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); 1822 s = set_field(s, MSTATUS_MPP, env->priv); 1823 s = set_field(s, MSTATUS_MIE, 0); 1824 env->mstatus = s; 1825 env->mcause = cause | ~(((target_ulong)-1) >> async); 1826 env->mepc = env->pc; 1827 env->mtval = tval; 1828 env->mtval2 = mtval2; 1829 env->mtinst = tinst; 1830 env->pc = (env->mtvec >> 2 << 2) + 1831 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); 1832 riscv_cpu_set_mode(env, PRV_M); 1833 } 1834 1835 /* 1836 * NOTE: it is not necessary to yield load reservations here. It is only 1837 * necessary for an SC from "another hart" to cause a load reservation 1838 * to be yielded. Refer to the memory consistency model section of the 1839 * RISC-V ISA Specification. 1840 */ 1841 1842 env->two_stage_lookup = false; 1843 env->two_stage_indirect_lookup = false; 1844 #endif 1845 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */ 1846 } 1847