xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision 1448689c)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
26 #include "trace.h"
27 
28 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
29 {
30 #ifdef CONFIG_USER_ONLY
31     return 0;
32 #else
33     return env->priv;
34 #endif
35 }
36 
37 #ifndef CONFIG_USER_ONLY
38 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
39 {
40     target_ulong irqs;
41 
42     target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
43     target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
44     target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE);
45 
46     target_ulong pending = env->mip & env->mie &
47                                ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
48     target_ulong vspending = (env->mip & env->mie &
49                               (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)) >> 1;
50 
51     target_ulong mie    = env->priv < PRV_M ||
52                           (env->priv == PRV_M && mstatus_mie);
53     target_ulong sie    = env->priv < PRV_S ||
54                           (env->priv == PRV_S && mstatus_sie);
55     target_ulong hs_sie = env->priv < PRV_S ||
56                           (env->priv == PRV_S && hs_mstatus_sie);
57 
58     if (riscv_cpu_virt_enabled(env)) {
59         target_ulong pending_hs_irq = pending & -hs_sie;
60 
61         if (pending_hs_irq) {
62             riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP);
63             return ctz64(pending_hs_irq);
64         }
65 
66         pending = vspending;
67     }
68 
69     irqs = (pending & ~env->mideleg & -mie) | (pending &  env->mideleg & -sie);
70 
71     if (irqs) {
72         return ctz64(irqs); /* since non-zero */
73     } else {
74         return EXCP_NONE; /* indicates no pending interrupt */
75     }
76 }
77 #endif
78 
79 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
80 {
81 #if !defined(CONFIG_USER_ONLY)
82     if (interrupt_request & CPU_INTERRUPT_HARD) {
83         RISCVCPU *cpu = RISCV_CPU(cs);
84         CPURISCVState *env = &cpu->env;
85         int interruptno = riscv_cpu_local_irq_pending(env);
86         if (interruptno >= 0) {
87             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
88             riscv_cpu_do_interrupt(cs);
89             return true;
90         }
91     }
92 #endif
93     return false;
94 }
95 
96 #if !defined(CONFIG_USER_ONLY)
97 
98 /* Return true is floating point support is currently enabled */
99 bool riscv_cpu_fp_enabled(CPURISCVState *env)
100 {
101     if (env->mstatus & MSTATUS_FS) {
102         if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
103             return false;
104         }
105         return true;
106     }
107 
108     return false;
109 }
110 
111 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
112 {
113     target_ulong mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
114                                 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE;
115     bool current_virt = riscv_cpu_virt_enabled(env);
116 
117     g_assert(riscv_has_ext(env, RVH));
118 
119 #if defined(TARGET_RISCV64)
120     mstatus_mask |= MSTATUS64_UXL;
121 #endif
122 
123     if (current_virt) {
124         /* Current V=1 and we are about to change to V=0 */
125         env->vsstatus = env->mstatus & mstatus_mask;
126         env->mstatus &= ~mstatus_mask;
127         env->mstatus |= env->mstatus_hs;
128 
129         env->vstvec = env->stvec;
130         env->stvec = env->stvec_hs;
131 
132         env->vsscratch = env->sscratch;
133         env->sscratch = env->sscratch_hs;
134 
135         env->vsepc = env->sepc;
136         env->sepc = env->sepc_hs;
137 
138         env->vscause = env->scause;
139         env->scause = env->scause_hs;
140 
141         env->vstval = env->sbadaddr;
142         env->sbadaddr = env->stval_hs;
143 
144         env->vsatp = env->satp;
145         env->satp = env->satp_hs;
146     } else {
147         /* Current V=0 and we are about to change to V=1 */
148         env->mstatus_hs = env->mstatus & mstatus_mask;
149         env->mstatus &= ~mstatus_mask;
150         env->mstatus |= env->vsstatus;
151 
152         env->stvec_hs = env->stvec;
153         env->stvec = env->vstvec;
154 
155         env->sscratch_hs = env->sscratch;
156         env->sscratch = env->vsscratch;
157 
158         env->sepc_hs = env->sepc;
159         env->sepc = env->vsepc;
160 
161         env->scause_hs = env->scause;
162         env->scause = env->vscause;
163 
164         env->stval_hs = env->sbadaddr;
165         env->sbadaddr = env->vstval;
166 
167         env->satp_hs = env->satp;
168         env->satp = env->vsatp;
169     }
170 }
171 
172 bool riscv_cpu_virt_enabled(CPURISCVState *env)
173 {
174     if (!riscv_has_ext(env, RVH)) {
175         return false;
176     }
177 
178     return get_field(env->virt, VIRT_ONOFF);
179 }
180 
181 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
182 {
183     if (!riscv_has_ext(env, RVH)) {
184         return;
185     }
186 
187     /* Flush the TLB on all virt mode changes. */
188     if (get_field(env->virt, VIRT_ONOFF) != enable) {
189         tlb_flush(env_cpu(env));
190     }
191 
192     env->virt = set_field(env->virt, VIRT_ONOFF, enable);
193 }
194 
195 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env)
196 {
197     if (!riscv_has_ext(env, RVH)) {
198         return false;
199     }
200 
201     return get_field(env->virt, FORCE_HS_EXCEP);
202 }
203 
204 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable)
205 {
206     if (!riscv_has_ext(env, RVH)) {
207         return;
208     }
209 
210     env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable);
211 }
212 
213 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
214 {
215     CPURISCVState *env = &cpu->env;
216     if (env->miclaim & interrupts) {
217         return -1;
218     } else {
219         env->miclaim |= interrupts;
220         return 0;
221     }
222 }
223 
224 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
225 {
226     CPURISCVState *env = &cpu->env;
227     CPUState *cs = CPU(cpu);
228     uint32_t old = env->mip;
229     bool locked = false;
230 
231     if (!qemu_mutex_iothread_locked()) {
232         locked = true;
233         qemu_mutex_lock_iothread();
234     }
235 
236     env->mip = (env->mip & ~mask) | (value & mask);
237 
238     if (env->mip) {
239         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
240     } else {
241         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
242     }
243 
244     if (locked) {
245         qemu_mutex_unlock_iothread();
246     }
247 
248     return old;
249 }
250 
251 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
252 {
253     if (newpriv > PRV_M) {
254         g_assert_not_reached();
255     }
256     if (newpriv == PRV_H) {
257         newpriv = PRV_U;
258     }
259     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
260     env->priv = newpriv;
261 
262     /*
263      * Clear the load reservation - otherwise a reservation placed in one
264      * context/process can be used by another, resulting in an SC succeeding
265      * incorrectly. Version 2.2 of the ISA specification explicitly requires
266      * this behaviour, while later revisions say that the kernel "should" use
267      * an SC instruction to force the yielding of a load reservation on a
268      * preemptive context switch. As a result, do both.
269      */
270     env->load_res = -1;
271 }
272 
273 /* get_physical_address - get the physical address for this virtual address
274  *
275  * Do a page table walk to obtain the physical address corresponding to a
276  * virtual address. Returns 0 if the translation was successful
277  *
278  * Adapted from Spike's mmu_t::translate and mmu_t::walk
279  *
280  * @env: CPURISCVState
281  * @physical: This will be set to the calculated physical address
282  * @prot: The returned protection attributes
283  * @addr: The virtual address to be translated
284  * @access_type: The type of MMU access
285  * @mmu_idx: Indicates current privilege level
286  * @first_stage: Are we in first stage translation?
287  *               Second stage is used for hypervisor guest translation
288  */
289 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
290                                 int *prot, target_ulong addr,
291                                 int access_type, int mmu_idx,
292                                 bool first_stage)
293 {
294     /* NOTE: the env->pc value visible here will not be
295      * correct, but the value visible to the exception handler
296      * (riscv_cpu_do_interrupt) is correct */
297     MemTxResult res;
298     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
299     int mode = mmu_idx;
300 
301     if (mode == PRV_M && access_type != MMU_INST_FETCH) {
302         if (get_field(env->mstatus, MSTATUS_MPRV)) {
303             mode = get_field(env->mstatus, MSTATUS_MPP);
304         }
305     }
306 
307     if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
308         *physical = addr;
309         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
310         return TRANSLATE_SUCCESS;
311     }
312 
313     *prot = 0;
314 
315     hwaddr base;
316     int levels, ptidxbits, ptesize, vm, sum;
317     int mxr = get_field(env->mstatus, MSTATUS_MXR);
318 
319     if (env->priv_ver >= PRIV_VERSION_1_10_0) {
320         base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
321         sum = get_field(env->mstatus, MSTATUS_SUM);
322         vm = get_field(env->satp, SATP_MODE);
323         switch (vm) {
324         case VM_1_10_SV32:
325           levels = 2; ptidxbits = 10; ptesize = 4; break;
326         case VM_1_10_SV39:
327           levels = 3; ptidxbits = 9; ptesize = 8; break;
328         case VM_1_10_SV48:
329           levels = 4; ptidxbits = 9; ptesize = 8; break;
330         case VM_1_10_SV57:
331           levels = 5; ptidxbits = 9; ptesize = 8; break;
332         case VM_1_10_MBARE:
333             *physical = addr;
334             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
335             return TRANSLATE_SUCCESS;
336         default:
337           g_assert_not_reached();
338         }
339     } else {
340         base = (hwaddr)(env->sptbr) << PGSHIFT;
341         sum = !get_field(env->mstatus, MSTATUS_PUM);
342         vm = get_field(env->mstatus, MSTATUS_VM);
343         switch (vm) {
344         case VM_1_09_SV32:
345           levels = 2; ptidxbits = 10; ptesize = 4; break;
346         case VM_1_09_SV39:
347           levels = 3; ptidxbits = 9; ptesize = 8; break;
348         case VM_1_09_SV48:
349           levels = 4; ptidxbits = 9; ptesize = 8; break;
350         case VM_1_09_MBARE:
351             *physical = addr;
352             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
353             return TRANSLATE_SUCCESS;
354         default:
355           g_assert_not_reached();
356         }
357     }
358 
359     CPUState *cs = env_cpu(env);
360     int va_bits = PGSHIFT + levels * ptidxbits;
361     target_ulong mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
362     target_ulong masked_msbs = (addr >> (va_bits - 1)) & mask;
363     if (masked_msbs != 0 && masked_msbs != mask) {
364         return TRANSLATE_FAIL;
365     }
366 
367     int ptshift = (levels - 1) * ptidxbits;
368     int i;
369 
370 #if !TCG_OVERSIZED_GUEST
371 restart:
372 #endif
373     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
374         target_ulong idx = (addr >> (PGSHIFT + ptshift)) &
375                            ((1 << ptidxbits) - 1);
376 
377         /* check that physical address of PTE is legal */
378         hwaddr pte_addr = base + idx * ptesize;
379 
380         if (riscv_feature(env, RISCV_FEATURE_PMP) &&
381             !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
382             1 << MMU_DATA_LOAD, PRV_S)) {
383             return TRANSLATE_PMP_FAIL;
384         }
385 
386 #if defined(TARGET_RISCV32)
387         target_ulong pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
388 #elif defined(TARGET_RISCV64)
389         target_ulong pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
390 #endif
391         if (res != MEMTX_OK) {
392             return TRANSLATE_FAIL;
393         }
394 
395         hwaddr ppn = pte >> PTE_PPN_SHIFT;
396 
397         if (!(pte & PTE_V)) {
398             /* Invalid PTE */
399             return TRANSLATE_FAIL;
400         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
401             /* Inner PTE, continue walking */
402             base = ppn << PGSHIFT;
403         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
404             /* Reserved leaf PTE flags: PTE_W */
405             return TRANSLATE_FAIL;
406         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
407             /* Reserved leaf PTE flags: PTE_W + PTE_X */
408             return TRANSLATE_FAIL;
409         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
410                    (!sum || access_type == MMU_INST_FETCH))) {
411             /* User PTE flags when not U mode and mstatus.SUM is not set,
412                or the access type is an instruction fetch */
413             return TRANSLATE_FAIL;
414         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
415             /* Supervisor PTE flags when not S mode */
416             return TRANSLATE_FAIL;
417         } else if (ppn & ((1ULL << ptshift) - 1)) {
418             /* Misaligned PPN */
419             return TRANSLATE_FAIL;
420         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
421                    ((pte & PTE_X) && mxr))) {
422             /* Read access check failed */
423             return TRANSLATE_FAIL;
424         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
425             /* Write access check failed */
426             return TRANSLATE_FAIL;
427         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
428             /* Fetch access check failed */
429             return TRANSLATE_FAIL;
430         } else {
431             /* if necessary, set accessed and dirty bits. */
432             target_ulong updated_pte = pte | PTE_A |
433                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
434 
435             /* Page table updates need to be atomic with MTTCG enabled */
436             if (updated_pte != pte) {
437                 /*
438                  * - if accessed or dirty bits need updating, and the PTE is
439                  *   in RAM, then we do so atomically with a compare and swap.
440                  * - if the PTE is in IO space or ROM, then it can't be updated
441                  *   and we return TRANSLATE_FAIL.
442                  * - if the PTE changed by the time we went to update it, then
443                  *   it is no longer valid and we must re-walk the page table.
444                  */
445                 MemoryRegion *mr;
446                 hwaddr l = sizeof(target_ulong), addr1;
447                 mr = address_space_translate(cs->as, pte_addr,
448                     &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
449                 if (memory_region_is_ram(mr)) {
450                     target_ulong *pte_pa =
451                         qemu_map_ram_ptr(mr->ram_block, addr1);
452 #if TCG_OVERSIZED_GUEST
453                     /* MTTCG is not enabled on oversized TCG guests so
454                      * page table updates do not need to be atomic */
455                     *pte_pa = pte = updated_pte;
456 #else
457                     target_ulong old_pte =
458                         atomic_cmpxchg(pte_pa, pte, updated_pte);
459                     if (old_pte != pte) {
460                         goto restart;
461                     } else {
462                         pte = updated_pte;
463                     }
464 #endif
465                 } else {
466                     /* misconfigured PTE in ROM (AD bits are not preset) or
467                      * PTE is in IO space and can't be updated atomically */
468                     return TRANSLATE_FAIL;
469                 }
470             }
471 
472             /* for superpage mappings, make a fake leaf PTE for the TLB's
473                benefit. */
474             target_ulong vpn = addr >> PGSHIFT;
475             *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
476 
477             /* set permissions on the TLB entry */
478             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
479                 *prot |= PAGE_READ;
480             }
481             if ((pte & PTE_X)) {
482                 *prot |= PAGE_EXEC;
483             }
484             /* add write permission on stores or if the page is already dirty,
485                so that we TLB miss on later writes to update the dirty bit */
486             if ((pte & PTE_W) &&
487                     (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
488                 *prot |= PAGE_WRITE;
489             }
490             return TRANSLATE_SUCCESS;
491         }
492     }
493     return TRANSLATE_FAIL;
494 }
495 
496 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
497                                 MMUAccessType access_type, bool pmp_violation,
498                                 bool first_stage)
499 {
500     CPUState *cs = env_cpu(env);
501     int page_fault_exceptions;
502     if (first_stage) {
503         page_fault_exceptions =
504             (env->priv_ver >= PRIV_VERSION_1_10_0) &&
505             get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
506             !pmp_violation;
507     } else {
508         page_fault_exceptions =
509             get_field(env->hgatp, HGATP_MODE) != VM_1_10_MBARE &&
510             !pmp_violation;
511     }
512     switch (access_type) {
513     case MMU_INST_FETCH:
514         cs->exception_index = page_fault_exceptions ?
515             RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
516         break;
517     case MMU_DATA_LOAD:
518         cs->exception_index = page_fault_exceptions ?
519             RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
520         break;
521     case MMU_DATA_STORE:
522         cs->exception_index = page_fault_exceptions ?
523             RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
524         break;
525     default:
526         g_assert_not_reached();
527     }
528     env->badaddr = address;
529 }
530 
531 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
532 {
533     RISCVCPU *cpu = RISCV_CPU(cs);
534     hwaddr phys_addr;
535     int prot;
536     int mmu_idx = cpu_mmu_index(&cpu->env, false);
537 
538     if (get_physical_address(&cpu->env, &phys_addr, &prot, addr, 0, mmu_idx,
539                              true)) {
540         return -1;
541     }
542     return phys_addr;
543 }
544 
545 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
546                                      vaddr addr, unsigned size,
547                                      MMUAccessType access_type,
548                                      int mmu_idx, MemTxAttrs attrs,
549                                      MemTxResult response, uintptr_t retaddr)
550 {
551     RISCVCPU *cpu = RISCV_CPU(cs);
552     CPURISCVState *env = &cpu->env;
553 
554     if (access_type == MMU_DATA_STORE) {
555         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
556     } else {
557         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
558     }
559 
560     env->badaddr = addr;
561     riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
562 }
563 
564 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
565                                    MMUAccessType access_type, int mmu_idx,
566                                    uintptr_t retaddr)
567 {
568     RISCVCPU *cpu = RISCV_CPU(cs);
569     CPURISCVState *env = &cpu->env;
570     switch (access_type) {
571     case MMU_INST_FETCH:
572         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
573         break;
574     case MMU_DATA_LOAD:
575         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
576         break;
577     case MMU_DATA_STORE:
578         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
579         break;
580     default:
581         g_assert_not_reached();
582     }
583     env->badaddr = addr;
584     riscv_raise_exception(env, cs->exception_index, retaddr);
585 }
586 #endif
587 
588 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
589                         MMUAccessType access_type, int mmu_idx,
590                         bool probe, uintptr_t retaddr)
591 {
592     RISCVCPU *cpu = RISCV_CPU(cs);
593     CPURISCVState *env = &cpu->env;
594 #ifndef CONFIG_USER_ONLY
595     hwaddr pa = 0;
596     int prot;
597     bool pmp_violation = false;
598     int ret = TRANSLATE_FAIL;
599     int mode = mmu_idx;
600 
601     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
602                   __func__, address, access_type, mmu_idx);
603 
604     ret = get_physical_address(env, &pa, &prot, address, access_type, mmu_idx,
605                                true);
606 
607     if (mode == PRV_M && access_type != MMU_INST_FETCH) {
608         if (get_field(env->mstatus, MSTATUS_MPRV)) {
609             mode = get_field(env->mstatus, MSTATUS_MPP);
610         }
611     }
612 
613     qemu_log_mask(CPU_LOG_MMU,
614                   "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx
615                   " prot %d\n", __func__, address, ret, pa, prot);
616 
617     if (riscv_feature(env, RISCV_FEATURE_PMP) &&
618         (ret == TRANSLATE_SUCCESS) &&
619         !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
620         ret = TRANSLATE_PMP_FAIL;
621     }
622     if (ret == TRANSLATE_PMP_FAIL) {
623         pmp_violation = true;
624     }
625     if (ret == TRANSLATE_SUCCESS) {
626         tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
627                      prot, mmu_idx, TARGET_PAGE_SIZE);
628         return true;
629     } else if (probe) {
630         return false;
631     } else {
632         raise_mmu_exception(env, address, access_type, pmp_violation, true);
633         riscv_raise_exception(env, cs->exception_index, retaddr);
634     }
635 #else
636     switch (access_type) {
637     case MMU_INST_FETCH:
638         cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
639         break;
640     case MMU_DATA_LOAD:
641         cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
642         break;
643     case MMU_DATA_STORE:
644         cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
645         break;
646     default:
647         g_assert_not_reached();
648     }
649     env->badaddr = address;
650     cpu_loop_exit_restore(cs, retaddr);
651 #endif
652 }
653 
654 /*
655  * Handle Traps
656  *
657  * Adapted from Spike's processor_t::take_trap.
658  *
659  */
660 void riscv_cpu_do_interrupt(CPUState *cs)
661 {
662 #if !defined(CONFIG_USER_ONLY)
663 
664     RISCVCPU *cpu = RISCV_CPU(cs);
665     CPURISCVState *env = &cpu->env;
666     bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env);
667     target_ulong s;
668 
669     /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
670      * so we mask off the MSB and separate into trap type and cause.
671      */
672     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
673     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
674     target_ulong deleg = async ? env->mideleg : env->medeleg;
675     target_ulong tval = 0;
676 
677     if (!async) {
678         /* set tval to badaddr for traps with address information */
679         switch (cause) {
680         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
681         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
682         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
683             force_hs_execp = true;
684             /* fallthrough */
685         case RISCV_EXCP_INST_ADDR_MIS:
686         case RISCV_EXCP_INST_ACCESS_FAULT:
687         case RISCV_EXCP_LOAD_ADDR_MIS:
688         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
689         case RISCV_EXCP_LOAD_ACCESS_FAULT:
690         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
691         case RISCV_EXCP_INST_PAGE_FAULT:
692         case RISCV_EXCP_LOAD_PAGE_FAULT:
693         case RISCV_EXCP_STORE_PAGE_FAULT:
694             tval = env->badaddr;
695             break;
696         default:
697             break;
698         }
699         /* ecall is dispatched as one cause so translate based on mode */
700         if (cause == RISCV_EXCP_U_ECALL) {
701             assert(env->priv <= 3);
702 
703             if (env->priv == PRV_M) {
704                 cause = RISCV_EXCP_M_ECALL;
705             } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
706                 cause = RISCV_EXCP_VS_ECALL;
707             } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
708                 cause = RISCV_EXCP_S_ECALL;
709             } else if (env->priv == PRV_U) {
710                 cause = RISCV_EXCP_U_ECALL;
711             }
712         }
713     }
714 
715     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 23 ?
716         (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
717 
718     if (env->priv <= PRV_S &&
719             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
720         /* handle the trap in S-mode */
721         if (riscv_has_ext(env, RVH)) {
722             target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
723 
724             if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) &&
725                 !force_hs_execp) {
726                 /* Trap to VS mode */
727             } else if (riscv_cpu_virt_enabled(env)) {
728                 /* Trap into HS mode, from virt */
729                 riscv_cpu_swap_hypervisor_regs(env);
730                 env->hstatus = set_field(env->hstatus, HSTATUS_SP2V,
731                                          get_field(env->hstatus, HSTATUS_SPV));
732                 env->hstatus = set_field(env->hstatus, HSTATUS_SP2P,
733                                          get_field(env->mstatus, SSTATUS_SPP));
734                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
735                                          riscv_cpu_virt_enabled(env));
736 
737                 riscv_cpu_set_virt_enabled(env, 0);
738                 riscv_cpu_set_force_hs_excep(env, 0);
739             } else {
740                 /* Trap into HS mode */
741                 env->hstatus = set_field(env->hstatus, HSTATUS_SP2V,
742                                          get_field(env->hstatus, HSTATUS_SPV));
743                 env->hstatus = set_field(env->hstatus, HSTATUS_SP2P,
744                                          get_field(env->mstatus, SSTATUS_SPP));
745                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
746                                          riscv_cpu_virt_enabled(env));
747             }
748         }
749 
750         s = env->mstatus;
751         s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
752             get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
753         s = set_field(s, MSTATUS_SPP, env->priv);
754         s = set_field(s, MSTATUS_SIE, 0);
755         env->mstatus = s;
756         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
757         env->sepc = env->pc;
758         env->sbadaddr = tval;
759         env->pc = (env->stvec >> 2 << 2) +
760             ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
761         riscv_cpu_set_mode(env, PRV_S);
762     } else {
763         /* handle the trap in M-mode */
764         if (riscv_has_ext(env, RVH)) {
765             if (riscv_cpu_virt_enabled(env)) {
766                 riscv_cpu_swap_hypervisor_regs(env);
767             }
768             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
769                                       riscv_cpu_virt_enabled(env));
770             env->mstatus = set_field(env->mstatus, MSTATUS_MTL,
771                                       riscv_cpu_force_hs_excep_enabled(env));
772 
773             /* Trapping to M mode, virt is disabled */
774             riscv_cpu_set_virt_enabled(env, 0);
775             riscv_cpu_set_force_hs_excep(env, 0);
776         }
777 
778         s = env->mstatus;
779         s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
780             get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
781         s = set_field(s, MSTATUS_MPP, env->priv);
782         s = set_field(s, MSTATUS_MIE, 0);
783         env->mstatus = s;
784         env->mcause = cause | ~(((target_ulong)-1) >> async);
785         env->mepc = env->pc;
786         env->mbadaddr = tval;
787         env->pc = (env->mtvec >> 2 << 2) +
788             ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
789         riscv_cpu_set_mode(env, PRV_M);
790     }
791 
792     /* NOTE: it is not necessary to yield load reservations here. It is only
793      * necessary for an SC from "another hart" to cause a load reservation
794      * to be yielded. Refer to the memory consistency model section of the
795      * RISC-V ISA Specification.
796      */
797 
798 #endif
799     cs->exception_index = EXCP_NONE; /* mark handled to qemu */
800 }
801