xref: /openbmc/qemu/target/riscv/cpu_helper.c (revision 0f58cbbe)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "pmu.h"
26 #include "exec/exec-all.h"
27 #include "instmap.h"
28 #include "tcg/tcg-op.h"
29 #include "trace.h"
30 #include "semihosting/common-semi.h"
31 #include "sysemu/cpu-timers.h"
32 #include "cpu_bits.h"
33 #include "debug.h"
34 
35 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
36 {
37 #ifdef CONFIG_USER_ONLY
38     return 0;
39 #else
40     if (ifetch) {
41         return env->priv;
42     }
43 
44     /* All priv -> mmu_idx mapping are here */
45     int mode = env->priv;
46     if (mode == PRV_M && get_field(env->mstatus, MSTATUS_MPRV)) {
47         mode = get_field(env->mstatus, MSTATUS_MPP);
48     }
49     if (mode == PRV_S && get_field(env->mstatus, MSTATUS_SUM)) {
50         return MMUIdx_S_SUM;
51     }
52     return mode;
53 #endif
54 }
55 
56 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
57                           target_ulong *cs_base, uint32_t *pflags)
58 {
59     CPUState *cs = env_cpu(env);
60     RISCVCPU *cpu = RISCV_CPU(cs);
61     RISCVExtStatus fs, vs;
62     uint32_t flags = 0;
63 
64     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
65     *cs_base = 0;
66 
67     if (cpu->cfg.ext_zve32f) {
68         /*
69          * If env->vl equals to VLMAX, we can use generic vector operation
70          * expanders (GVEC) to accerlate the vector operations.
71          * However, as LMUL could be a fractional number. The maximum
72          * vector size can be operated might be less than 8 bytes,
73          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
74          * only when maxsz >= 8 bytes.
75          */
76         uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
77         uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
78         uint32_t maxsz = vlmax << sew;
79         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
80                            (maxsz >= 8);
81         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
82         flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
83         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
84                            FIELD_EX64(env->vtype, VTYPE, VLMUL));
85         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
86         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
87                            FIELD_EX64(env->vtype, VTYPE, VTA));
88         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
89                            FIELD_EX64(env->vtype, VTYPE, VMA));
90         flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
91     } else {
92         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
93     }
94 
95 #ifdef CONFIG_USER_ONLY
96     fs = EXT_STATUS_DIRTY;
97     vs = EXT_STATUS_DIRTY;
98 #else
99     flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
100 
101     flags |= cpu_mmu_index(env, 0);
102     fs = get_field(env->mstatus, MSTATUS_FS);
103     vs = get_field(env->mstatus, MSTATUS_VS);
104 
105     if (env->virt_enabled) {
106         flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
107         /*
108          * Merge DISABLED and !DIRTY states using MIN.
109          * We will set both fields when dirtying.
110          */
111         fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
112         vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
113     }
114 
115     if (cpu->cfg.debug && !icount_enabled()) {
116         flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
117     }
118 #endif
119 
120     flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
121     flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
122     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
123     if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
124         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
125     }
126     if (env->cur_pmbase != 0) {
127         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
128     }
129 
130     *pflags = flags;
131 }
132 
133 void riscv_cpu_update_mask(CPURISCVState *env)
134 {
135     target_ulong mask = -1, base = 0;
136     /*
137      * TODO: Current RVJ spec does not specify
138      * how the extension interacts with XLEN.
139      */
140 #ifndef CONFIG_USER_ONLY
141     if (riscv_has_ext(env, RVJ)) {
142         switch (env->priv) {
143         case PRV_M:
144             if (env->mmte & M_PM_ENABLE) {
145                 mask = env->mpmmask;
146                 base = env->mpmbase;
147             }
148             break;
149         case PRV_S:
150             if (env->mmte & S_PM_ENABLE) {
151                 mask = env->spmmask;
152                 base = env->spmbase;
153             }
154             break;
155         case PRV_U:
156             if (env->mmte & U_PM_ENABLE) {
157                 mask = env->upmmask;
158                 base = env->upmbase;
159             }
160             break;
161         default:
162             g_assert_not_reached();
163         }
164     }
165 #endif
166     if (env->xl == MXL_RV32) {
167         env->cur_pmmask = mask & UINT32_MAX;
168         env->cur_pmbase = base & UINT32_MAX;
169     } else {
170         env->cur_pmmask = mask;
171         env->cur_pmbase = base;
172     }
173 }
174 
175 #ifndef CONFIG_USER_ONLY
176 
177 /*
178  * The HS-mode is allowed to configure priority only for the
179  * following VS-mode local interrupts:
180  *
181  * 0  (Reserved interrupt, reads as zero)
182  * 1  Supervisor software interrupt
183  * 4  (Reserved interrupt, reads as zero)
184  * 5  Supervisor timer interrupt
185  * 8  (Reserved interrupt, reads as zero)
186  * 13 (Reserved interrupt)
187  * 14 "
188  * 15 "
189  * 16 "
190  * 17 "
191  * 18 "
192  * 19 "
193  * 20 "
194  * 21 "
195  * 22 "
196  * 23 "
197  */
198 
199 static const int hviprio_index2irq[] = {
200     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
201 static const int hviprio_index2rdzero[] = {
202     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
203 
204 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
205 {
206     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
207         return -EINVAL;
208     }
209 
210     if (out_irq) {
211         *out_irq = hviprio_index2irq[index];
212     }
213 
214     if (out_rdzero) {
215         *out_rdzero = hviprio_index2rdzero[index];
216     }
217 
218     return 0;
219 }
220 
221 /*
222  * Default priorities of local interrupts are defined in the
223  * RISC-V Advanced Interrupt Architecture specification.
224  *
225  * ----------------------------------------------------------------
226  *  Default  |
227  *  Priority | Major Interrupt Numbers
228  * ----------------------------------------------------------------
229  *  Highest  | 47, 23, 46, 45, 22, 44,
230  *           | 43, 21, 42, 41, 20, 40
231  *           |
232  *           | 11 (0b),  3 (03),  7 (07)
233  *           |  9 (09),  1 (01),  5 (05)
234  *           | 12 (0c)
235  *           | 10 (0a),  2 (02),  6 (06)
236  *           |
237  *           | 39, 19, 38, 37, 18, 36,
238  *  Lowest   | 35, 17, 34, 33, 16, 32
239  * ----------------------------------------------------------------
240  */
241 static const uint8_t default_iprio[64] = {
242     /* Custom interrupts 48 to 63 */
243     [63] = IPRIO_MMAXIPRIO,
244     [62] = IPRIO_MMAXIPRIO,
245     [61] = IPRIO_MMAXIPRIO,
246     [60] = IPRIO_MMAXIPRIO,
247     [59] = IPRIO_MMAXIPRIO,
248     [58] = IPRIO_MMAXIPRIO,
249     [57] = IPRIO_MMAXIPRIO,
250     [56] = IPRIO_MMAXIPRIO,
251     [55] = IPRIO_MMAXIPRIO,
252     [54] = IPRIO_MMAXIPRIO,
253     [53] = IPRIO_MMAXIPRIO,
254     [52] = IPRIO_MMAXIPRIO,
255     [51] = IPRIO_MMAXIPRIO,
256     [50] = IPRIO_MMAXIPRIO,
257     [49] = IPRIO_MMAXIPRIO,
258     [48] = IPRIO_MMAXIPRIO,
259 
260     /* Custom interrupts 24 to 31 */
261     [31] = IPRIO_MMAXIPRIO,
262     [30] = IPRIO_MMAXIPRIO,
263     [29] = IPRIO_MMAXIPRIO,
264     [28] = IPRIO_MMAXIPRIO,
265     [27] = IPRIO_MMAXIPRIO,
266     [26] = IPRIO_MMAXIPRIO,
267     [25] = IPRIO_MMAXIPRIO,
268     [24] = IPRIO_MMAXIPRIO,
269 
270     [47] = IPRIO_DEFAULT_UPPER,
271     [23] = IPRIO_DEFAULT_UPPER + 1,
272     [46] = IPRIO_DEFAULT_UPPER + 2,
273     [45] = IPRIO_DEFAULT_UPPER + 3,
274     [22] = IPRIO_DEFAULT_UPPER + 4,
275     [44] = IPRIO_DEFAULT_UPPER + 5,
276 
277     [43] = IPRIO_DEFAULT_UPPER + 6,
278     [21] = IPRIO_DEFAULT_UPPER + 7,
279     [42] = IPRIO_DEFAULT_UPPER + 8,
280     [41] = IPRIO_DEFAULT_UPPER + 9,
281     [20] = IPRIO_DEFAULT_UPPER + 10,
282     [40] = IPRIO_DEFAULT_UPPER + 11,
283 
284     [11] = IPRIO_DEFAULT_M,
285     [3]  = IPRIO_DEFAULT_M + 1,
286     [7]  = IPRIO_DEFAULT_M + 2,
287 
288     [9]  = IPRIO_DEFAULT_S,
289     [1]  = IPRIO_DEFAULT_S + 1,
290     [5]  = IPRIO_DEFAULT_S + 2,
291 
292     [12] = IPRIO_DEFAULT_SGEXT,
293 
294     [10] = IPRIO_DEFAULT_VS,
295     [2]  = IPRIO_DEFAULT_VS + 1,
296     [6]  = IPRIO_DEFAULT_VS + 2,
297 
298     [39] = IPRIO_DEFAULT_LOWER,
299     [19] = IPRIO_DEFAULT_LOWER + 1,
300     [38] = IPRIO_DEFAULT_LOWER + 2,
301     [37] = IPRIO_DEFAULT_LOWER + 3,
302     [18] = IPRIO_DEFAULT_LOWER + 4,
303     [36] = IPRIO_DEFAULT_LOWER + 5,
304 
305     [35] = IPRIO_DEFAULT_LOWER + 6,
306     [17] = IPRIO_DEFAULT_LOWER + 7,
307     [34] = IPRIO_DEFAULT_LOWER + 8,
308     [33] = IPRIO_DEFAULT_LOWER + 9,
309     [16] = IPRIO_DEFAULT_LOWER + 10,
310     [32] = IPRIO_DEFAULT_LOWER + 11,
311 };
312 
313 uint8_t riscv_cpu_default_priority(int irq)
314 {
315     if (irq < 0 || irq > 63) {
316         return IPRIO_MMAXIPRIO;
317     }
318 
319     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
320 };
321 
322 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
323                                     int extirq, unsigned int extirq_def_prio,
324                                     uint64_t pending, uint8_t *iprio)
325 {
326     int irq, best_irq = RISCV_EXCP_NONE;
327     unsigned int prio, best_prio = UINT_MAX;
328 
329     if (!pending) {
330         return RISCV_EXCP_NONE;
331     }
332 
333     irq = ctz64(pending);
334     if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
335                                   riscv_cpu_cfg(env)->ext_ssaia)) {
336         return irq;
337     }
338 
339     pending = pending >> irq;
340     while (pending) {
341         prio = iprio[irq];
342         if (!prio) {
343             if (irq == extirq) {
344                 prio = extirq_def_prio;
345             } else {
346                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
347                        1 : IPRIO_MMAXIPRIO;
348             }
349         }
350         if ((pending & 0x1) && (prio <= best_prio)) {
351             best_irq = irq;
352             best_prio = prio;
353         }
354         irq++;
355         pending = pending >> 1;
356     }
357 
358     return best_irq;
359 }
360 
361 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
362 {
363     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
364     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
365     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
366 
367     return (env->mip | vsgein | vstip) & env->mie;
368 }
369 
370 int riscv_cpu_mirq_pending(CPURISCVState *env)
371 {
372     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
373                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
374 
375     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
376                                     irqs, env->miprio);
377 }
378 
379 int riscv_cpu_sirq_pending(CPURISCVState *env)
380 {
381     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
382                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
383 
384     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
385                                     irqs, env->siprio);
386 }
387 
388 int riscv_cpu_vsirq_pending(CPURISCVState *env)
389 {
390     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
391                     (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
392 
393     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
394                                     irqs >> 1, env->hviprio);
395 }
396 
397 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
398 {
399     int virq;
400     uint64_t irqs, pending, mie, hsie, vsie;
401 
402     /* Determine interrupt enable state of all privilege modes */
403     if (env->virt_enabled) {
404         mie = 1;
405         hsie = 1;
406         vsie = (env->priv < PRV_S) ||
407                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
408     } else {
409         mie = (env->priv < PRV_M) ||
410               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
411         hsie = (env->priv < PRV_S) ||
412                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
413         vsie = 0;
414     }
415 
416     /* Determine all pending interrupts */
417     pending = riscv_cpu_all_pending(env);
418 
419     /* Check M-mode interrupts */
420     irqs = pending & ~env->mideleg & -mie;
421     if (irqs) {
422         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
423                                         irqs, env->miprio);
424     }
425 
426     /* Check HS-mode interrupts */
427     irqs = pending & env->mideleg & ~env->hideleg & -hsie;
428     if (irqs) {
429         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
430                                         irqs, env->siprio);
431     }
432 
433     /* Check VS-mode interrupts */
434     irqs = pending & env->mideleg & env->hideleg & -vsie;
435     if (irqs) {
436         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
437                                         irqs >> 1, env->hviprio);
438         return (virq <= 0) ? virq : virq + 1;
439     }
440 
441     /* Indicate no pending interrupt */
442     return RISCV_EXCP_NONE;
443 }
444 
445 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
446 {
447     if (interrupt_request & CPU_INTERRUPT_HARD) {
448         RISCVCPU *cpu = RISCV_CPU(cs);
449         CPURISCVState *env = &cpu->env;
450         int interruptno = riscv_cpu_local_irq_pending(env);
451         if (interruptno >= 0) {
452             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
453             riscv_cpu_do_interrupt(cs);
454             return true;
455         }
456     }
457     return false;
458 }
459 
460 /* Return true is floating point support is currently enabled */
461 bool riscv_cpu_fp_enabled(CPURISCVState *env)
462 {
463     if (env->mstatus & MSTATUS_FS) {
464         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
465             return false;
466         }
467         return true;
468     }
469 
470     return false;
471 }
472 
473 /* Return true is vector support is currently enabled */
474 bool riscv_cpu_vector_enabled(CPURISCVState *env)
475 {
476     if (env->mstatus & MSTATUS_VS) {
477         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
478             return false;
479         }
480         return true;
481     }
482 
483     return false;
484 }
485 
486 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
487 {
488     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
489                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
490                             MSTATUS64_UXL | MSTATUS_VS;
491 
492     if (riscv_has_ext(env, RVF)) {
493         mstatus_mask |= MSTATUS_FS;
494     }
495     bool current_virt = env->virt_enabled;
496 
497     g_assert(riscv_has_ext(env, RVH));
498 
499     if (current_virt) {
500         /* Current V=1 and we are about to change to V=0 */
501         env->vsstatus = env->mstatus & mstatus_mask;
502         env->mstatus &= ~mstatus_mask;
503         env->mstatus |= env->mstatus_hs;
504 
505         env->vstvec = env->stvec;
506         env->stvec = env->stvec_hs;
507 
508         env->vsscratch = env->sscratch;
509         env->sscratch = env->sscratch_hs;
510 
511         env->vsepc = env->sepc;
512         env->sepc = env->sepc_hs;
513 
514         env->vscause = env->scause;
515         env->scause = env->scause_hs;
516 
517         env->vstval = env->stval;
518         env->stval = env->stval_hs;
519 
520         env->vsatp = env->satp;
521         env->satp = env->satp_hs;
522     } else {
523         /* Current V=0 and we are about to change to V=1 */
524         env->mstatus_hs = env->mstatus & mstatus_mask;
525         env->mstatus &= ~mstatus_mask;
526         env->mstatus |= env->vsstatus;
527 
528         env->stvec_hs = env->stvec;
529         env->stvec = env->vstvec;
530 
531         env->sscratch_hs = env->sscratch;
532         env->sscratch = env->vsscratch;
533 
534         env->sepc_hs = env->sepc;
535         env->sepc = env->vsepc;
536 
537         env->scause_hs = env->scause;
538         env->scause = env->vscause;
539 
540         env->stval_hs = env->stval;
541         env->stval = env->vstval;
542 
543         env->satp_hs = env->satp;
544         env->satp = env->vsatp;
545     }
546 }
547 
548 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
549 {
550     if (!riscv_has_ext(env, RVH)) {
551         return 0;
552     }
553 
554     return env->geilen;
555 }
556 
557 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
558 {
559     if (!riscv_has_ext(env, RVH)) {
560         return;
561     }
562 
563     if (geilen > (TARGET_LONG_BITS - 1)) {
564         return;
565     }
566 
567     env->geilen = geilen;
568 }
569 
570 /* This function can only be called to set virt when RVH is enabled */
571 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
572 {
573     /* Flush the TLB on all virt mode changes. */
574     if (env->virt_enabled != enable) {
575         tlb_flush(env_cpu(env));
576     }
577 
578     env->virt_enabled = enable;
579 
580     if (enable) {
581         /*
582          * The guest external interrupts from an interrupt controller are
583          * delivered only when the Guest/VM is running (i.e. V=1). This means
584          * any guest external interrupt which is triggered while the Guest/VM
585          * is not running (i.e. V=0) will be missed on QEMU resulting in guest
586          * with sluggish response to serial console input and other I/O events.
587          *
588          * To solve this, we check and inject interrupt after setting V=1.
589          */
590         riscv_cpu_update_mip(env, 0, 0);
591     }
592 }
593 
594 bool riscv_cpu_two_stage_lookup(int mmu_idx)
595 {
596     return mmu_idx & MMU_HYP_ACCESS_BIT;
597 }
598 
599 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
600 {
601     CPURISCVState *env = &cpu->env;
602     if (env->miclaim & interrupts) {
603         return -1;
604     } else {
605         env->miclaim |= interrupts;
606         return 0;
607     }
608 }
609 
610 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
611                               uint64_t value)
612 {
613     CPUState *cs = env_cpu(env);
614     uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
615 
616     if (env->virt_enabled) {
617         gein = get_field(env->hstatus, HSTATUS_VGEIN);
618         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
619     }
620 
621     vstip = env->vstime_irq ? MIP_VSTIP : 0;
622 
623     QEMU_IOTHREAD_LOCK_GUARD();
624 
625     env->mip = (env->mip & ~mask) | (value & mask);
626 
627     if (env->mip | vsgein | vstip) {
628         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
629     } else {
630         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
631     }
632 
633     return old;
634 }
635 
636 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
637                              void *arg)
638 {
639     env->rdtime_fn = fn;
640     env->rdtime_fn_arg = arg;
641 }
642 
643 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
644                                    int (*rmw_fn)(void *arg,
645                                                  target_ulong reg,
646                                                  target_ulong *val,
647                                                  target_ulong new_val,
648                                                  target_ulong write_mask),
649                                    void *rmw_fn_arg)
650 {
651     if (priv <= PRV_M) {
652         env->aia_ireg_rmw_fn[priv] = rmw_fn;
653         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
654     }
655 }
656 
657 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
658 {
659     g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
660 
661     if (icount_enabled() && newpriv != env->priv) {
662         riscv_itrigger_update_priv(env);
663     }
664     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
665     env->priv = newpriv;
666     env->xl = cpu_recompute_xl(env);
667     riscv_cpu_update_mask(env);
668 
669     /*
670      * Clear the load reservation - otherwise a reservation placed in one
671      * context/process can be used by another, resulting in an SC succeeding
672      * incorrectly. Version 2.2 of the ISA specification explicitly requires
673      * this behaviour, while later revisions say that the kernel "should" use
674      * an SC instruction to force the yielding of a load reservation on a
675      * preemptive context switch. As a result, do both.
676      */
677     env->load_res = -1;
678 }
679 
680 /*
681  * get_physical_address_pmp - check PMP permission for this physical address
682  *
683  * Match the PMP region and check permission for this physical address and it's
684  * TLB page. Returns 0 if the permission checking was successful
685  *
686  * @env: CPURISCVState
687  * @prot: The returned protection attributes
688  * @tlb_size: TLB page size containing addr. It could be modified after PMP
689  *            permission checking. NULL if not set TLB page for addr.
690  * @addr: The physical address to be checked permission
691  * @access_type: The type of MMU access
692  * @mode: Indicates current privilege level.
693  */
694 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
695                                     target_ulong *tlb_size, hwaddr addr,
696                                     int size, MMUAccessType access_type,
697                                     int mode)
698 {
699     pmp_priv_t pmp_priv;
700     int pmp_index = -1;
701 
702     if (!riscv_cpu_cfg(env)->pmp) {
703         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
704         return TRANSLATE_SUCCESS;
705     }
706 
707     pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
708                                    &pmp_priv, mode);
709     if (pmp_index < 0) {
710         *prot = 0;
711         return TRANSLATE_PMP_FAIL;
712     }
713 
714     *prot = pmp_priv_to_page_prot(pmp_priv);
715     if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
716         target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
717         target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
718 
719         *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
720     }
721 
722     return TRANSLATE_SUCCESS;
723 }
724 
725 /*
726  * get_physical_address - get the physical address for this virtual address
727  *
728  * Do a page table walk to obtain the physical address corresponding to a
729  * virtual address. Returns 0 if the translation was successful
730  *
731  * Adapted from Spike's mmu_t::translate and mmu_t::walk
732  *
733  * @env: CPURISCVState
734  * @physical: This will be set to the calculated physical address
735  * @prot: The returned protection attributes
736  * @addr: The virtual address or guest physical address to be translated
737  * @fault_pte_addr: If not NULL, this will be set to fault pte address
738  *                  when a error occurs on pte address translation.
739  *                  This will already be shifted to match htval.
740  * @access_type: The type of MMU access
741  * @mmu_idx: Indicates current privilege level
742  * @first_stage: Are we in first stage translation?
743  *               Second stage is used for hypervisor guest translation
744  * @two_stage: Are we going to perform two stage translation
745  * @is_debug: Is this access from a debugger or the monitor?
746  */
747 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
748                                 int *prot, vaddr addr,
749                                 target_ulong *fault_pte_addr,
750                                 int access_type, int mmu_idx,
751                                 bool first_stage, bool two_stage,
752                                 bool is_debug)
753 {
754     /*
755      * NOTE: the env->pc value visible here will not be
756      * correct, but the value visible to the exception handler
757      * (riscv_cpu_do_interrupt) is correct
758      */
759     MemTxResult res;
760     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
761     int mode = env->priv;
762     bool use_background = false;
763     hwaddr ppn;
764     int napot_bits = 0;
765     target_ulong napot_mask;
766 
767     /*
768      * Check if we should use the background registers for the two
769      * stage translation. We don't need to check if we actually need
770      * two stage translation as that happened before this function
771      * was called. Background registers will be used if the guest has
772      * forced a two stage translation to be on (in HS or M mode).
773      */
774     if (!env->virt_enabled && two_stage) {
775         use_background = true;
776     }
777 
778     /*
779      * MPRV does not affect the virtual-machine load/store
780      * instructions, HLV, HLVX, and HSV.
781      */
782     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
783         mode = get_field(env->hstatus, HSTATUS_SPVP);
784     } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
785         if (get_field(env->mstatus, MSTATUS_MPRV)) {
786             mode = get_field(env->mstatus, MSTATUS_MPP);
787         }
788     }
789 
790     if (first_stage == false) {
791         /*
792          * We are in stage 2 translation, this is similar to stage 1.
793          * Stage 2 is always taken as U-mode
794          */
795         mode = PRV_U;
796     }
797 
798     if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
799         *physical = addr;
800         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
801         return TRANSLATE_SUCCESS;
802     }
803 
804     *prot = 0;
805 
806     hwaddr base;
807     int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
808 
809     if (first_stage == true) {
810         mxr = get_field(env->mstatus, MSTATUS_MXR);
811     } else {
812         mxr = get_field(env->vsstatus, MSTATUS_MXR);
813     }
814 
815     if (first_stage == true) {
816         if (use_background) {
817             if (riscv_cpu_mxl(env) == MXL_RV32) {
818                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
819                 vm = get_field(env->vsatp, SATP32_MODE);
820             } else {
821                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
822                 vm = get_field(env->vsatp, SATP64_MODE);
823             }
824         } else {
825             if (riscv_cpu_mxl(env) == MXL_RV32) {
826                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
827                 vm = get_field(env->satp, SATP32_MODE);
828             } else {
829                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
830                 vm = get_field(env->satp, SATP64_MODE);
831             }
832         }
833         widened = 0;
834     } else {
835         if (riscv_cpu_mxl(env) == MXL_RV32) {
836             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
837             vm = get_field(env->hgatp, SATP32_MODE);
838         } else {
839             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
840             vm = get_field(env->hgatp, SATP64_MODE);
841         }
842         widened = 2;
843     }
844     /* status.SUM will be ignored if execute on background */
845     sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
846     switch (vm) {
847     case VM_1_10_SV32:
848       levels = 2; ptidxbits = 10; ptesize = 4; break;
849     case VM_1_10_SV39:
850       levels = 3; ptidxbits = 9; ptesize = 8; break;
851     case VM_1_10_SV48:
852       levels = 4; ptidxbits = 9; ptesize = 8; break;
853     case VM_1_10_SV57:
854       levels = 5; ptidxbits = 9; ptesize = 8; break;
855     case VM_1_10_MBARE:
856         *physical = addr;
857         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
858         return TRANSLATE_SUCCESS;
859     default:
860       g_assert_not_reached();
861     }
862 
863     CPUState *cs = env_cpu(env);
864     int va_bits = PGSHIFT + levels * ptidxbits + widened;
865     target_ulong mask, masked_msbs;
866 
867     if (TARGET_LONG_BITS > (va_bits - 1)) {
868         mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
869     } else {
870         mask = 0;
871     }
872     masked_msbs = (addr >> (va_bits - 1)) & mask;
873 
874     if (masked_msbs != 0 && masked_msbs != mask) {
875         return TRANSLATE_FAIL;
876     }
877 
878     int ptshift = (levels - 1) * ptidxbits;
879     int i;
880 
881 #if !TCG_OVERSIZED_GUEST
882 restart:
883 #endif
884     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
885         target_ulong idx;
886         if (i == 0) {
887             idx = (addr >> (PGSHIFT + ptshift)) &
888                            ((1 << (ptidxbits + widened)) - 1);
889         } else {
890             idx = (addr >> (PGSHIFT + ptshift)) &
891                            ((1 << ptidxbits) - 1);
892         }
893 
894         /* check that physical address of PTE is legal */
895         hwaddr pte_addr;
896 
897         if (two_stage && first_stage) {
898             int vbase_prot;
899             hwaddr vbase;
900 
901             /* Do the second stage translation on the base PTE address. */
902             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
903                                                  base, NULL, MMU_DATA_LOAD,
904                                                  mmu_idx, false, true,
905                                                  is_debug);
906 
907             if (vbase_ret != TRANSLATE_SUCCESS) {
908                 if (fault_pte_addr) {
909                     *fault_pte_addr = (base + idx * ptesize) >> 2;
910                 }
911                 return TRANSLATE_G_STAGE_FAIL;
912             }
913 
914             pte_addr = vbase + idx * ptesize;
915         } else {
916             pte_addr = base + idx * ptesize;
917         }
918 
919         int pmp_prot;
920         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
921                                                sizeof(target_ulong),
922                                                MMU_DATA_LOAD, PRV_S);
923         if (pmp_ret != TRANSLATE_SUCCESS) {
924             return TRANSLATE_PMP_FAIL;
925         }
926 
927         target_ulong pte;
928         if (riscv_cpu_mxl(env) == MXL_RV32) {
929             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
930         } else {
931             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
932         }
933 
934         if (res != MEMTX_OK) {
935             return TRANSLATE_FAIL;
936         }
937 
938         bool pbmte = env->menvcfg & MENVCFG_PBMTE;
939         bool hade = env->menvcfg & MENVCFG_HADE;
940 
941         if (first_stage && two_stage && env->virt_enabled) {
942             pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
943             hade = hade && (env->henvcfg & HENVCFG_HADE);
944         }
945 
946         if (riscv_cpu_sxl(env) == MXL_RV32) {
947             ppn = pte >> PTE_PPN_SHIFT;
948         } else if (pbmte || riscv_cpu_cfg(env)->ext_svnapot) {
949             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
950         } else {
951             ppn = pte >> PTE_PPN_SHIFT;
952             if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
953                 return TRANSLATE_FAIL;
954             }
955         }
956 
957         if (!(pte & PTE_V)) {
958             /* Invalid PTE */
959             return TRANSLATE_FAIL;
960         } else if (!pbmte && (pte & PTE_PBMT)) {
961             return TRANSLATE_FAIL;
962         } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
963             /* Inner PTE, continue walking */
964             if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
965                 return TRANSLATE_FAIL;
966             }
967             base = ppn << PGSHIFT;
968         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
969             /* Reserved leaf PTE flags: PTE_W */
970             return TRANSLATE_FAIL;
971         } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
972             /* Reserved leaf PTE flags: PTE_W + PTE_X */
973             return TRANSLATE_FAIL;
974         } else if ((pte & PTE_U) && ((mode != PRV_U) &&
975                    (!sum || access_type == MMU_INST_FETCH))) {
976             /* User PTE flags when not U mode and mstatus.SUM is not set,
977                or the access type is an instruction fetch */
978             return TRANSLATE_FAIL;
979         } else if (!(pte & PTE_U) && (mode != PRV_S)) {
980             /* Supervisor PTE flags when not S mode */
981             return TRANSLATE_FAIL;
982         } else if (ppn & ((1ULL << ptshift) - 1)) {
983             /* Misaligned PPN */
984             return TRANSLATE_FAIL;
985         } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
986                    ((pte & PTE_X) && mxr))) {
987             /* Read access check failed */
988             return TRANSLATE_FAIL;
989         } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
990             /* Write access check failed */
991             return TRANSLATE_FAIL;
992         } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
993             /* Fetch access check failed */
994             return TRANSLATE_FAIL;
995         } else {
996             /* if necessary, set accessed and dirty bits. */
997             target_ulong updated_pte = pte | PTE_A |
998                 (access_type == MMU_DATA_STORE ? PTE_D : 0);
999 
1000             /* Page table updates need to be atomic with MTTCG enabled */
1001             if (updated_pte != pte) {
1002                 if (!hade) {
1003                     return TRANSLATE_FAIL;
1004                 }
1005 
1006                 /*
1007                  * - if accessed or dirty bits need updating, and the PTE is
1008                  *   in RAM, then we do so atomically with a compare and swap.
1009                  * - if the PTE is in IO space or ROM, then it can't be updated
1010                  *   and we return TRANSLATE_FAIL.
1011                  * - if the PTE changed by the time we went to update it, then
1012                  *   it is no longer valid and we must re-walk the page table.
1013                  */
1014                 MemoryRegion *mr;
1015                 hwaddr l = sizeof(target_ulong), addr1;
1016                 mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1017                                              false, MEMTXATTRS_UNSPECIFIED);
1018                 if (memory_region_is_ram(mr)) {
1019                     target_ulong *pte_pa =
1020                         qemu_map_ram_ptr(mr->ram_block, addr1);
1021 #if TCG_OVERSIZED_GUEST
1022                     /*
1023                      * MTTCG is not enabled on oversized TCG guests so
1024                      * page table updates do not need to be atomic
1025                      */
1026                     *pte_pa = pte = updated_pte;
1027 #else
1028                     target_ulong old_pte =
1029                         qatomic_cmpxchg(pte_pa, pte, updated_pte);
1030                     if (old_pte != pte) {
1031                         goto restart;
1032                     } else {
1033                         pte = updated_pte;
1034                     }
1035 #endif
1036                 } else {
1037                     /*
1038                      * misconfigured PTE in ROM (AD bits are not preset) or
1039                      * PTE is in IO space and can't be updated atomically
1040                      */
1041                     return TRANSLATE_FAIL;
1042                 }
1043             }
1044 
1045             /*
1046              * for superpage mappings, make a fake leaf PTE for the TLB's
1047              * benefit.
1048              */
1049             target_ulong vpn = addr >> PGSHIFT;
1050 
1051             if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1052                 napot_bits = ctzl(ppn) + 1;
1053                 if ((i != (levels - 1)) || (napot_bits != 4)) {
1054                     return TRANSLATE_FAIL;
1055                 }
1056             }
1057 
1058             napot_mask = (1 << napot_bits) - 1;
1059             *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1060                           (vpn & (((target_ulong)1 << ptshift) - 1))
1061                          ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1062 
1063             /* set permissions on the TLB entry */
1064             if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
1065                 *prot |= PAGE_READ;
1066             }
1067             if (pte & PTE_X) {
1068                 *prot |= PAGE_EXEC;
1069             }
1070             /*
1071              * add write permission on stores or if the page is already dirty,
1072              * so that we TLB miss on later writes to update the dirty bit
1073              */
1074             if ((pte & PTE_W) &&
1075                 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1076                 *prot |= PAGE_WRITE;
1077             }
1078             return TRANSLATE_SUCCESS;
1079         }
1080     }
1081     return TRANSLATE_FAIL;
1082 }
1083 
1084 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1085                                 MMUAccessType access_type, bool pmp_violation,
1086                                 bool first_stage, bool two_stage,
1087                                 bool two_stage_indirect)
1088 {
1089     CPUState *cs = env_cpu(env);
1090     int page_fault_exceptions, vm;
1091     uint64_t stap_mode;
1092 
1093     if (riscv_cpu_mxl(env) == MXL_RV32) {
1094         stap_mode = SATP32_MODE;
1095     } else {
1096         stap_mode = SATP64_MODE;
1097     }
1098 
1099     if (first_stage) {
1100         vm = get_field(env->satp, stap_mode);
1101     } else {
1102         vm = get_field(env->hgatp, stap_mode);
1103     }
1104 
1105     page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1106 
1107     switch (access_type) {
1108     case MMU_INST_FETCH:
1109         if (env->virt_enabled && !first_stage) {
1110             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1111         } else {
1112             cs->exception_index = page_fault_exceptions ?
1113                 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1114         }
1115         break;
1116     case MMU_DATA_LOAD:
1117         if (two_stage && !first_stage) {
1118             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1119         } else {
1120             cs->exception_index = page_fault_exceptions ?
1121                 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1122         }
1123         break;
1124     case MMU_DATA_STORE:
1125         if (two_stage && !first_stage) {
1126             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1127         } else {
1128             cs->exception_index = page_fault_exceptions ?
1129                 RISCV_EXCP_STORE_PAGE_FAULT :
1130                 RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1131         }
1132         break;
1133     default:
1134         g_assert_not_reached();
1135     }
1136     env->badaddr = address;
1137     env->two_stage_lookup = two_stage;
1138     env->two_stage_indirect_lookup = two_stage_indirect;
1139 }
1140 
1141 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1142 {
1143     RISCVCPU *cpu = RISCV_CPU(cs);
1144     CPURISCVState *env = &cpu->env;
1145     hwaddr phys_addr;
1146     int prot;
1147     int mmu_idx = cpu_mmu_index(&cpu->env, false);
1148 
1149     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1150                              true, env->virt_enabled, true)) {
1151         return -1;
1152     }
1153 
1154     if (env->virt_enabled) {
1155         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1156                                  0, mmu_idx, false, true, true)) {
1157             return -1;
1158         }
1159     }
1160 
1161     return phys_addr & TARGET_PAGE_MASK;
1162 }
1163 
1164 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1165                                      vaddr addr, unsigned size,
1166                                      MMUAccessType access_type,
1167                                      int mmu_idx, MemTxAttrs attrs,
1168                                      MemTxResult response, uintptr_t retaddr)
1169 {
1170     RISCVCPU *cpu = RISCV_CPU(cs);
1171     CPURISCVState *env = &cpu->env;
1172 
1173     if (access_type == MMU_DATA_STORE) {
1174         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1175     } else if (access_type == MMU_DATA_LOAD) {
1176         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1177     } else {
1178         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1179     }
1180 
1181     env->badaddr = addr;
1182     env->two_stage_lookup = env->virt_enabled ||
1183                             riscv_cpu_two_stage_lookup(mmu_idx);
1184     env->two_stage_indirect_lookup = false;
1185     cpu_loop_exit_restore(cs, retaddr);
1186 }
1187 
1188 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1189                                    MMUAccessType access_type, int mmu_idx,
1190                                    uintptr_t retaddr)
1191 {
1192     RISCVCPU *cpu = RISCV_CPU(cs);
1193     CPURISCVState *env = &cpu->env;
1194     switch (access_type) {
1195     case MMU_INST_FETCH:
1196         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1197         break;
1198     case MMU_DATA_LOAD:
1199         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1200         break;
1201     case MMU_DATA_STORE:
1202         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1203         break;
1204     default:
1205         g_assert_not_reached();
1206     }
1207     env->badaddr = addr;
1208     env->two_stage_lookup = env->virt_enabled ||
1209                             riscv_cpu_two_stage_lookup(mmu_idx);
1210     env->two_stage_indirect_lookup = false;
1211     cpu_loop_exit_restore(cs, retaddr);
1212 }
1213 
1214 
1215 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1216 {
1217     enum riscv_pmu_event_idx pmu_event_type;
1218 
1219     switch (access_type) {
1220     case MMU_INST_FETCH:
1221         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1222         break;
1223     case MMU_DATA_LOAD:
1224         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1225         break;
1226     case MMU_DATA_STORE:
1227         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1228         break;
1229     default:
1230         return;
1231     }
1232 
1233     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1234 }
1235 
1236 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1237                         MMUAccessType access_type, int mmu_idx,
1238                         bool probe, uintptr_t retaddr)
1239 {
1240     RISCVCPU *cpu = RISCV_CPU(cs);
1241     CPURISCVState *env = &cpu->env;
1242     vaddr im_address;
1243     hwaddr pa = 0;
1244     int prot, prot2, prot_pmp;
1245     bool pmp_violation = false;
1246     bool first_stage_error = true;
1247     bool two_stage_lookup = false;
1248     bool two_stage_indirect_error = false;
1249     int ret = TRANSLATE_FAIL;
1250     int mode = mmu_idx;
1251     /* default TLB page size */
1252     target_ulong tlb_size = TARGET_PAGE_SIZE;
1253 
1254     env->guest_phys_fault_addr = 0;
1255 
1256     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1257                   __func__, address, access_type, mmu_idx);
1258 
1259     /*
1260      * MPRV does not affect the virtual-machine load/store
1261      * instructions, HLV, HLVX, and HSV.
1262      */
1263     if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1264         mode = get_field(env->hstatus, HSTATUS_SPVP);
1265     } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1266                get_field(env->mstatus, MSTATUS_MPRV)) {
1267         mode = get_field(env->mstatus, MSTATUS_MPP);
1268         if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1269             two_stage_lookup = true;
1270         }
1271     }
1272 
1273     pmu_tlb_fill_incr_ctr(cpu, access_type);
1274     if (env->virt_enabled ||
1275         ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1276          access_type != MMU_INST_FETCH)) {
1277         /* Two stage lookup */
1278         ret = get_physical_address(env, &pa, &prot, address,
1279                                    &env->guest_phys_fault_addr, access_type,
1280                                    mmu_idx, true, true, false);
1281 
1282         /*
1283          * A G-stage exception may be triggered during two state lookup.
1284          * And the env->guest_phys_fault_addr has already been set in
1285          * get_physical_address().
1286          */
1287         if (ret == TRANSLATE_G_STAGE_FAIL) {
1288             first_stage_error = false;
1289             two_stage_indirect_error = true;
1290             access_type = MMU_DATA_LOAD;
1291         }
1292 
1293         qemu_log_mask(CPU_LOG_MMU,
1294                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1295                       HWADDR_FMT_plx " prot %d\n",
1296                       __func__, address, ret, pa, prot);
1297 
1298         if (ret == TRANSLATE_SUCCESS) {
1299             /* Second stage lookup */
1300             im_address = pa;
1301 
1302             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1303                                        access_type, mmu_idx, false, true,
1304                                        false);
1305 
1306             qemu_log_mask(CPU_LOG_MMU,
1307                           "%s 2nd-stage address=%" VADDR_PRIx
1308                           " ret %d physical "
1309                           HWADDR_FMT_plx " prot %d\n",
1310                           __func__, im_address, ret, pa, prot2);
1311 
1312             prot &= prot2;
1313 
1314             if (ret == TRANSLATE_SUCCESS) {
1315                 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1316                                                size, access_type, mode);
1317 
1318                 qemu_log_mask(CPU_LOG_MMU,
1319                               "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1320                               " %d tlb_size " TARGET_FMT_lu "\n",
1321                               __func__, pa, ret, prot_pmp, tlb_size);
1322 
1323                 prot &= prot_pmp;
1324             }
1325 
1326             if (ret != TRANSLATE_SUCCESS) {
1327                 /*
1328                  * Guest physical address translation failed, this is a HS
1329                  * level exception
1330                  */
1331                 first_stage_error = false;
1332                 env->guest_phys_fault_addr = (im_address |
1333                                               (address &
1334                                                (TARGET_PAGE_SIZE - 1))) >> 2;
1335             }
1336         }
1337     } else {
1338         /* Single stage lookup */
1339         ret = get_physical_address(env, &pa, &prot, address, NULL,
1340                                    access_type, mmu_idx, true, false, false);
1341 
1342         qemu_log_mask(CPU_LOG_MMU,
1343                       "%s address=%" VADDR_PRIx " ret %d physical "
1344                       HWADDR_FMT_plx " prot %d\n",
1345                       __func__, address, ret, pa, prot);
1346 
1347         if (ret == TRANSLATE_SUCCESS) {
1348             ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1349                                            size, access_type, mode);
1350 
1351             qemu_log_mask(CPU_LOG_MMU,
1352                           "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1353                           " %d tlb_size " TARGET_FMT_lu "\n",
1354                           __func__, pa, ret, prot_pmp, tlb_size);
1355 
1356             prot &= prot_pmp;
1357         }
1358     }
1359 
1360     if (ret == TRANSLATE_PMP_FAIL) {
1361         pmp_violation = true;
1362     }
1363 
1364     if (ret == TRANSLATE_SUCCESS) {
1365         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1366                      prot, mmu_idx, tlb_size);
1367         return true;
1368     } else if (probe) {
1369         return false;
1370     } else {
1371         raise_mmu_exception(env, address, access_type, pmp_violation,
1372                             first_stage_error,
1373                             env->virt_enabled ||
1374                                 riscv_cpu_two_stage_lookup(mmu_idx),
1375                             two_stage_indirect_error);
1376         cpu_loop_exit_restore(cs, retaddr);
1377     }
1378 
1379     return true;
1380 }
1381 
1382 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1383                                            target_ulong insn,
1384                                            target_ulong taddr)
1385 {
1386     target_ulong xinsn = 0;
1387     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1388 
1389     /*
1390      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1391      * be uncompressed. The Quadrant 1 of RVC instruction space need
1392      * not be transformed because these instructions won't generate
1393      * any load/store trap.
1394      */
1395 
1396     if ((insn & 0x3) != 0x3) {
1397         /* Transform 16bit instruction into 32bit instruction */
1398         switch (GET_C_OP(insn)) {
1399         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1400             switch (GET_C_FUNC(insn)) {
1401             case OPC_RISC_C_FUNC_FLD_LQ:
1402                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1403                     xinsn = OPC_RISC_FLD;
1404                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1405                     access_rs1 = GET_C_RS1S(insn);
1406                     access_imm = GET_C_LD_IMM(insn);
1407                     access_size = 8;
1408                 }
1409                 break;
1410             case OPC_RISC_C_FUNC_LW: /* C.LW */
1411                 xinsn = OPC_RISC_LW;
1412                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1413                 access_rs1 = GET_C_RS1S(insn);
1414                 access_imm = GET_C_LW_IMM(insn);
1415                 access_size = 4;
1416                 break;
1417             case OPC_RISC_C_FUNC_FLW_LD:
1418                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1419                     xinsn = OPC_RISC_FLW;
1420                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1421                     access_rs1 = GET_C_RS1S(insn);
1422                     access_imm = GET_C_LW_IMM(insn);
1423                     access_size = 4;
1424                 } else { /* C.LD (RV64/RV128) */
1425                     xinsn = OPC_RISC_LD;
1426                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1427                     access_rs1 = GET_C_RS1S(insn);
1428                     access_imm = GET_C_LD_IMM(insn);
1429                     access_size = 8;
1430                 }
1431                 break;
1432             case OPC_RISC_C_FUNC_FSD_SQ:
1433                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1434                     xinsn = OPC_RISC_FSD;
1435                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1436                     access_rs1 = GET_C_RS1S(insn);
1437                     access_imm = GET_C_SD_IMM(insn);
1438                     access_size = 8;
1439                 }
1440                 break;
1441             case OPC_RISC_C_FUNC_SW: /* C.SW */
1442                 xinsn = OPC_RISC_SW;
1443                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1444                 access_rs1 = GET_C_RS1S(insn);
1445                 access_imm = GET_C_SW_IMM(insn);
1446                 access_size = 4;
1447                 break;
1448             case OPC_RISC_C_FUNC_FSW_SD:
1449                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1450                     xinsn = OPC_RISC_FSW;
1451                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1452                     access_rs1 = GET_C_RS1S(insn);
1453                     access_imm = GET_C_SW_IMM(insn);
1454                     access_size = 4;
1455                 } else { /* C.SD (RV64/RV128) */
1456                     xinsn = OPC_RISC_SD;
1457                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1458                     access_rs1 = GET_C_RS1S(insn);
1459                     access_imm = GET_C_SD_IMM(insn);
1460                     access_size = 8;
1461                 }
1462                 break;
1463             default:
1464                 break;
1465             }
1466             break;
1467         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1468             switch (GET_C_FUNC(insn)) {
1469             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1470                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1471                     xinsn = OPC_RISC_FLD;
1472                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1473                     access_rs1 = 2;
1474                     access_imm = GET_C_LDSP_IMM(insn);
1475                     access_size = 8;
1476                 }
1477                 break;
1478             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1479                 xinsn = OPC_RISC_LW;
1480                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1481                 access_rs1 = 2;
1482                 access_imm = GET_C_LWSP_IMM(insn);
1483                 access_size = 4;
1484                 break;
1485             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1486                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1487                     xinsn = OPC_RISC_FLW;
1488                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1489                     access_rs1 = 2;
1490                     access_imm = GET_C_LWSP_IMM(insn);
1491                     access_size = 4;
1492                 } else { /* C.LDSP (RV64/RV128) */
1493                     xinsn = OPC_RISC_LD;
1494                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1495                     access_rs1 = 2;
1496                     access_imm = GET_C_LDSP_IMM(insn);
1497                     access_size = 8;
1498                 }
1499                 break;
1500             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1501                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1502                     xinsn = OPC_RISC_FSD;
1503                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1504                     access_rs1 = 2;
1505                     access_imm = GET_C_SDSP_IMM(insn);
1506                     access_size = 8;
1507                 }
1508                 break;
1509             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1510                 xinsn = OPC_RISC_SW;
1511                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1512                 access_rs1 = 2;
1513                 access_imm = GET_C_SWSP_IMM(insn);
1514                 access_size = 4;
1515                 break;
1516             case 7:
1517                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1518                     xinsn = OPC_RISC_FSW;
1519                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1520                     access_rs1 = 2;
1521                     access_imm = GET_C_SWSP_IMM(insn);
1522                     access_size = 4;
1523                 } else { /* C.SDSP (RV64/RV128) */
1524                     xinsn = OPC_RISC_SD;
1525                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1526                     access_rs1 = 2;
1527                     access_imm = GET_C_SDSP_IMM(insn);
1528                     access_size = 8;
1529                 }
1530                 break;
1531             default:
1532                 break;
1533             }
1534             break;
1535         default:
1536             break;
1537         }
1538 
1539         /*
1540          * Clear Bit1 of transformed instruction to indicate that
1541          * original insruction was a 16bit instruction
1542          */
1543         xinsn &= ~((target_ulong)0x2);
1544     } else {
1545         /* Transform 32bit (or wider) instructions */
1546         switch (MASK_OP_MAJOR(insn)) {
1547         case OPC_RISC_ATOMIC:
1548             xinsn = insn;
1549             access_rs1 = GET_RS1(insn);
1550             access_size = 1 << GET_FUNCT3(insn);
1551             break;
1552         case OPC_RISC_LOAD:
1553         case OPC_RISC_FP_LOAD:
1554             xinsn = SET_I_IMM(insn, 0);
1555             access_rs1 = GET_RS1(insn);
1556             access_imm = GET_IMM(insn);
1557             access_size = 1 << GET_FUNCT3(insn);
1558             break;
1559         case OPC_RISC_STORE:
1560         case OPC_RISC_FP_STORE:
1561             xinsn = SET_S_IMM(insn, 0);
1562             access_rs1 = GET_RS1(insn);
1563             access_imm = GET_STORE_IMM(insn);
1564             access_size = 1 << GET_FUNCT3(insn);
1565             break;
1566         case OPC_RISC_SYSTEM:
1567             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1568                 xinsn = insn;
1569                 access_rs1 = GET_RS1(insn);
1570                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1571                 access_size = 1 << access_size;
1572             }
1573             break;
1574         default:
1575             break;
1576         }
1577     }
1578 
1579     if (access_size) {
1580         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1581                                (access_size - 1));
1582     }
1583 
1584     return xinsn;
1585 }
1586 #endif /* !CONFIG_USER_ONLY */
1587 
1588 /*
1589  * Handle Traps
1590  *
1591  * Adapted from Spike's processor_t::take_trap.
1592  *
1593  */
1594 void riscv_cpu_do_interrupt(CPUState *cs)
1595 {
1596 #if !defined(CONFIG_USER_ONLY)
1597 
1598     RISCVCPU *cpu = RISCV_CPU(cs);
1599     CPURISCVState *env = &cpu->env;
1600     bool write_gva = false;
1601     uint64_t s;
1602 
1603     /*
1604      * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1605      * so we mask off the MSB and separate into trap type and cause.
1606      */
1607     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1608     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1609     uint64_t deleg = async ? env->mideleg : env->medeleg;
1610     target_ulong tval = 0;
1611     target_ulong tinst = 0;
1612     target_ulong htval = 0;
1613     target_ulong mtval2 = 0;
1614 
1615     if  (cause == RISCV_EXCP_SEMIHOST) {
1616         do_common_semihosting(cs);
1617         env->pc += 4;
1618         return;
1619     }
1620 
1621     if (!async) {
1622         /* set tval to badaddr for traps with address information */
1623         switch (cause) {
1624         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1625         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1626         case RISCV_EXCP_LOAD_ADDR_MIS:
1627         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1628         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1629         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1630         case RISCV_EXCP_LOAD_PAGE_FAULT:
1631         case RISCV_EXCP_STORE_PAGE_FAULT:
1632             write_gva = env->two_stage_lookup;
1633             tval = env->badaddr;
1634             if (env->two_stage_indirect_lookup) {
1635                 /*
1636                  * special pseudoinstruction for G-stage fault taken while
1637                  * doing VS-stage page table walk.
1638                  */
1639                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1640             } else {
1641                 /*
1642                  * The "Addr. Offset" field in transformed instruction is
1643                  * non-zero only for misaligned access.
1644                  */
1645                 tinst = riscv_transformed_insn(env, env->bins, tval);
1646             }
1647             break;
1648         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1649         case RISCV_EXCP_INST_ADDR_MIS:
1650         case RISCV_EXCP_INST_ACCESS_FAULT:
1651         case RISCV_EXCP_INST_PAGE_FAULT:
1652             write_gva = env->two_stage_lookup;
1653             tval = env->badaddr;
1654             if (env->two_stage_indirect_lookup) {
1655                 /*
1656                  * special pseudoinstruction for G-stage fault taken while
1657                  * doing VS-stage page table walk.
1658                  */
1659                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1660             }
1661             break;
1662         case RISCV_EXCP_ILLEGAL_INST:
1663         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1664             tval = env->bins;
1665             break;
1666         case RISCV_EXCP_BREAKPOINT:
1667             if (cs->watchpoint_hit) {
1668                 tval = cs->watchpoint_hit->hitaddr;
1669                 cs->watchpoint_hit = NULL;
1670             }
1671             break;
1672         default:
1673             break;
1674         }
1675         /* ecall is dispatched as one cause so translate based on mode */
1676         if (cause == RISCV_EXCP_U_ECALL) {
1677             assert(env->priv <= 3);
1678 
1679             if (env->priv == PRV_M) {
1680                 cause = RISCV_EXCP_M_ECALL;
1681             } else if (env->priv == PRV_S && env->virt_enabled) {
1682                 cause = RISCV_EXCP_VS_ECALL;
1683             } else if (env->priv == PRV_S && !env->virt_enabled) {
1684                 cause = RISCV_EXCP_S_ECALL;
1685             } else if (env->priv == PRV_U) {
1686                 cause = RISCV_EXCP_U_ECALL;
1687             }
1688         }
1689     }
1690 
1691     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1692                      riscv_cpu_get_trap_name(cause, async));
1693 
1694     qemu_log_mask(CPU_LOG_INT,
1695                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1696                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1697                   __func__, env->mhartid, async, cause, env->pc, tval,
1698                   riscv_cpu_get_trap_name(cause, async));
1699 
1700     if (env->priv <= PRV_S &&
1701             cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1702         /* handle the trap in S-mode */
1703         if (riscv_has_ext(env, RVH)) {
1704             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1705 
1706             if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
1707                 /* Trap to VS mode */
1708                 /*
1709                  * See if we need to adjust cause. Yes if its VS mode interrupt
1710                  * no if hypervisor has delegated one of hs mode's interrupt
1711                  */
1712                 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1713                     cause == IRQ_VS_EXT) {
1714                     cause = cause - 1;
1715                 }
1716                 write_gva = false;
1717             } else if (env->virt_enabled) {
1718                 /* Trap into HS mode, from virt */
1719                 riscv_cpu_swap_hypervisor_regs(env);
1720                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1721                                          env->priv);
1722                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1723 
1724                 htval = env->guest_phys_fault_addr;
1725 
1726                 riscv_cpu_set_virt_enabled(env, 0);
1727             } else {
1728                 /* Trap into HS mode */
1729                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1730                 htval = env->guest_phys_fault_addr;
1731             }
1732             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1733         }
1734 
1735         s = env->mstatus;
1736         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1737         s = set_field(s, MSTATUS_SPP, env->priv);
1738         s = set_field(s, MSTATUS_SIE, 0);
1739         env->mstatus = s;
1740         env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1741         env->sepc = env->pc;
1742         env->stval = tval;
1743         env->htval = htval;
1744         env->htinst = tinst;
1745         env->pc = (env->stvec >> 2 << 2) +
1746                   ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1747         riscv_cpu_set_mode(env, PRV_S);
1748     } else {
1749         /* handle the trap in M-mode */
1750         if (riscv_has_ext(env, RVH)) {
1751             if (env->virt_enabled) {
1752                 riscv_cpu_swap_hypervisor_regs(env);
1753             }
1754             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1755                                      env->virt_enabled);
1756             if (env->virt_enabled && tval) {
1757                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1758             }
1759 
1760             mtval2 = env->guest_phys_fault_addr;
1761 
1762             /* Trapping to M mode, virt is disabled */
1763             riscv_cpu_set_virt_enabled(env, 0);
1764         }
1765 
1766         s = env->mstatus;
1767         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1768         s = set_field(s, MSTATUS_MPP, env->priv);
1769         s = set_field(s, MSTATUS_MIE, 0);
1770         env->mstatus = s;
1771         env->mcause = cause | ~(((target_ulong)-1) >> async);
1772         env->mepc = env->pc;
1773         env->mtval = tval;
1774         env->mtval2 = mtval2;
1775         env->mtinst = tinst;
1776         env->pc = (env->mtvec >> 2 << 2) +
1777                   ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1778         riscv_cpu_set_mode(env, PRV_M);
1779     }
1780 
1781     /*
1782      * NOTE: it is not necessary to yield load reservations here. It is only
1783      * necessary for an SC from "another hart" to cause a load reservation
1784      * to be yielded. Refer to the memory consistency model section of the
1785      * RISC-V ISA Specification.
1786      */
1787 
1788     env->two_stage_lookup = false;
1789     env->two_stage_indirect_lookup = false;
1790 #endif
1791     cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
1792 }
1793