1 /* 2 * RISC-V CPU helpers for qemu. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/main-loop.h" 23 #include "cpu.h" 24 #include "exec/exec-all.h" 25 #include "tcg/tcg-op.h" 26 #include "trace.h" 27 #include "semihosting/common-semi.h" 28 29 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch) 30 { 31 #ifdef CONFIG_USER_ONLY 32 return 0; 33 #else 34 return env->priv; 35 #endif 36 } 37 38 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc, 39 target_ulong *cs_base, uint32_t *pflags) 40 { 41 CPUState *cs = env_cpu(env); 42 RISCVCPU *cpu = RISCV_CPU(cs); 43 44 uint32_t flags = 0; 45 46 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc; 47 *cs_base = 0; 48 49 if (riscv_has_ext(env, RVV) || cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) { 50 /* 51 * If env->vl equals to VLMAX, we can use generic vector operation 52 * expanders (GVEC) to accerlate the vector operations. 53 * However, as LMUL could be a fractional number. The maximum 54 * vector size can be operated might be less than 8 bytes, 55 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true 56 * only when maxsz >= 8 bytes. 57 */ 58 uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype); 59 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW); 60 uint32_t maxsz = vlmax << sew; 61 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) && 62 (maxsz >= 8); 63 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill); 64 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew); 65 flags = FIELD_DP32(flags, TB_FLAGS, LMUL, 66 FIELD_EX64(env->vtype, VTYPE, VLMUL)); 67 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax); 68 } else { 69 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1); 70 } 71 72 #ifdef CONFIG_USER_ONLY 73 flags |= TB_FLAGS_MSTATUS_FS; 74 flags |= TB_FLAGS_MSTATUS_VS; 75 #else 76 flags |= cpu_mmu_index(env, 0); 77 if (riscv_cpu_fp_enabled(env)) { 78 flags |= env->mstatus & MSTATUS_FS; 79 } 80 81 if (riscv_cpu_vector_enabled(env)) { 82 flags |= env->mstatus & MSTATUS_VS; 83 } 84 85 if (riscv_has_ext(env, RVH)) { 86 if (env->priv == PRV_M || 87 (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) || 88 (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) && 89 get_field(env->hstatus, HSTATUS_HU))) { 90 flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1); 91 } 92 93 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS, 94 get_field(env->mstatus_hs, MSTATUS_FS)); 95 96 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS, 97 get_field(env->mstatus_hs, MSTATUS_VS)); 98 } 99 #endif 100 101 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl); 102 if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) { 103 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1); 104 } 105 if (env->cur_pmbase != 0) { 106 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1); 107 } 108 109 *pflags = flags; 110 } 111 112 void riscv_cpu_update_mask(CPURISCVState *env) 113 { 114 target_ulong mask = -1, base = 0; 115 /* 116 * TODO: Current RVJ spec does not specify 117 * how the extension interacts with XLEN. 118 */ 119 #ifndef CONFIG_USER_ONLY 120 if (riscv_has_ext(env, RVJ)) { 121 switch (env->priv) { 122 case PRV_M: 123 if (env->mmte & M_PM_ENABLE) { 124 mask = env->mpmmask; 125 base = env->mpmbase; 126 } 127 break; 128 case PRV_S: 129 if (env->mmte & S_PM_ENABLE) { 130 mask = env->spmmask; 131 base = env->spmbase; 132 } 133 break; 134 case PRV_U: 135 if (env->mmte & U_PM_ENABLE) { 136 mask = env->upmmask; 137 base = env->upmbase; 138 } 139 break; 140 default: 141 g_assert_not_reached(); 142 } 143 } 144 #endif 145 if (env->xl == MXL_RV32) { 146 env->cur_pmmask = mask & UINT32_MAX; 147 env->cur_pmbase = base & UINT32_MAX; 148 } else { 149 env->cur_pmmask = mask; 150 env->cur_pmbase = base; 151 } 152 } 153 154 #ifndef CONFIG_USER_ONLY 155 156 /* 157 * The HS-mode is allowed to configure priority only for the 158 * following VS-mode local interrupts: 159 * 160 * 0 (Reserved interrupt, reads as zero) 161 * 1 Supervisor software interrupt 162 * 4 (Reserved interrupt, reads as zero) 163 * 5 Supervisor timer interrupt 164 * 8 (Reserved interrupt, reads as zero) 165 * 13 (Reserved interrupt) 166 * 14 " 167 * 15 " 168 * 16 " 169 * 18 Debug/trace interrupt 170 * 20 (Reserved interrupt) 171 * 22 " 172 * 24 " 173 * 26 " 174 * 28 " 175 * 30 (Reserved for standard reporting of bus or system errors) 176 */ 177 178 static const int hviprio_index2irq[] = { 179 0, 1, 4, 5, 8, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30 }; 180 static const int hviprio_index2rdzero[] = { 181 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 182 183 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero) 184 { 185 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) { 186 return -EINVAL; 187 } 188 189 if (out_irq) { 190 *out_irq = hviprio_index2irq[index]; 191 } 192 193 if (out_rdzero) { 194 *out_rdzero = hviprio_index2rdzero[index]; 195 } 196 197 return 0; 198 } 199 200 /* 201 * Default priorities of local interrupts are defined in the 202 * RISC-V Advanced Interrupt Architecture specification. 203 * 204 * ---------------------------------------------------------------- 205 * Default | 206 * Priority | Major Interrupt Numbers 207 * ---------------------------------------------------------------- 208 * Highest | 63 (3f), 62 (3e), 31 (1f), 30 (1e), 61 (3d), 60 (3c), 209 * | 59 (3b), 58 (3a), 29 (1d), 28 (1c), 57 (39), 56 (38), 210 * | 55 (37), 54 (36), 27 (1b), 26 (1a), 53 (35), 52 (34), 211 * | 51 (33), 50 (32), 25 (19), 24 (18), 49 (31), 48 (30) 212 * | 213 * | 11 (0b), 3 (03), 7 (07) 214 * | 9 (09), 1 (01), 5 (05) 215 * | 12 (0c) 216 * | 10 (0a), 2 (02), 6 (06) 217 * | 218 * | 47 (2f), 46 (2e), 23 (17), 22 (16), 45 (2d), 44 (2c), 219 * | 43 (2b), 42 (2a), 21 (15), 20 (14), 41 (29), 40 (28), 220 * | 39 (27), 38 (26), 19 (13), 18 (12), 37 (25), 36 (24), 221 * Lowest | 35 (23), 34 (22), 17 (11), 16 (10), 33 (21), 32 (20) 222 * ---------------------------------------------------------------- 223 */ 224 static const uint8_t default_iprio[64] = { 225 [63] = IPRIO_DEFAULT_UPPER, 226 [62] = IPRIO_DEFAULT_UPPER + 1, 227 [31] = IPRIO_DEFAULT_UPPER + 2, 228 [30] = IPRIO_DEFAULT_UPPER + 3, 229 [61] = IPRIO_DEFAULT_UPPER + 4, 230 [60] = IPRIO_DEFAULT_UPPER + 5, 231 232 [59] = IPRIO_DEFAULT_UPPER + 6, 233 [58] = IPRIO_DEFAULT_UPPER + 7, 234 [29] = IPRIO_DEFAULT_UPPER + 8, 235 [28] = IPRIO_DEFAULT_UPPER + 9, 236 [57] = IPRIO_DEFAULT_UPPER + 10, 237 [56] = IPRIO_DEFAULT_UPPER + 11, 238 239 [55] = IPRIO_DEFAULT_UPPER + 12, 240 [54] = IPRIO_DEFAULT_UPPER + 13, 241 [27] = IPRIO_DEFAULT_UPPER + 14, 242 [26] = IPRIO_DEFAULT_UPPER + 15, 243 [53] = IPRIO_DEFAULT_UPPER + 16, 244 [52] = IPRIO_DEFAULT_UPPER + 17, 245 246 [51] = IPRIO_DEFAULT_UPPER + 18, 247 [50] = IPRIO_DEFAULT_UPPER + 19, 248 [25] = IPRIO_DEFAULT_UPPER + 20, 249 [24] = IPRIO_DEFAULT_UPPER + 21, 250 [49] = IPRIO_DEFAULT_UPPER + 22, 251 [48] = IPRIO_DEFAULT_UPPER + 23, 252 253 [11] = IPRIO_DEFAULT_M, 254 [3] = IPRIO_DEFAULT_M + 1, 255 [7] = IPRIO_DEFAULT_M + 2, 256 257 [9] = IPRIO_DEFAULT_S, 258 [1] = IPRIO_DEFAULT_S + 1, 259 [5] = IPRIO_DEFAULT_S + 2, 260 261 [12] = IPRIO_DEFAULT_SGEXT, 262 263 [10] = IPRIO_DEFAULT_VS, 264 [2] = IPRIO_DEFAULT_VS + 1, 265 [6] = IPRIO_DEFAULT_VS + 2, 266 267 [47] = IPRIO_DEFAULT_LOWER, 268 [46] = IPRIO_DEFAULT_LOWER + 1, 269 [23] = IPRIO_DEFAULT_LOWER + 2, 270 [22] = IPRIO_DEFAULT_LOWER + 3, 271 [45] = IPRIO_DEFAULT_LOWER + 4, 272 [44] = IPRIO_DEFAULT_LOWER + 5, 273 274 [43] = IPRIO_DEFAULT_LOWER + 6, 275 [42] = IPRIO_DEFAULT_LOWER + 7, 276 [21] = IPRIO_DEFAULT_LOWER + 8, 277 [20] = IPRIO_DEFAULT_LOWER + 9, 278 [41] = IPRIO_DEFAULT_LOWER + 10, 279 [40] = IPRIO_DEFAULT_LOWER + 11, 280 281 [39] = IPRIO_DEFAULT_LOWER + 12, 282 [38] = IPRIO_DEFAULT_LOWER + 13, 283 [19] = IPRIO_DEFAULT_LOWER + 14, 284 [18] = IPRIO_DEFAULT_LOWER + 15, 285 [37] = IPRIO_DEFAULT_LOWER + 16, 286 [36] = IPRIO_DEFAULT_LOWER + 17, 287 288 [35] = IPRIO_DEFAULT_LOWER + 18, 289 [34] = IPRIO_DEFAULT_LOWER + 19, 290 [17] = IPRIO_DEFAULT_LOWER + 20, 291 [16] = IPRIO_DEFAULT_LOWER + 21, 292 [33] = IPRIO_DEFAULT_LOWER + 22, 293 [32] = IPRIO_DEFAULT_LOWER + 23, 294 }; 295 296 uint8_t riscv_cpu_default_priority(int irq) 297 { 298 if (irq < 0 || irq > 63) { 299 return IPRIO_MMAXIPRIO; 300 } 301 302 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO; 303 }; 304 305 static int riscv_cpu_pending_to_irq(CPURISCVState *env, 306 int extirq, unsigned int extirq_def_prio, 307 uint64_t pending, uint8_t *iprio) 308 { 309 int irq, best_irq = RISCV_EXCP_NONE; 310 unsigned int prio, best_prio = UINT_MAX; 311 312 if (!pending) { 313 return RISCV_EXCP_NONE; 314 } 315 316 irq = ctz64(pending); 317 if (!riscv_feature(env, RISCV_FEATURE_AIA)) { 318 return irq; 319 } 320 321 pending = pending >> irq; 322 while (pending) { 323 prio = iprio[irq]; 324 if (!prio) { 325 if (irq == extirq) { 326 prio = extirq_def_prio; 327 } else { 328 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ? 329 1 : IPRIO_MMAXIPRIO; 330 } 331 } 332 if ((pending & 0x1) && (prio <= best_prio)) { 333 best_irq = irq; 334 best_prio = prio; 335 } 336 irq++; 337 pending = pending >> 1; 338 } 339 340 return best_irq; 341 } 342 343 static uint64_t riscv_cpu_all_pending(CPURISCVState *env) 344 { 345 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN); 346 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 347 348 return (env->mip | vsgein) & env->mie; 349 } 350 351 int riscv_cpu_mirq_pending(CPURISCVState *env) 352 { 353 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg & 354 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 355 356 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 357 irqs, env->miprio); 358 } 359 360 int riscv_cpu_sirq_pending(CPURISCVState *env) 361 { 362 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & 363 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 364 365 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 366 irqs, env->siprio); 367 } 368 369 int riscv_cpu_vsirq_pending(CPURISCVState *env) 370 { 371 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & 372 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 373 374 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 375 irqs >> 1, env->hviprio); 376 } 377 378 static int riscv_cpu_local_irq_pending(CPURISCVState *env) 379 { 380 int virq; 381 uint64_t irqs, pending, mie, hsie, vsie; 382 383 /* Determine interrupt enable state of all privilege modes */ 384 if (riscv_cpu_virt_enabled(env)) { 385 mie = 1; 386 hsie = 1; 387 vsie = (env->priv < PRV_S) || 388 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 389 } else { 390 mie = (env->priv < PRV_M) || 391 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE)); 392 hsie = (env->priv < PRV_S) || 393 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 394 vsie = 0; 395 } 396 397 /* Determine all pending interrupts */ 398 pending = riscv_cpu_all_pending(env); 399 400 /* Check M-mode interrupts */ 401 irqs = pending & ~env->mideleg & -mie; 402 if (irqs) { 403 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 404 irqs, env->miprio); 405 } 406 407 /* Check HS-mode interrupts */ 408 irqs = pending & env->mideleg & ~env->hideleg & -hsie; 409 if (irqs) { 410 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 411 irqs, env->siprio); 412 } 413 414 /* Check VS-mode interrupts */ 415 irqs = pending & env->mideleg & env->hideleg & -vsie; 416 if (irqs) { 417 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 418 irqs >> 1, env->hviprio); 419 return (virq <= 0) ? virq : virq + 1; 420 } 421 422 /* Indicate no pending interrupt */ 423 return RISCV_EXCP_NONE; 424 } 425 426 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 427 { 428 if (interrupt_request & CPU_INTERRUPT_HARD) { 429 RISCVCPU *cpu = RISCV_CPU(cs); 430 CPURISCVState *env = &cpu->env; 431 int interruptno = riscv_cpu_local_irq_pending(env); 432 if (interruptno >= 0) { 433 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; 434 riscv_cpu_do_interrupt(cs); 435 return true; 436 } 437 } 438 return false; 439 } 440 441 /* Return true is floating point support is currently enabled */ 442 bool riscv_cpu_fp_enabled(CPURISCVState *env) 443 { 444 if (env->mstatus & MSTATUS_FS) { 445 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) { 446 return false; 447 } 448 return true; 449 } 450 451 return false; 452 } 453 454 /* Return true is vector support is currently enabled */ 455 bool riscv_cpu_vector_enabled(CPURISCVState *env) 456 { 457 if (env->mstatus & MSTATUS_VS) { 458 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) { 459 return false; 460 } 461 return true; 462 } 463 464 return false; 465 } 466 467 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) 468 { 469 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | 470 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE | 471 MSTATUS64_UXL | MSTATUS_VS; 472 473 if (riscv_has_ext(env, RVF)) { 474 mstatus_mask |= MSTATUS_FS; 475 } 476 bool current_virt = riscv_cpu_virt_enabled(env); 477 478 g_assert(riscv_has_ext(env, RVH)); 479 480 if (current_virt) { 481 /* Current V=1 and we are about to change to V=0 */ 482 env->vsstatus = env->mstatus & mstatus_mask; 483 env->mstatus &= ~mstatus_mask; 484 env->mstatus |= env->mstatus_hs; 485 486 env->vstvec = env->stvec; 487 env->stvec = env->stvec_hs; 488 489 env->vsscratch = env->sscratch; 490 env->sscratch = env->sscratch_hs; 491 492 env->vsepc = env->sepc; 493 env->sepc = env->sepc_hs; 494 495 env->vscause = env->scause; 496 env->scause = env->scause_hs; 497 498 env->vstval = env->stval; 499 env->stval = env->stval_hs; 500 501 env->vsatp = env->satp; 502 env->satp = env->satp_hs; 503 } else { 504 /* Current V=0 and we are about to change to V=1 */ 505 env->mstatus_hs = env->mstatus & mstatus_mask; 506 env->mstatus &= ~mstatus_mask; 507 env->mstatus |= env->vsstatus; 508 509 env->stvec_hs = env->stvec; 510 env->stvec = env->vstvec; 511 512 env->sscratch_hs = env->sscratch; 513 env->sscratch = env->vsscratch; 514 515 env->sepc_hs = env->sepc; 516 env->sepc = env->vsepc; 517 518 env->scause_hs = env->scause; 519 env->scause = env->vscause; 520 521 env->stval_hs = env->stval; 522 env->stval = env->vstval; 523 524 env->satp_hs = env->satp; 525 env->satp = env->vsatp; 526 } 527 } 528 529 target_ulong riscv_cpu_get_geilen(CPURISCVState *env) 530 { 531 if (!riscv_has_ext(env, RVH)) { 532 return 0; 533 } 534 535 return env->geilen; 536 } 537 538 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen) 539 { 540 if (!riscv_has_ext(env, RVH)) { 541 return; 542 } 543 544 if (geilen > (TARGET_LONG_BITS - 1)) { 545 return; 546 } 547 548 env->geilen = geilen; 549 } 550 551 bool riscv_cpu_virt_enabled(CPURISCVState *env) 552 { 553 if (!riscv_has_ext(env, RVH)) { 554 return false; 555 } 556 557 return get_field(env->virt, VIRT_ONOFF); 558 } 559 560 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable) 561 { 562 if (!riscv_has_ext(env, RVH)) { 563 return; 564 } 565 566 /* Flush the TLB on all virt mode changes. */ 567 if (get_field(env->virt, VIRT_ONOFF) != enable) { 568 tlb_flush(env_cpu(env)); 569 } 570 571 env->virt = set_field(env->virt, VIRT_ONOFF, enable); 572 573 if (enable) { 574 /* 575 * The guest external interrupts from an interrupt controller are 576 * delivered only when the Guest/VM is running (i.e. V=1). This means 577 * any guest external interrupt which is triggered while the Guest/VM 578 * is not running (i.e. V=0) will be missed on QEMU resulting in guest 579 * with sluggish response to serial console input and other I/O events. 580 * 581 * To solve this, we check and inject interrupt after setting V=1. 582 */ 583 riscv_cpu_update_mip(env_archcpu(env), 0, 0); 584 } 585 } 586 587 bool riscv_cpu_two_stage_lookup(int mmu_idx) 588 { 589 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK; 590 } 591 592 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts) 593 { 594 CPURISCVState *env = &cpu->env; 595 if (env->miclaim & interrupts) { 596 return -1; 597 } else { 598 env->miclaim |= interrupts; 599 return 0; 600 } 601 } 602 603 uint64_t riscv_cpu_update_mip(RISCVCPU *cpu, uint64_t mask, uint64_t value) 604 { 605 CPURISCVState *env = &cpu->env; 606 CPUState *cs = CPU(cpu); 607 uint64_t gein, vsgein = 0, old = env->mip; 608 bool locked = false; 609 610 if (riscv_cpu_virt_enabled(env)) { 611 gein = get_field(env->hstatus, HSTATUS_VGEIN); 612 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 613 } 614 615 if (!qemu_mutex_iothread_locked()) { 616 locked = true; 617 qemu_mutex_lock_iothread(); 618 } 619 620 env->mip = (env->mip & ~mask) | (value & mask); 621 622 if (env->mip | vsgein) { 623 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 624 } else { 625 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 626 } 627 628 if (locked) { 629 qemu_mutex_unlock_iothread(); 630 } 631 632 return old; 633 } 634 635 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *), 636 void *arg) 637 { 638 env->rdtime_fn = fn; 639 env->rdtime_fn_arg = arg; 640 } 641 642 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv, 643 int (*rmw_fn)(void *arg, 644 target_ulong reg, 645 target_ulong *val, 646 target_ulong new_val, 647 target_ulong write_mask), 648 void *rmw_fn_arg) 649 { 650 if (priv <= PRV_M) { 651 env->aia_ireg_rmw_fn[priv] = rmw_fn; 652 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg; 653 } 654 } 655 656 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) 657 { 658 if (newpriv > PRV_M) { 659 g_assert_not_reached(); 660 } 661 if (newpriv == PRV_H) { 662 newpriv = PRV_U; 663 } 664 /* tlb_flush is unnecessary as mode is contained in mmu_idx */ 665 env->priv = newpriv; 666 env->xl = cpu_recompute_xl(env); 667 riscv_cpu_update_mask(env); 668 669 /* 670 * Clear the load reservation - otherwise a reservation placed in one 671 * context/process can be used by another, resulting in an SC succeeding 672 * incorrectly. Version 2.2 of the ISA specification explicitly requires 673 * this behaviour, while later revisions say that the kernel "should" use 674 * an SC instruction to force the yielding of a load reservation on a 675 * preemptive context switch. As a result, do both. 676 */ 677 env->load_res = -1; 678 } 679 680 /* 681 * get_physical_address_pmp - check PMP permission for this physical address 682 * 683 * Match the PMP region and check permission for this physical address and it's 684 * TLB page. Returns 0 if the permission checking was successful 685 * 686 * @env: CPURISCVState 687 * @prot: The returned protection attributes 688 * @tlb_size: TLB page size containing addr. It could be modified after PMP 689 * permission checking. NULL if not set TLB page for addr. 690 * @addr: The physical address to be checked permission 691 * @access_type: The type of MMU access 692 * @mode: Indicates current privilege level. 693 */ 694 static int get_physical_address_pmp(CPURISCVState *env, int *prot, 695 target_ulong *tlb_size, hwaddr addr, 696 int size, MMUAccessType access_type, 697 int mode) 698 { 699 pmp_priv_t pmp_priv; 700 target_ulong tlb_size_pmp = 0; 701 702 if (!riscv_feature(env, RISCV_FEATURE_PMP)) { 703 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 704 return TRANSLATE_SUCCESS; 705 } 706 707 if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv, 708 mode)) { 709 *prot = 0; 710 return TRANSLATE_PMP_FAIL; 711 } 712 713 *prot = pmp_priv_to_page_prot(pmp_priv); 714 if (tlb_size != NULL) { 715 if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) { 716 *tlb_size = tlb_size_pmp; 717 } 718 } 719 720 return TRANSLATE_SUCCESS; 721 } 722 723 /* get_physical_address - get the physical address for this virtual address 724 * 725 * Do a page table walk to obtain the physical address corresponding to a 726 * virtual address. Returns 0 if the translation was successful 727 * 728 * Adapted from Spike's mmu_t::translate and mmu_t::walk 729 * 730 * @env: CPURISCVState 731 * @physical: This will be set to the calculated physical address 732 * @prot: The returned protection attributes 733 * @addr: The virtual address to be translated 734 * @fault_pte_addr: If not NULL, this will be set to fault pte address 735 * when a error occurs on pte address translation. 736 * This will already be shifted to match htval. 737 * @access_type: The type of MMU access 738 * @mmu_idx: Indicates current privilege level 739 * @first_stage: Are we in first stage translation? 740 * Second stage is used for hypervisor guest translation 741 * @two_stage: Are we going to perform two stage translation 742 * @is_debug: Is this access from a debugger or the monitor? 743 */ 744 static int get_physical_address(CPURISCVState *env, hwaddr *physical, 745 int *prot, target_ulong addr, 746 target_ulong *fault_pte_addr, 747 int access_type, int mmu_idx, 748 bool first_stage, bool two_stage, 749 bool is_debug) 750 { 751 /* NOTE: the env->pc value visible here will not be 752 * correct, but the value visible to the exception handler 753 * (riscv_cpu_do_interrupt) is correct */ 754 MemTxResult res; 755 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 756 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK; 757 bool use_background = false; 758 hwaddr ppn; 759 RISCVCPU *cpu = env_archcpu(env); 760 int napot_bits = 0; 761 target_ulong napot_mask; 762 763 /* 764 * Check if we should use the background registers for the two 765 * stage translation. We don't need to check if we actually need 766 * two stage translation as that happened before this function 767 * was called. Background registers will be used if the guest has 768 * forced a two stage translation to be on (in HS or M mode). 769 */ 770 if (!riscv_cpu_virt_enabled(env) && two_stage) { 771 use_background = true; 772 } 773 774 /* MPRV does not affect the virtual-machine load/store 775 instructions, HLV, HLVX, and HSV. */ 776 if (riscv_cpu_two_stage_lookup(mmu_idx)) { 777 mode = get_field(env->hstatus, HSTATUS_SPVP); 778 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) { 779 if (get_field(env->mstatus, MSTATUS_MPRV)) { 780 mode = get_field(env->mstatus, MSTATUS_MPP); 781 } 782 } 783 784 if (first_stage == false) { 785 /* We are in stage 2 translation, this is similar to stage 1. */ 786 /* Stage 2 is always taken as U-mode */ 787 mode = PRV_U; 788 } 789 790 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) { 791 *physical = addr; 792 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 793 return TRANSLATE_SUCCESS; 794 } 795 796 *prot = 0; 797 798 hwaddr base; 799 int levels, ptidxbits, ptesize, vm, sum, mxr, widened; 800 801 if (first_stage == true) { 802 mxr = get_field(env->mstatus, MSTATUS_MXR); 803 } else { 804 mxr = get_field(env->vsstatus, MSTATUS_MXR); 805 } 806 807 if (first_stage == true) { 808 if (use_background) { 809 if (riscv_cpu_mxl(env) == MXL_RV32) { 810 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT; 811 vm = get_field(env->vsatp, SATP32_MODE); 812 } else { 813 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT; 814 vm = get_field(env->vsatp, SATP64_MODE); 815 } 816 } else { 817 if (riscv_cpu_mxl(env) == MXL_RV32) { 818 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT; 819 vm = get_field(env->satp, SATP32_MODE); 820 } else { 821 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT; 822 vm = get_field(env->satp, SATP64_MODE); 823 } 824 } 825 widened = 0; 826 } else { 827 if (riscv_cpu_mxl(env) == MXL_RV32) { 828 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT; 829 vm = get_field(env->hgatp, SATP32_MODE); 830 } else { 831 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT; 832 vm = get_field(env->hgatp, SATP64_MODE); 833 } 834 widened = 2; 835 } 836 /* status.SUM will be ignored if execute on background */ 837 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug; 838 switch (vm) { 839 case VM_1_10_SV32: 840 levels = 2; ptidxbits = 10; ptesize = 4; break; 841 case VM_1_10_SV39: 842 levels = 3; ptidxbits = 9; ptesize = 8; break; 843 case VM_1_10_SV48: 844 levels = 4; ptidxbits = 9; ptesize = 8; break; 845 case VM_1_10_SV57: 846 levels = 5; ptidxbits = 9; ptesize = 8; break; 847 case VM_1_10_MBARE: 848 *physical = addr; 849 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 850 return TRANSLATE_SUCCESS; 851 default: 852 g_assert_not_reached(); 853 } 854 855 CPUState *cs = env_cpu(env); 856 int va_bits = PGSHIFT + levels * ptidxbits + widened; 857 target_ulong mask, masked_msbs; 858 859 if (TARGET_LONG_BITS > (va_bits - 1)) { 860 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1; 861 } else { 862 mask = 0; 863 } 864 masked_msbs = (addr >> (va_bits - 1)) & mask; 865 866 if (masked_msbs != 0 && masked_msbs != mask) { 867 return TRANSLATE_FAIL; 868 } 869 870 int ptshift = (levels - 1) * ptidxbits; 871 int i; 872 873 #if !TCG_OVERSIZED_GUEST 874 restart: 875 #endif 876 for (i = 0; i < levels; i++, ptshift -= ptidxbits) { 877 target_ulong idx; 878 if (i == 0) { 879 idx = (addr >> (PGSHIFT + ptshift)) & 880 ((1 << (ptidxbits + widened)) - 1); 881 } else { 882 idx = (addr >> (PGSHIFT + ptshift)) & 883 ((1 << ptidxbits) - 1); 884 } 885 886 /* check that physical address of PTE is legal */ 887 hwaddr pte_addr; 888 889 if (two_stage && first_stage) { 890 int vbase_prot; 891 hwaddr vbase; 892 893 /* Do the second stage translation on the base PTE address. */ 894 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, 895 base, NULL, MMU_DATA_LOAD, 896 mmu_idx, false, true, 897 is_debug); 898 899 if (vbase_ret != TRANSLATE_SUCCESS) { 900 if (fault_pte_addr) { 901 *fault_pte_addr = (base + idx * ptesize) >> 2; 902 } 903 return TRANSLATE_G_STAGE_FAIL; 904 } 905 906 pte_addr = vbase + idx * ptesize; 907 } else { 908 pte_addr = base + idx * ptesize; 909 } 910 911 int pmp_prot; 912 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr, 913 sizeof(target_ulong), 914 MMU_DATA_LOAD, PRV_S); 915 if (pmp_ret != TRANSLATE_SUCCESS) { 916 return TRANSLATE_PMP_FAIL; 917 } 918 919 target_ulong pte; 920 if (riscv_cpu_mxl(env) == MXL_RV32) { 921 pte = address_space_ldl(cs->as, pte_addr, attrs, &res); 922 } else { 923 pte = address_space_ldq(cs->as, pte_addr, attrs, &res); 924 } 925 926 if (res != MEMTX_OK) { 927 return TRANSLATE_FAIL; 928 } 929 930 if (riscv_cpu_sxl(env) == MXL_RV32) { 931 ppn = pte >> PTE_PPN_SHIFT; 932 } else if (cpu->cfg.ext_svpbmt || cpu->cfg.ext_svnapot) { 933 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT; 934 } else { 935 ppn = pte >> PTE_PPN_SHIFT; 936 if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) { 937 return TRANSLATE_FAIL; 938 } 939 } 940 941 if (!(pte & PTE_V)) { 942 /* Invalid PTE */ 943 return TRANSLATE_FAIL; 944 } else if (!cpu->cfg.ext_svpbmt && (pte & PTE_PBMT)) { 945 return TRANSLATE_FAIL; 946 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) { 947 /* Inner PTE, continue walking */ 948 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) { 949 return TRANSLATE_FAIL; 950 } 951 base = ppn << PGSHIFT; 952 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) { 953 /* Reserved leaf PTE flags: PTE_W */ 954 return TRANSLATE_FAIL; 955 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) { 956 /* Reserved leaf PTE flags: PTE_W + PTE_X */ 957 return TRANSLATE_FAIL; 958 } else if ((pte & PTE_U) && ((mode != PRV_U) && 959 (!sum || access_type == MMU_INST_FETCH))) { 960 /* User PTE flags when not U mode and mstatus.SUM is not set, 961 or the access type is an instruction fetch */ 962 return TRANSLATE_FAIL; 963 } else if (!(pte & PTE_U) && (mode != PRV_S)) { 964 /* Supervisor PTE flags when not S mode */ 965 return TRANSLATE_FAIL; 966 } else if (ppn & ((1ULL << ptshift) - 1)) { 967 /* Misaligned PPN */ 968 return TRANSLATE_FAIL; 969 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) || 970 ((pte & PTE_X) && mxr))) { 971 /* Read access check failed */ 972 return TRANSLATE_FAIL; 973 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) { 974 /* Write access check failed */ 975 return TRANSLATE_FAIL; 976 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) { 977 /* Fetch access check failed */ 978 return TRANSLATE_FAIL; 979 } else { 980 /* if necessary, set accessed and dirty bits. */ 981 target_ulong updated_pte = pte | PTE_A | 982 (access_type == MMU_DATA_STORE ? PTE_D : 0); 983 984 /* Page table updates need to be atomic with MTTCG enabled */ 985 if (updated_pte != pte) { 986 /* 987 * - if accessed or dirty bits need updating, and the PTE is 988 * in RAM, then we do so atomically with a compare and swap. 989 * - if the PTE is in IO space or ROM, then it can't be updated 990 * and we return TRANSLATE_FAIL. 991 * - if the PTE changed by the time we went to update it, then 992 * it is no longer valid and we must re-walk the page table. 993 */ 994 MemoryRegion *mr; 995 hwaddr l = sizeof(target_ulong), addr1; 996 mr = address_space_translate(cs->as, pte_addr, 997 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED); 998 if (memory_region_is_ram(mr)) { 999 target_ulong *pte_pa = 1000 qemu_map_ram_ptr(mr->ram_block, addr1); 1001 #if TCG_OVERSIZED_GUEST 1002 /* MTTCG is not enabled on oversized TCG guests so 1003 * page table updates do not need to be atomic */ 1004 *pte_pa = pte = updated_pte; 1005 #else 1006 target_ulong old_pte = 1007 qatomic_cmpxchg(pte_pa, pte, updated_pte); 1008 if (old_pte != pte) { 1009 goto restart; 1010 } else { 1011 pte = updated_pte; 1012 } 1013 #endif 1014 } else { 1015 /* misconfigured PTE in ROM (AD bits are not preset) or 1016 * PTE is in IO space and can't be updated atomically */ 1017 return TRANSLATE_FAIL; 1018 } 1019 } 1020 1021 /* for superpage mappings, make a fake leaf PTE for the TLB's 1022 benefit. */ 1023 target_ulong vpn = addr >> PGSHIFT; 1024 1025 if (cpu->cfg.ext_svnapot && (pte & PTE_N)) { 1026 napot_bits = ctzl(ppn) + 1; 1027 if ((i != (levels - 1)) || (napot_bits != 4)) { 1028 return TRANSLATE_FAIL; 1029 } 1030 } 1031 1032 napot_mask = (1 << napot_bits) - 1; 1033 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) | 1034 (vpn & (((target_ulong)1 << ptshift) - 1)) 1035 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK); 1036 1037 /* set permissions on the TLB entry */ 1038 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) { 1039 *prot |= PAGE_READ; 1040 } 1041 if ((pte & PTE_X)) { 1042 *prot |= PAGE_EXEC; 1043 } 1044 /* add write permission on stores or if the page is already dirty, 1045 so that we TLB miss on later writes to update the dirty bit */ 1046 if ((pte & PTE_W) && 1047 (access_type == MMU_DATA_STORE || (pte & PTE_D))) { 1048 *prot |= PAGE_WRITE; 1049 } 1050 return TRANSLATE_SUCCESS; 1051 } 1052 } 1053 return TRANSLATE_FAIL; 1054 } 1055 1056 static void raise_mmu_exception(CPURISCVState *env, target_ulong address, 1057 MMUAccessType access_type, bool pmp_violation, 1058 bool first_stage, bool two_stage) 1059 { 1060 CPUState *cs = env_cpu(env); 1061 int page_fault_exceptions, vm; 1062 uint64_t stap_mode; 1063 1064 if (riscv_cpu_mxl(env) == MXL_RV32) { 1065 stap_mode = SATP32_MODE; 1066 } else { 1067 stap_mode = SATP64_MODE; 1068 } 1069 1070 if (first_stage) { 1071 vm = get_field(env->satp, stap_mode); 1072 } else { 1073 vm = get_field(env->hgatp, stap_mode); 1074 } 1075 1076 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation; 1077 1078 switch (access_type) { 1079 case MMU_INST_FETCH: 1080 if (riscv_cpu_virt_enabled(env) && !first_stage) { 1081 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; 1082 } else { 1083 cs->exception_index = page_fault_exceptions ? 1084 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT; 1085 } 1086 break; 1087 case MMU_DATA_LOAD: 1088 if (two_stage && !first_stage) { 1089 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; 1090 } else { 1091 cs->exception_index = page_fault_exceptions ? 1092 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT; 1093 } 1094 break; 1095 case MMU_DATA_STORE: 1096 if (two_stage && !first_stage) { 1097 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; 1098 } else { 1099 cs->exception_index = page_fault_exceptions ? 1100 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1101 } 1102 break; 1103 default: 1104 g_assert_not_reached(); 1105 } 1106 env->badaddr = address; 1107 env->two_stage_lookup = two_stage; 1108 } 1109 1110 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 1111 { 1112 RISCVCPU *cpu = RISCV_CPU(cs); 1113 CPURISCVState *env = &cpu->env; 1114 hwaddr phys_addr; 1115 int prot; 1116 int mmu_idx = cpu_mmu_index(&cpu->env, false); 1117 1118 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx, 1119 true, riscv_cpu_virt_enabled(env), true)) { 1120 return -1; 1121 } 1122 1123 if (riscv_cpu_virt_enabled(env)) { 1124 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL, 1125 0, mmu_idx, false, true, true)) { 1126 return -1; 1127 } 1128 } 1129 1130 return phys_addr & TARGET_PAGE_MASK; 1131 } 1132 1133 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 1134 vaddr addr, unsigned size, 1135 MMUAccessType access_type, 1136 int mmu_idx, MemTxAttrs attrs, 1137 MemTxResult response, uintptr_t retaddr) 1138 { 1139 RISCVCPU *cpu = RISCV_CPU(cs); 1140 CPURISCVState *env = &cpu->env; 1141 1142 if (access_type == MMU_DATA_STORE) { 1143 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1144 } else if (access_type == MMU_DATA_LOAD) { 1145 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 1146 } else { 1147 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT; 1148 } 1149 1150 env->badaddr = addr; 1151 env->two_stage_lookup = riscv_cpu_virt_enabled(env) || 1152 riscv_cpu_two_stage_lookup(mmu_idx); 1153 cpu_loop_exit_restore(cs, retaddr); 1154 } 1155 1156 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 1157 MMUAccessType access_type, int mmu_idx, 1158 uintptr_t retaddr) 1159 { 1160 RISCVCPU *cpu = RISCV_CPU(cs); 1161 CPURISCVState *env = &cpu->env; 1162 switch (access_type) { 1163 case MMU_INST_FETCH: 1164 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; 1165 break; 1166 case MMU_DATA_LOAD: 1167 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; 1168 break; 1169 case MMU_DATA_STORE: 1170 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; 1171 break; 1172 default: 1173 g_assert_not_reached(); 1174 } 1175 env->badaddr = addr; 1176 env->two_stage_lookup = riscv_cpu_virt_enabled(env) || 1177 riscv_cpu_two_stage_lookup(mmu_idx); 1178 cpu_loop_exit_restore(cs, retaddr); 1179 } 1180 1181 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 1182 MMUAccessType access_type, int mmu_idx, 1183 bool probe, uintptr_t retaddr) 1184 { 1185 RISCVCPU *cpu = RISCV_CPU(cs); 1186 CPURISCVState *env = &cpu->env; 1187 vaddr im_address; 1188 hwaddr pa = 0; 1189 int prot, prot2, prot_pmp; 1190 bool pmp_violation = false; 1191 bool first_stage_error = true; 1192 bool two_stage_lookup = false; 1193 int ret = TRANSLATE_FAIL; 1194 int mode = mmu_idx; 1195 /* default TLB page size */ 1196 target_ulong tlb_size = TARGET_PAGE_SIZE; 1197 1198 env->guest_phys_fault_addr = 0; 1199 1200 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", 1201 __func__, address, access_type, mmu_idx); 1202 1203 /* MPRV does not affect the virtual-machine load/store 1204 instructions, HLV, HLVX, and HSV. */ 1205 if (riscv_cpu_two_stage_lookup(mmu_idx)) { 1206 mode = get_field(env->hstatus, HSTATUS_SPVP); 1207 } else if (mode == PRV_M && access_type != MMU_INST_FETCH && 1208 get_field(env->mstatus, MSTATUS_MPRV)) { 1209 mode = get_field(env->mstatus, MSTATUS_MPP); 1210 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) { 1211 two_stage_lookup = true; 1212 } 1213 } 1214 1215 if (riscv_cpu_virt_enabled(env) || 1216 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) && 1217 access_type != MMU_INST_FETCH)) { 1218 /* Two stage lookup */ 1219 ret = get_physical_address(env, &pa, &prot, address, 1220 &env->guest_phys_fault_addr, access_type, 1221 mmu_idx, true, true, false); 1222 1223 /* 1224 * A G-stage exception may be triggered during two state lookup. 1225 * And the env->guest_phys_fault_addr has already been set in 1226 * get_physical_address(). 1227 */ 1228 if (ret == TRANSLATE_G_STAGE_FAIL) { 1229 first_stage_error = false; 1230 access_type = MMU_DATA_LOAD; 1231 } 1232 1233 qemu_log_mask(CPU_LOG_MMU, 1234 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " 1235 TARGET_FMT_plx " prot %d\n", 1236 __func__, address, ret, pa, prot); 1237 1238 if (ret == TRANSLATE_SUCCESS) { 1239 /* Second stage lookup */ 1240 im_address = pa; 1241 1242 ret = get_physical_address(env, &pa, &prot2, im_address, NULL, 1243 access_type, mmu_idx, false, true, 1244 false); 1245 1246 qemu_log_mask(CPU_LOG_MMU, 1247 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical " 1248 TARGET_FMT_plx " prot %d\n", 1249 __func__, im_address, ret, pa, prot2); 1250 1251 prot &= prot2; 1252 1253 if (ret == TRANSLATE_SUCCESS) { 1254 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, 1255 size, access_type, mode); 1256 1257 qemu_log_mask(CPU_LOG_MMU, 1258 "%s PMP address=" TARGET_FMT_plx " ret %d prot" 1259 " %d tlb_size " TARGET_FMT_lu "\n", 1260 __func__, pa, ret, prot_pmp, tlb_size); 1261 1262 prot &= prot_pmp; 1263 } 1264 1265 if (ret != TRANSLATE_SUCCESS) { 1266 /* 1267 * Guest physical address translation failed, this is a HS 1268 * level exception 1269 */ 1270 first_stage_error = false; 1271 env->guest_phys_fault_addr = (im_address | 1272 (address & 1273 (TARGET_PAGE_SIZE - 1))) >> 2; 1274 } 1275 } 1276 } else { 1277 /* Single stage lookup */ 1278 ret = get_physical_address(env, &pa, &prot, address, NULL, 1279 access_type, mmu_idx, true, false, false); 1280 1281 qemu_log_mask(CPU_LOG_MMU, 1282 "%s address=%" VADDR_PRIx " ret %d physical " 1283 TARGET_FMT_plx " prot %d\n", 1284 __func__, address, ret, pa, prot); 1285 1286 if (ret == TRANSLATE_SUCCESS) { 1287 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa, 1288 size, access_type, mode); 1289 1290 qemu_log_mask(CPU_LOG_MMU, 1291 "%s PMP address=" TARGET_FMT_plx " ret %d prot" 1292 " %d tlb_size " TARGET_FMT_lu "\n", 1293 __func__, pa, ret, prot_pmp, tlb_size); 1294 1295 prot &= prot_pmp; 1296 } 1297 } 1298 1299 if (ret == TRANSLATE_PMP_FAIL) { 1300 pmp_violation = true; 1301 } 1302 1303 if (ret == TRANSLATE_SUCCESS) { 1304 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), 1305 prot, mmu_idx, tlb_size); 1306 return true; 1307 } else if (probe) { 1308 return false; 1309 } else { 1310 raise_mmu_exception(env, address, access_type, pmp_violation, 1311 first_stage_error, 1312 riscv_cpu_virt_enabled(env) || 1313 riscv_cpu_two_stage_lookup(mmu_idx)); 1314 cpu_loop_exit_restore(cs, retaddr); 1315 } 1316 1317 return true; 1318 } 1319 #endif /* !CONFIG_USER_ONLY */ 1320 1321 /* 1322 * Handle Traps 1323 * 1324 * Adapted from Spike's processor_t::take_trap. 1325 * 1326 */ 1327 void riscv_cpu_do_interrupt(CPUState *cs) 1328 { 1329 #if !defined(CONFIG_USER_ONLY) 1330 1331 RISCVCPU *cpu = RISCV_CPU(cs); 1332 CPURISCVState *env = &cpu->env; 1333 bool write_gva = false; 1334 uint64_t s; 1335 1336 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide 1337 * so we mask off the MSB and separate into trap type and cause. 1338 */ 1339 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); 1340 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; 1341 uint64_t deleg = async ? env->mideleg : env->medeleg; 1342 target_ulong tval = 0; 1343 target_ulong htval = 0; 1344 target_ulong mtval2 = 0; 1345 1346 if (cause == RISCV_EXCP_SEMIHOST) { 1347 if (env->priv >= PRV_S) { 1348 env->gpr[xA0] = do_common_semihosting(cs); 1349 env->pc += 4; 1350 return; 1351 } 1352 cause = RISCV_EXCP_BREAKPOINT; 1353 } 1354 1355 if (!async) { 1356 /* set tval to badaddr for traps with address information */ 1357 switch (cause) { 1358 case RISCV_EXCP_INST_GUEST_PAGE_FAULT: 1359 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: 1360 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: 1361 case RISCV_EXCP_INST_ADDR_MIS: 1362 case RISCV_EXCP_INST_ACCESS_FAULT: 1363 case RISCV_EXCP_LOAD_ADDR_MIS: 1364 case RISCV_EXCP_STORE_AMO_ADDR_MIS: 1365 case RISCV_EXCP_LOAD_ACCESS_FAULT: 1366 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: 1367 case RISCV_EXCP_INST_PAGE_FAULT: 1368 case RISCV_EXCP_LOAD_PAGE_FAULT: 1369 case RISCV_EXCP_STORE_PAGE_FAULT: 1370 write_gva = true; 1371 tval = env->badaddr; 1372 break; 1373 case RISCV_EXCP_ILLEGAL_INST: 1374 tval = env->bins; 1375 break; 1376 default: 1377 break; 1378 } 1379 /* ecall is dispatched as one cause so translate based on mode */ 1380 if (cause == RISCV_EXCP_U_ECALL) { 1381 assert(env->priv <= 3); 1382 1383 if (env->priv == PRV_M) { 1384 cause = RISCV_EXCP_M_ECALL; 1385 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) { 1386 cause = RISCV_EXCP_VS_ECALL; 1387 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) { 1388 cause = RISCV_EXCP_S_ECALL; 1389 } else if (env->priv == PRV_U) { 1390 cause = RISCV_EXCP_U_ECALL; 1391 } 1392 } 1393 } 1394 1395 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, 1396 riscv_cpu_get_trap_name(cause, async)); 1397 1398 qemu_log_mask(CPU_LOG_INT, 1399 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", " 1400 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n", 1401 __func__, env->mhartid, async, cause, env->pc, tval, 1402 riscv_cpu_get_trap_name(cause, async)); 1403 1404 if (env->priv <= PRV_S && 1405 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) { 1406 /* handle the trap in S-mode */ 1407 if (riscv_has_ext(env, RVH)) { 1408 uint64_t hdeleg = async ? env->hideleg : env->hedeleg; 1409 1410 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) { 1411 /* Trap to VS mode */ 1412 /* 1413 * See if we need to adjust cause. Yes if its VS mode interrupt 1414 * no if hypervisor has delegated one of hs mode's interrupt 1415 */ 1416 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || 1417 cause == IRQ_VS_EXT) { 1418 cause = cause - 1; 1419 } 1420 write_gva = false; 1421 } else if (riscv_cpu_virt_enabled(env)) { 1422 /* Trap into HS mode, from virt */ 1423 riscv_cpu_swap_hypervisor_regs(env); 1424 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, 1425 env->priv); 1426 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, 1427 riscv_cpu_virt_enabled(env)); 1428 1429 1430 htval = env->guest_phys_fault_addr; 1431 1432 riscv_cpu_set_virt_enabled(env, 0); 1433 } else { 1434 /* Trap into HS mode */ 1435 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false); 1436 htval = env->guest_phys_fault_addr; 1437 write_gva = false; 1438 } 1439 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva); 1440 } 1441 1442 s = env->mstatus; 1443 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); 1444 s = set_field(s, MSTATUS_SPP, env->priv); 1445 s = set_field(s, MSTATUS_SIE, 0); 1446 env->mstatus = s; 1447 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1)); 1448 env->sepc = env->pc; 1449 env->stval = tval; 1450 env->htval = htval; 1451 env->pc = (env->stvec >> 2 << 2) + 1452 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); 1453 riscv_cpu_set_mode(env, PRV_S); 1454 } else { 1455 /* handle the trap in M-mode */ 1456 if (riscv_has_ext(env, RVH)) { 1457 if (riscv_cpu_virt_enabled(env)) { 1458 riscv_cpu_swap_hypervisor_regs(env); 1459 } 1460 env->mstatus = set_field(env->mstatus, MSTATUS_MPV, 1461 riscv_cpu_virt_enabled(env)); 1462 if (riscv_cpu_virt_enabled(env) && tval) { 1463 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); 1464 } 1465 1466 mtval2 = env->guest_phys_fault_addr; 1467 1468 /* Trapping to M mode, virt is disabled */ 1469 riscv_cpu_set_virt_enabled(env, 0); 1470 } 1471 1472 s = env->mstatus; 1473 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); 1474 s = set_field(s, MSTATUS_MPP, env->priv); 1475 s = set_field(s, MSTATUS_MIE, 0); 1476 env->mstatus = s; 1477 env->mcause = cause | ~(((target_ulong)-1) >> async); 1478 env->mepc = env->pc; 1479 env->mtval = tval; 1480 env->mtval2 = mtval2; 1481 env->pc = (env->mtvec >> 2 << 2) + 1482 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); 1483 riscv_cpu_set_mode(env, PRV_M); 1484 } 1485 1486 /* NOTE: it is not necessary to yield load reservations here. It is only 1487 * necessary for an SC from "another hart" to cause a load reservation 1488 * to be yielded. Refer to the memory consistency model section of the 1489 * RISC-V ISA Specification. 1490 */ 1491 1492 env->two_stage_lookup = false; 1493 #endif 1494 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */ 1495 } 1496