1 /* 2 * PMU emulation helpers for TCG IBM POWER chips 3 * 4 * Copyright IBM Corp. 2021 5 * 6 * Authors: 7 * Daniel Henrique Barboza <danielhb413@gmail.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "cpu.h" 15 #include "helper_regs.h" 16 #include "exec/exec-all.h" 17 #include "exec/helper-proto.h" 18 #include "qemu/error-report.h" 19 #include "qemu/main-loop.h" 20 #include "hw/ppc/ppc.h" 21 #include "power8-pmu.h" 22 23 #if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) 24 25 static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn) 26 { 27 if (sprn == SPR_POWER_PMC1) { 28 return env->spr[SPR_POWER_MMCR0] & MMCR0_PMC1CE; 29 } 30 31 return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE; 32 } 33 34 /* 35 * Called after MMCR0 or MMCR1 changes to update pmc_ins_cnt and pmc_cyc_cnt. 36 * hflags must subsequently be updated. 37 */ 38 static void pmu_update_summaries(CPUPPCState *env) 39 { 40 target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0]; 41 target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1]; 42 int ins_cnt = 0; 43 int cyc_cnt = 0; 44 45 if (mmcr0 & MMCR0_FC) { 46 goto out; 47 } 48 49 if (!(mmcr0 & MMCR0_FC14) && mmcr1 != 0) { 50 target_ulong sel; 51 52 sel = extract64(mmcr1, MMCR1_PMC1EVT_EXTR, MMCR1_EVT_SIZE); 53 switch (sel) { 54 case 0x02: 55 case 0xfe: 56 ins_cnt |= 1 << 1; 57 break; 58 case 0x1e: 59 case 0xf0: 60 cyc_cnt |= 1 << 1; 61 break; 62 } 63 64 sel = extract64(mmcr1, MMCR1_PMC2EVT_EXTR, MMCR1_EVT_SIZE); 65 ins_cnt |= (sel == 0x02) << 2; 66 cyc_cnt |= (sel == 0x1e) << 2; 67 68 sel = extract64(mmcr1, MMCR1_PMC3EVT_EXTR, MMCR1_EVT_SIZE); 69 ins_cnt |= (sel == 0x02) << 3; 70 cyc_cnt |= (sel == 0x1e) << 3; 71 72 sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE); 73 ins_cnt |= ((sel == 0xfa) || (sel == 0x2)) << 4; 74 cyc_cnt |= (sel == 0x1e) << 4; 75 } 76 77 ins_cnt |= !(mmcr0 & MMCR0_FC56) << 5; 78 cyc_cnt |= !(mmcr0 & MMCR0_FC56) << 6; 79 80 out: 81 env->pmc_ins_cnt = ins_cnt; 82 env->pmc_cyc_cnt = cyc_cnt; 83 } 84 85 void pmu_mmcr01_updated(CPUPPCState *env) 86 { 87 PowerPCCPU *cpu = env_archcpu(env); 88 89 pmu_update_summaries(env); 90 hreg_update_pmu_hflags(env); 91 92 if (env->spr[SPR_POWER_MMCR0] & MMCR0_PMAO) { 93 ppc_set_irq(cpu, PPC_INTERRUPT_PERFM, 1); 94 } else { 95 ppc_set_irq(cpu, PPC_INTERRUPT_PERFM, 0); 96 } 97 98 /* 99 * Should this update overflow timers (if mmcr0 is updated) so they 100 * get set in cpu_post_load? 101 */ 102 } 103 104 static bool pmu_increment_insns(CPUPPCState *env, uint32_t num_insns) 105 { 106 target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0]; 107 unsigned ins_cnt = env->pmc_ins_cnt; 108 bool overflow_triggered = false; 109 target_ulong tmp; 110 111 if (ins_cnt & (1 << 1)) { 112 tmp = env->spr[SPR_POWER_PMC1]; 113 tmp += num_insns; 114 if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMC1CE)) { 115 tmp = PMC_COUNTER_NEGATIVE_VAL; 116 overflow_triggered = true; 117 } 118 env->spr[SPR_POWER_PMC1] = tmp; 119 } 120 121 if (ins_cnt & (1 << 2)) { 122 tmp = env->spr[SPR_POWER_PMC2]; 123 tmp += num_insns; 124 if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) { 125 tmp = PMC_COUNTER_NEGATIVE_VAL; 126 overflow_triggered = true; 127 } 128 env->spr[SPR_POWER_PMC2] = tmp; 129 } 130 131 if (ins_cnt & (1 << 3)) { 132 tmp = env->spr[SPR_POWER_PMC3]; 133 tmp += num_insns; 134 if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) { 135 tmp = PMC_COUNTER_NEGATIVE_VAL; 136 overflow_triggered = true; 137 } 138 env->spr[SPR_POWER_PMC3] = tmp; 139 } 140 141 if (ins_cnt & (1 << 4)) { 142 target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1]; 143 int sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE); 144 if (sel == 0x02 || (env->spr[SPR_CTRL] & CTRL_RUN)) { 145 tmp = env->spr[SPR_POWER_PMC4]; 146 tmp += num_insns; 147 if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) { 148 tmp = PMC_COUNTER_NEGATIVE_VAL; 149 overflow_triggered = true; 150 } 151 env->spr[SPR_POWER_PMC4] = tmp; 152 } 153 } 154 155 if (ins_cnt & (1 << 5)) { 156 tmp = env->spr[SPR_POWER_PMC5]; 157 tmp += num_insns; 158 if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) { 159 tmp = PMC_COUNTER_NEGATIVE_VAL; 160 overflow_triggered = true; 161 } 162 env->spr[SPR_POWER_PMC5] = tmp; 163 } 164 165 return overflow_triggered; 166 } 167 168 static void pmu_update_cycles(CPUPPCState *env) 169 { 170 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 171 uint64_t time_delta = now - env->pmu_base_time; 172 int sprn, cyc_cnt = env->pmc_cyc_cnt; 173 174 for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) { 175 if (cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) { 176 /* 177 * The pseries and powernv clock runs at 1Ghz, meaning 178 * that 1 nanosec equals 1 cycle. 179 */ 180 env->spr[sprn] += time_delta; 181 } 182 } 183 184 /* Update base_time for future calculations */ 185 env->pmu_base_time = now; 186 } 187 188 /* 189 * Helper function to retrieve the cycle overflow timer of the 190 * 'sprn' counter. 191 */ 192 static QEMUTimer *get_cyc_overflow_timer(CPUPPCState *env, int sprn) 193 { 194 return env->pmu_cyc_overflow_timers[sprn - SPR_POWER_PMC1]; 195 } 196 197 static void pmc_update_overflow_timer(CPUPPCState *env, int sprn) 198 { 199 QEMUTimer *pmc_overflow_timer = get_cyc_overflow_timer(env, sprn); 200 int64_t timeout; 201 202 /* 203 * PMC5 does not have an overflow timer and this pointer 204 * will be NULL. 205 */ 206 if (!pmc_overflow_timer) { 207 return; 208 } 209 210 if (!(env->pmc_cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) || 211 !pmc_has_overflow_enabled(env, sprn)) { 212 /* Overflow timer is not needed for this counter */ 213 timer_del(pmc_overflow_timer); 214 return; 215 } 216 217 if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) { 218 timeout = 0; 219 } else { 220 timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn]; 221 } 222 223 /* 224 * Use timer_mod_anticipate() because an overflow timer might 225 * be already running for this PMC. 226 */ 227 timer_mod_anticipate(pmc_overflow_timer, env->pmu_base_time + timeout); 228 } 229 230 static void pmu_update_overflow_timers(CPUPPCState *env) 231 { 232 int sprn; 233 234 /* 235 * Scroll through all PMCs and start counter overflow timers for 236 * PM_CYC events, if needed. 237 */ 238 for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) { 239 pmc_update_overflow_timer(env, sprn); 240 } 241 } 242 243 static void pmu_delete_timers(CPUPPCState *env) 244 { 245 QEMUTimer *pmc_overflow_timer; 246 int sprn; 247 248 for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) { 249 pmc_overflow_timer = get_cyc_overflow_timer(env, sprn); 250 251 if (pmc_overflow_timer) { 252 timer_del(pmc_overflow_timer); 253 } 254 } 255 } 256 257 void helper_store_mmcr0(CPUPPCState *env, target_ulong value) 258 { 259 pmu_update_cycles(env); 260 261 env->spr[SPR_POWER_MMCR0] = value; 262 263 pmu_mmcr01_updated(env); 264 265 /* Update cycle overflow timers with the current MMCR0 state */ 266 pmu_update_overflow_timers(env); 267 } 268 269 void helper_store_mmcr1(CPUPPCState *env, uint64_t value) 270 { 271 pmu_update_cycles(env); 272 273 env->spr[SPR_POWER_MMCR1] = value; 274 275 pmu_mmcr01_updated(env); 276 } 277 278 target_ulong helper_read_pmc(CPUPPCState *env, uint32_t sprn) 279 { 280 pmu_update_cycles(env); 281 282 return env->spr[sprn]; 283 } 284 285 void helper_store_pmc(CPUPPCState *env, uint32_t sprn, uint64_t value) 286 { 287 pmu_update_cycles(env); 288 289 env->spr[sprn] = (uint32_t)value; 290 291 pmc_update_overflow_timer(env, sprn); 292 } 293 294 static void perfm_alert(PowerPCCPU *cpu) 295 { 296 CPUPPCState *env = &cpu->env; 297 298 pmu_update_cycles(env); 299 300 if (env->spr[SPR_POWER_MMCR0] & MMCR0_FCECE) { 301 env->spr[SPR_POWER_MMCR0] |= MMCR0_FC; 302 303 /* Changing MMCR0_FC requires summaries and hflags update */ 304 pmu_mmcr01_updated(env); 305 306 /* 307 * Delete all pending timers if we need to freeze 308 * the PMC. We'll restart them when the PMC starts 309 * running again. 310 */ 311 pmu_delete_timers(env); 312 } 313 314 if (env->spr[SPR_POWER_MMCR0] & MMCR0_PMAE) { 315 /* These MMCR0 bits do not require summaries or hflags update. */ 316 env->spr[SPR_POWER_MMCR0] &= ~MMCR0_PMAE; 317 env->spr[SPR_POWER_MMCR0] |= MMCR0_PMAO; 318 ppc_set_irq(cpu, PPC_INTERRUPT_PERFM, 1); 319 } 320 321 raise_ebb_perfm_exception(env); 322 } 323 324 void helper_handle_pmc5_overflow(CPUPPCState *env) 325 { 326 env->spr[SPR_POWER_PMC5] = PMC_COUNTER_NEGATIVE_VAL; 327 perfm_alert(env_archcpu(env)); 328 } 329 330 /* This helper assumes that the PMC is running. */ 331 void helper_insns_inc(CPUPPCState *env, uint32_t num_insns) 332 { 333 bool overflow_triggered; 334 335 overflow_triggered = pmu_increment_insns(env, num_insns); 336 if (overflow_triggered) { 337 perfm_alert(env_archcpu(env)); 338 } 339 } 340 341 static void cpu_ppc_pmu_timer_cb(void *opaque) 342 { 343 PowerPCCPU *cpu = opaque; 344 345 perfm_alert(cpu); 346 } 347 348 void cpu_ppc_pmu_init(CPUPPCState *env) 349 { 350 PowerPCCPU *cpu = env_archcpu(env); 351 int i, sprn; 352 353 for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) { 354 if (sprn == SPR_POWER_PMC5) { 355 continue; 356 } 357 358 i = sprn - SPR_POWER_PMC1; 359 360 env->pmu_cyc_overflow_timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL, 361 &cpu_ppc_pmu_timer_cb, 362 cpu); 363 } 364 } 365 #endif /* defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) */ 366