1 /* 2 * PMU emulation helpers for TCG IBM POWER chips 3 * 4 * Copyright IBM Corp. 2021 5 * 6 * Authors: 7 * Daniel Henrique Barboza <danielhb413@gmail.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "cpu.h" 15 #include "helper_regs.h" 16 #include "exec/exec-all.h" 17 #include "exec/helper-proto.h" 18 #include "qemu/error-report.h" 19 #include "qemu/main-loop.h" 20 #include "hw/ppc/ppc.h" 21 #include "power8-pmu.h" 22 23 #if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) 24 25 static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn) 26 { 27 if (sprn == SPR_POWER_PMC1) { 28 return env->spr[SPR_POWER_MMCR0] & MMCR0_PMC1CE; 29 } 30 31 return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE; 32 } 33 34 void pmu_update_summaries(CPUPPCState *env) 35 { 36 target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0]; 37 target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1]; 38 int ins_cnt = 0; 39 int cyc_cnt = 0; 40 41 if (mmcr0 & MMCR0_FC) { 42 goto hflags_calc; 43 } 44 45 if (!(mmcr0 & MMCR0_FC14) && mmcr1 != 0) { 46 target_ulong sel; 47 48 sel = extract64(mmcr1, MMCR1_PMC1EVT_EXTR, MMCR1_EVT_SIZE); 49 switch (sel) { 50 case 0x02: 51 case 0xfe: 52 ins_cnt |= 1 << 1; 53 break; 54 case 0x1e: 55 case 0xf0: 56 cyc_cnt |= 1 << 1; 57 break; 58 } 59 60 sel = extract64(mmcr1, MMCR1_PMC2EVT_EXTR, MMCR1_EVT_SIZE); 61 ins_cnt |= (sel == 0x02) << 2; 62 cyc_cnt |= (sel == 0x1e) << 2; 63 64 sel = extract64(mmcr1, MMCR1_PMC3EVT_EXTR, MMCR1_EVT_SIZE); 65 ins_cnt |= (sel == 0x02) << 3; 66 cyc_cnt |= (sel == 0x1e) << 3; 67 68 sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE); 69 ins_cnt |= ((sel == 0xfa) || (sel == 0x2)) << 4; 70 cyc_cnt |= (sel == 0x1e) << 4; 71 } 72 73 ins_cnt |= !(mmcr0 & MMCR0_FC56) << 5; 74 cyc_cnt |= !(mmcr0 & MMCR0_FC56) << 6; 75 76 hflags_calc: 77 env->pmc_ins_cnt = ins_cnt; 78 env->pmc_cyc_cnt = cyc_cnt; 79 env->hflags = deposit32(env->hflags, HFLAGS_INSN_CNT, 1, ins_cnt != 0); 80 } 81 82 static bool pmu_increment_insns(CPUPPCState *env, uint32_t num_insns) 83 { 84 target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0]; 85 unsigned ins_cnt = env->pmc_ins_cnt; 86 bool overflow_triggered = false; 87 target_ulong tmp; 88 89 if (ins_cnt & (1 << 1)) { 90 tmp = env->spr[SPR_POWER_PMC1]; 91 tmp += num_insns; 92 if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMC1CE)) { 93 tmp = PMC_COUNTER_NEGATIVE_VAL; 94 overflow_triggered = true; 95 } 96 env->spr[SPR_POWER_PMC1] = tmp; 97 } 98 99 if (ins_cnt & (1 << 2)) { 100 tmp = env->spr[SPR_POWER_PMC2]; 101 tmp += num_insns; 102 if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) { 103 tmp = PMC_COUNTER_NEGATIVE_VAL; 104 overflow_triggered = true; 105 } 106 env->spr[SPR_POWER_PMC2] = tmp; 107 } 108 109 if (ins_cnt & (1 << 3)) { 110 tmp = env->spr[SPR_POWER_PMC3]; 111 tmp += num_insns; 112 if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) { 113 tmp = PMC_COUNTER_NEGATIVE_VAL; 114 overflow_triggered = true; 115 } 116 env->spr[SPR_POWER_PMC3] = tmp; 117 } 118 119 if (ins_cnt & (1 << 4)) { 120 target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1]; 121 int sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE); 122 if (sel == 0x02 || (env->spr[SPR_CTRL] & CTRL_RUN)) { 123 tmp = env->spr[SPR_POWER_PMC4]; 124 tmp += num_insns; 125 if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) { 126 tmp = PMC_COUNTER_NEGATIVE_VAL; 127 overflow_triggered = true; 128 } 129 env->spr[SPR_POWER_PMC4] = tmp; 130 } 131 } 132 133 if (ins_cnt & (1 << 5)) { 134 tmp = env->spr[SPR_POWER_PMC5]; 135 tmp += num_insns; 136 if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) { 137 tmp = PMC_COUNTER_NEGATIVE_VAL; 138 overflow_triggered = true; 139 } 140 env->spr[SPR_POWER_PMC5] = tmp; 141 } 142 143 return overflow_triggered; 144 } 145 146 static void pmu_update_cycles(CPUPPCState *env) 147 { 148 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 149 uint64_t time_delta = now - env->pmu_base_time; 150 int sprn, cyc_cnt = env->pmc_cyc_cnt; 151 152 for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) { 153 if (cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) { 154 /* 155 * The pseries and powernv clock runs at 1Ghz, meaning 156 * that 1 nanosec equals 1 cycle. 157 */ 158 env->spr[sprn] += time_delta; 159 } 160 } 161 162 /* Update base_time for future calculations */ 163 env->pmu_base_time = now; 164 } 165 166 /* 167 * Helper function to retrieve the cycle overflow timer of the 168 * 'sprn' counter. 169 */ 170 static QEMUTimer *get_cyc_overflow_timer(CPUPPCState *env, int sprn) 171 { 172 return env->pmu_cyc_overflow_timers[sprn - SPR_POWER_PMC1]; 173 } 174 175 static void pmc_update_overflow_timer(CPUPPCState *env, int sprn) 176 { 177 QEMUTimer *pmc_overflow_timer = get_cyc_overflow_timer(env, sprn); 178 int64_t timeout; 179 180 /* 181 * PMC5 does not have an overflow timer and this pointer 182 * will be NULL. 183 */ 184 if (!pmc_overflow_timer) { 185 return; 186 } 187 188 if (!(env->pmc_cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) || 189 !pmc_has_overflow_enabled(env, sprn)) { 190 /* Overflow timer is not needed for this counter */ 191 timer_del(pmc_overflow_timer); 192 return; 193 } 194 195 if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) { 196 timeout = 0; 197 } else { 198 timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn]; 199 } 200 201 /* 202 * Use timer_mod_anticipate() because an overflow timer might 203 * be already running for this PMC. 204 */ 205 timer_mod_anticipate(pmc_overflow_timer, env->pmu_base_time + timeout); 206 } 207 208 static void pmu_update_overflow_timers(CPUPPCState *env) 209 { 210 int sprn; 211 212 /* 213 * Scroll through all PMCs and start counter overflow timers for 214 * PM_CYC events, if needed. 215 */ 216 for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) { 217 pmc_update_overflow_timer(env, sprn); 218 } 219 } 220 221 static void pmu_delete_timers(CPUPPCState *env) 222 { 223 QEMUTimer *pmc_overflow_timer; 224 int sprn; 225 226 for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) { 227 pmc_overflow_timer = get_cyc_overflow_timer(env, sprn); 228 229 if (pmc_overflow_timer) { 230 timer_del(pmc_overflow_timer); 231 } 232 } 233 } 234 235 void helper_store_mmcr0(CPUPPCState *env, target_ulong value) 236 { 237 bool hflags_pmcc0 = (value & MMCR0_PMCC0) != 0; 238 bool hflags_pmcc1 = (value & MMCR0_PMCC1) != 0; 239 240 pmu_update_cycles(env); 241 242 env->spr[SPR_POWER_MMCR0] = value; 243 244 /* MMCR0 writes can change HFLAGS_PMCC[01] and HFLAGS_INSN_CNT */ 245 env->hflags = deposit32(env->hflags, HFLAGS_PMCC0, 1, hflags_pmcc0); 246 env->hflags = deposit32(env->hflags, HFLAGS_PMCC1, 1, hflags_pmcc1); 247 248 pmu_update_summaries(env); 249 250 /* Update cycle overflow timers with the current MMCR0 state */ 251 pmu_update_overflow_timers(env); 252 } 253 254 void helper_store_mmcr1(CPUPPCState *env, uint64_t value) 255 { 256 pmu_update_cycles(env); 257 258 env->spr[SPR_POWER_MMCR1] = value; 259 260 /* MMCR1 writes can change HFLAGS_INSN_CNT */ 261 pmu_update_summaries(env); 262 } 263 264 target_ulong helper_read_pmc(CPUPPCState *env, uint32_t sprn) 265 { 266 pmu_update_cycles(env); 267 268 return env->spr[sprn]; 269 } 270 271 void helper_store_pmc(CPUPPCState *env, uint32_t sprn, uint64_t value) 272 { 273 pmu_update_cycles(env); 274 275 env->spr[sprn] = (uint32_t)value; 276 277 pmc_update_overflow_timer(env, sprn); 278 } 279 280 static void fire_PMC_interrupt(PowerPCCPU *cpu) 281 { 282 CPUPPCState *env = &cpu->env; 283 284 pmu_update_cycles(env); 285 286 if (env->spr[SPR_POWER_MMCR0] & MMCR0_FCECE) { 287 env->spr[SPR_POWER_MMCR0] &= ~MMCR0_FCECE; 288 env->spr[SPR_POWER_MMCR0] |= MMCR0_FC; 289 290 /* Changing MMCR0_FC requires a new HFLAGS_INSN_CNT calc */ 291 pmu_update_summaries(env); 292 293 /* 294 * Delete all pending timers if we need to freeze 295 * the PMC. We'll restart them when the PMC starts 296 * running again. 297 */ 298 pmu_delete_timers(env); 299 } 300 301 if (env->spr[SPR_POWER_MMCR0] & MMCR0_PMAE) { 302 env->spr[SPR_POWER_MMCR0] &= ~MMCR0_PMAE; 303 env->spr[SPR_POWER_MMCR0] |= MMCR0_PMAO; 304 } 305 306 raise_ebb_perfm_exception(env); 307 } 308 309 void helper_handle_pmc5_overflow(CPUPPCState *env) 310 { 311 env->spr[SPR_POWER_PMC5] = PMC_COUNTER_NEGATIVE_VAL; 312 fire_PMC_interrupt(env_archcpu(env)); 313 } 314 315 /* This helper assumes that the PMC is running. */ 316 void helper_insns_inc(CPUPPCState *env, uint32_t num_insns) 317 { 318 bool overflow_triggered; 319 PowerPCCPU *cpu; 320 321 overflow_triggered = pmu_increment_insns(env, num_insns); 322 323 if (overflow_triggered) { 324 cpu = env_archcpu(env); 325 fire_PMC_interrupt(cpu); 326 } 327 } 328 329 static void cpu_ppc_pmu_timer_cb(void *opaque) 330 { 331 PowerPCCPU *cpu = opaque; 332 333 fire_PMC_interrupt(cpu); 334 } 335 336 void cpu_ppc_pmu_init(CPUPPCState *env) 337 { 338 PowerPCCPU *cpu = env_archcpu(env); 339 int i, sprn; 340 341 for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) { 342 if (sprn == SPR_POWER_PMC5) { 343 continue; 344 } 345 346 i = sprn - SPR_POWER_PMC1; 347 348 env->pmu_cyc_overflow_timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL, 349 &cpu_ppc_pmu_timer_cb, 350 cpu); 351 } 352 } 353 #endif /* defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) */ 354