xref: /openbmc/qemu/target/ppc/mmu-radix64.c (revision aa09b3d5)
1 /*
2  *  PowerPC Radix MMU mulation helpers for QEMU.
3  *
4  *  Copyright (c) 2016 Suraj Jitindar Singh, IBM Corporation
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/error-report.h"
24 #include "sysemu/kvm.h"
25 #include "kvm_ppc.h"
26 #include "exec/log.h"
27 #include "internal.h"
28 #include "mmu-radix64.h"
29 #include "mmu-book3s-v3.h"
30 
31 static bool ppc_radix64_get_fully_qualified_addr(const CPUPPCState *env,
32                                                  vaddr eaddr,
33                                                  uint64_t *lpid, uint64_t *pid)
34 {
35     /* When EA(2:11) are nonzero, raise a segment interrupt */
36     if (eaddr & ~R_EADDR_VALID_MASK) {
37         return false;
38     }
39 
40     if (FIELD_EX64(env->msr, MSR, HV)) { /* MSR[HV] -> Hypervisor/bare metal */
41         switch (eaddr & R_EADDR_QUADRANT) {
42         case R_EADDR_QUADRANT0:
43             *lpid = 0;
44             *pid = env->spr[SPR_BOOKS_PID];
45             break;
46         case R_EADDR_QUADRANT1:
47             *lpid = env->spr[SPR_LPIDR];
48             *pid = env->spr[SPR_BOOKS_PID];
49             break;
50         case R_EADDR_QUADRANT2:
51             *lpid = env->spr[SPR_LPIDR];
52             *pid = 0;
53             break;
54         case R_EADDR_QUADRANT3:
55             *lpid = 0;
56             *pid = 0;
57             break;
58         default:
59             g_assert_not_reached();
60         }
61     } else {  /* !MSR[HV] -> Guest */
62         switch (eaddr & R_EADDR_QUADRANT) {
63         case R_EADDR_QUADRANT0: /* Guest application */
64             *lpid = env->spr[SPR_LPIDR];
65             *pid = env->spr[SPR_BOOKS_PID];
66             break;
67         case R_EADDR_QUADRANT1: /* Illegal */
68         case R_EADDR_QUADRANT2:
69             return false;
70         case R_EADDR_QUADRANT3: /* Guest OS */
71             *lpid = env->spr[SPR_LPIDR];
72             *pid = 0; /* pid set to 0 -> addresses guest operating system */
73             break;
74         default:
75             g_assert_not_reached();
76         }
77     }
78 
79     return true;
80 }
81 
82 static void ppc_radix64_raise_segi(PowerPCCPU *cpu, MMUAccessType access_type,
83                                    vaddr eaddr)
84 {
85     CPUState *cs = CPU(cpu);
86     CPUPPCState *env = &cpu->env;
87 
88     switch (access_type) {
89     case MMU_INST_FETCH:
90         /* Instruction Segment Interrupt */
91         cs->exception_index = POWERPC_EXCP_ISEG;
92         break;
93     case MMU_DATA_STORE:
94     case MMU_DATA_LOAD:
95         /* Data Segment Interrupt */
96         cs->exception_index = POWERPC_EXCP_DSEG;
97         env->spr[SPR_DAR] = eaddr;
98         break;
99     default:
100         g_assert_not_reached();
101     }
102     env->error_code = 0;
103 }
104 
105 static inline const char *access_str(MMUAccessType access_type)
106 {
107     return access_type == MMU_DATA_LOAD ? "reading" :
108         (access_type == MMU_DATA_STORE ? "writing" : "execute");
109 }
110 
111 static void ppc_radix64_raise_si(PowerPCCPU *cpu, MMUAccessType access_type,
112                                  vaddr eaddr, uint32_t cause)
113 {
114     CPUState *cs = CPU(cpu);
115     CPUPPCState *env = &cpu->env;
116 
117     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx" cause %08x\n",
118                   __func__, access_str(access_type),
119                   eaddr, cause);
120 
121     switch (access_type) {
122     case MMU_INST_FETCH:
123         /* Instruction Storage Interrupt */
124         cs->exception_index = POWERPC_EXCP_ISI;
125         env->error_code = cause;
126         break;
127     case MMU_DATA_STORE:
128         cause |= DSISR_ISSTORE;
129         /* fall through */
130     case MMU_DATA_LOAD:
131         /* Data Storage Interrupt */
132         cs->exception_index = POWERPC_EXCP_DSI;
133         env->spr[SPR_DSISR] = cause;
134         env->spr[SPR_DAR] = eaddr;
135         env->error_code = 0;
136         break;
137     default:
138         g_assert_not_reached();
139     }
140 }
141 
142 static void ppc_radix64_raise_hsi(PowerPCCPU *cpu, MMUAccessType access_type,
143                                   vaddr eaddr, hwaddr g_raddr, uint32_t cause)
144 {
145     CPUState *cs = CPU(cpu);
146     CPUPPCState *env = &cpu->env;
147 
148     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx" 0x%"
149                   HWADDR_PRIx" cause %08x\n",
150                   __func__, access_str(access_type),
151                   eaddr, g_raddr, cause);
152 
153     switch (access_type) {
154     case MMU_INST_FETCH:
155         /* H Instruction Storage Interrupt */
156         cs->exception_index = POWERPC_EXCP_HISI;
157         env->spr[SPR_ASDR] = g_raddr;
158         env->error_code = cause;
159         break;
160     case MMU_DATA_STORE:
161         cause |= DSISR_ISSTORE;
162         /* fall through */
163     case MMU_DATA_LOAD:
164         /* H Data Storage Interrupt */
165         cs->exception_index = POWERPC_EXCP_HDSI;
166         env->spr[SPR_HDSISR] = cause;
167         env->spr[SPR_HDAR] = eaddr;
168         env->spr[SPR_ASDR] = g_raddr;
169         env->error_code = 0;
170         break;
171     default:
172         g_assert_not_reached();
173     }
174 }
175 
176 static bool ppc_radix64_check_prot(PowerPCCPU *cpu, MMUAccessType access_type,
177                                    uint64_t pte, int *fault_cause, int *prot,
178                                    int mmu_idx, bool partition_scoped)
179 {
180     CPUPPCState *env = &cpu->env;
181     int need_prot;
182 
183     /* Check Page Attributes (pte58:59) */
184     if ((pte & R_PTE_ATT) == R_PTE_ATT_NI_IO && access_type == MMU_INST_FETCH) {
185         /*
186          * Radix PTE entries with the non-idempotent I/O attribute are treated
187          * as guarded storage
188          */
189         *fault_cause |= SRR1_NOEXEC_GUARD;
190         return true;
191     }
192 
193     /* Determine permissions allowed by Encoded Access Authority */
194     if (!partition_scoped && (pte & R_PTE_EAA_PRIV) &&
195         FIELD_EX64(env->msr, MSR, PR)) {
196         *prot = 0;
197     } else if (mmuidx_pr(mmu_idx) || (pte & R_PTE_EAA_PRIV) ||
198                partition_scoped) {
199         *prot = ppc_radix64_get_prot_eaa(pte);
200     } else { /* !MSR_PR && !(pte & R_PTE_EAA_PRIV) && !partition_scoped */
201         *prot = ppc_radix64_get_prot_eaa(pte);
202         *prot &= ppc_radix64_get_prot_amr(cpu); /* Least combined permissions */
203     }
204 
205     /* Check if requested access type is allowed */
206     need_prot = prot_for_access_type(access_type);
207     if (need_prot & ~*prot) { /* Page Protected for that Access */
208         *fault_cause |= access_type == MMU_INST_FETCH ? SRR1_NOEXEC_GUARD :
209                                                         DSISR_PROTFAULT;
210         return true;
211     }
212 
213     return false;
214 }
215 
216 static void ppc_radix64_set_rc(PowerPCCPU *cpu, MMUAccessType access_type,
217                                uint64_t pte, hwaddr pte_addr, int *prot)
218 {
219     CPUState *cs = CPU(cpu);
220     uint64_t npte;
221 
222     npte = pte | R_PTE_R; /* Always set reference bit */
223 
224     if (access_type == MMU_DATA_STORE) { /* Store/Write */
225         npte |= R_PTE_C; /* Set change bit */
226     } else {
227         /*
228          * Treat the page as read-only for now, so that a later write
229          * will pass through this function again to set the C bit.
230          */
231         *prot &= ~PAGE_WRITE;
232     }
233 
234     if (pte ^ npte) { /* If pte has changed then write it back */
235         stq_phys(cs->as, pte_addr, npte);
236     }
237 }
238 
239 static bool ppc_radix64_is_valid_level(int level, int psize, uint64_t nls)
240 {
241     bool ret;
242 
243     /*
244      * Check if this is a valid level, according to POWER9 and POWER10
245      * Processor User's Manuals, sections 4.10.4.1 and 5.10.6.1, respectively:
246      * Supported Radix Tree Configurations and Resulting Page Sizes.
247      *
248      * Note: these checks are specific to POWER9 and POWER10 CPUs. Any future
249      * CPUs that supports a different Radix MMU configuration will need their
250      * own implementation.
251      */
252     switch (level) {
253     case 0:     /* Root Page Dir */
254         ret = psize == 52 && nls == 13;
255         break;
256     case 1:
257     case 2:
258         ret = nls == 9;
259         break;
260     case 3:
261         ret = nls == 9 || nls == 5;
262         break;
263     default:
264         ret = false;
265     }
266 
267     if (unlikely(!ret)) {
268         qemu_log_mask(LOG_GUEST_ERROR, "invalid radix configuration: "
269                       "level %d size %d nls %"PRIu64"\n",
270                       level, psize, nls);
271     }
272     return ret;
273 }
274 
275 static int ppc_radix64_next_level(AddressSpace *as, vaddr eaddr,
276                                   uint64_t *pte_addr, uint64_t *nls,
277                                   int *psize, uint64_t *pte, int *fault_cause)
278 {
279     uint64_t index, mask, nlb, pde;
280 
281     /* Read page <directory/table> entry from guest address space */
282     pde = ldq_phys(as, *pte_addr);
283     if (!(pde & R_PTE_VALID)) {         /* Invalid Entry */
284         *fault_cause |= DSISR_NOPTE;
285         return 1;
286     }
287 
288     *pte = pde;
289     *psize -= *nls;
290     if (!(pde & R_PTE_LEAF)) { /* Prepare for next iteration */
291         *nls = pde & R_PDE_NLS;
292         index = eaddr >> (*psize - *nls);       /* Shift */
293         index &= ((1UL << *nls) - 1);           /* Mask */
294         nlb = pde & R_PDE_NLB;
295         mask = MAKE_64BIT_MASK(0, *nls + 3);
296 
297         if (nlb & mask) {
298             qemu_log_mask(LOG_GUEST_ERROR,
299                 "%s: misaligned page dir/table base: 0x"TARGET_FMT_lx
300                 " page dir size: 0x"TARGET_FMT_lx"\n",
301                 __func__, nlb, mask + 1);
302             nlb &= ~mask;
303         }
304         *pte_addr = nlb + index * sizeof(pde);
305     }
306     return 0;
307 }
308 
309 static int ppc_radix64_walk_tree(AddressSpace *as, vaddr eaddr,
310                                  uint64_t base_addr, uint64_t nls,
311                                  hwaddr *raddr, int *psize, uint64_t *pte,
312                                  int *fault_cause, hwaddr *pte_addr)
313 {
314     uint64_t index, pde, rpn, mask;
315     int level = 0;
316 
317     index = eaddr >> (*psize - nls);    /* Shift */
318     index &= ((1UL << nls) - 1);        /* Mask */
319     mask = MAKE_64BIT_MASK(0, nls + 3);
320 
321     if (base_addr & mask) {
322         qemu_log_mask(LOG_GUEST_ERROR,
323             "%s: misaligned page dir base: 0x"TARGET_FMT_lx
324             " page dir size: 0x"TARGET_FMT_lx"\n",
325             __func__, base_addr, mask + 1);
326         base_addr &= ~mask;
327     }
328     *pte_addr = base_addr + index * sizeof(pde);
329 
330     do {
331         int ret;
332 
333         if (!ppc_radix64_is_valid_level(level++, *psize, nls)) {
334             *fault_cause |= DSISR_R_BADCONFIG;
335             return 1;
336         }
337 
338         ret = ppc_radix64_next_level(as, eaddr, pte_addr, &nls, psize, &pde,
339                                      fault_cause);
340         if (ret) {
341             return ret;
342         }
343     } while (!(pde & R_PTE_LEAF));
344 
345     *pte = pde;
346     rpn = pde & R_PTE_RPN;
347     mask = (1UL << *psize) - 1;
348 
349     /* Or high bits of rpn and low bits to ea to form whole real addr */
350     *raddr = (rpn & ~mask) | (eaddr & mask);
351     return 0;
352 }
353 
354 static bool validate_pate(PowerPCCPU *cpu, uint64_t lpid, ppc_v3_pate_t *pate)
355 {
356     CPUPPCState *env = &cpu->env;
357 
358     if (!(pate->dw0 & PATE0_HR)) {
359         return false;
360     }
361     if (lpid == 0 && !FIELD_EX64(env->msr, MSR, HV)) {
362         return false;
363     }
364     if ((pate->dw0 & PATE1_R_PRTS) < 5) {
365         return false;
366     }
367     /* More checks ... */
368     return true;
369 }
370 
371 static int ppc_radix64_partition_scoped_xlate(PowerPCCPU *cpu,
372                                               MMUAccessType access_type,
373                                               vaddr eaddr, hwaddr g_raddr,
374                                               ppc_v3_pate_t pate,
375                                               hwaddr *h_raddr, int *h_prot,
376                                               int *h_page_size, bool pde_addr,
377                                               int mmu_idx, bool guest_visible)
378 {
379     int fault_cause = 0;
380     hwaddr pte_addr;
381     uint64_t pte;
382 
383     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx
384                   " mmu_idx %u 0x%"HWADDR_PRIx"\n",
385                   __func__, access_str(access_type),
386                   eaddr, mmu_idx, g_raddr);
387 
388     *h_page_size = PRTBE_R_GET_RTS(pate.dw0);
389     /* No valid pte or access denied due to protection */
390     if (ppc_radix64_walk_tree(CPU(cpu)->as, g_raddr, pate.dw0 & PRTBE_R_RPDB,
391                               pate.dw0 & PRTBE_R_RPDS, h_raddr, h_page_size,
392                               &pte, &fault_cause, &pte_addr) ||
393         ppc_radix64_check_prot(cpu, access_type, pte,
394                                &fault_cause, h_prot, mmu_idx, true)) {
395         if (pde_addr) { /* address being translated was that of a guest pde */
396             fault_cause |= DSISR_PRTABLE_FAULT;
397         }
398         if (guest_visible) {
399             ppc_radix64_raise_hsi(cpu, access_type, eaddr, g_raddr, fault_cause);
400         }
401         return 1;
402     }
403 
404     if (guest_visible) {
405         ppc_radix64_set_rc(cpu, access_type, pte, pte_addr, h_prot);
406     }
407 
408     return 0;
409 }
410 
411 /*
412  * The spapr vhc has a flat partition scope provided by qemu memory when
413  * not nested.
414  *
415  * When running a nested guest, the addressing is 2-level radix on top of the
416  * vhc memory, so it works practically identically to the bare metal 2-level
417  * radix. So that code is selected directly. A cleaner and more flexible nested
418  * hypervisor implementation would allow the vhc to provide a ->nested_xlate()
419  * function but that is not required for the moment.
420  */
421 static bool vhyp_flat_addressing(PowerPCCPU *cpu)
422 {
423     if (cpu->vhyp) {
424         return !vhyp_cpu_in_nested(cpu);
425     }
426     return false;
427 }
428 
429 static int ppc_radix64_process_scoped_xlate(PowerPCCPU *cpu,
430                                             MMUAccessType access_type,
431                                             vaddr eaddr, uint64_t pid,
432                                             ppc_v3_pate_t pate, hwaddr *g_raddr,
433                                             int *g_prot, int *g_page_size,
434                                             int mmu_idx, bool guest_visible)
435 {
436     CPUState *cs = CPU(cpu);
437     CPUPPCState *env = &cpu->env;
438     uint64_t offset, size, prtb, prtbe_addr, prtbe0, base_addr, nls, index, pte;
439     int fault_cause = 0, h_page_size, h_prot;
440     hwaddr h_raddr, pte_addr;
441     int ret;
442 
443     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx
444                   " mmu_idx %u pid %"PRIu64"\n",
445                   __func__, access_str(access_type),
446                   eaddr, mmu_idx, pid);
447 
448     prtb = (pate.dw1 & PATE1_R_PRTB);
449     size = 1ULL << ((pate.dw1 & PATE1_R_PRTS) + 12);
450     if (prtb & (size - 1)) {
451         /* Process Table not properly aligned */
452         if (guest_visible) {
453             ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_R_BADCONFIG);
454         }
455         return 1;
456     }
457 
458     /* Index Process Table by PID to Find Corresponding Process Table Entry */
459     offset = pid * sizeof(struct prtb_entry);
460     if (offset >= size) {
461         /* offset exceeds size of the process table */
462         if (guest_visible) {
463             ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_NOPTE);
464         }
465         return 1;
466     }
467     prtbe_addr = prtb + offset;
468 
469     if (vhyp_flat_addressing(cpu)) {
470         prtbe0 = ldq_phys(cs->as, prtbe_addr);
471     } else {
472         /*
473          * Process table addresses are subject to partition-scoped
474          * translation
475          *
476          * On a Radix host, the partition-scoped page table for LPID=0
477          * is only used to translate the effective addresses of the
478          * process table entries.
479          */
480         ret = ppc_radix64_partition_scoped_xlate(cpu, 0, eaddr, prtbe_addr,
481                                                  pate, &h_raddr, &h_prot,
482                                                  &h_page_size, true,
483             /* mmu_idx is 5 because we're translating from hypervisor scope */
484                                                  5, guest_visible);
485         if (ret) {
486             return ret;
487         }
488         prtbe0 = ldq_phys(cs->as, h_raddr);
489     }
490 
491     /* Walk Radix Tree from Process Table Entry to Convert EA to RA */
492     *g_page_size = PRTBE_R_GET_RTS(prtbe0);
493     base_addr = prtbe0 & PRTBE_R_RPDB;
494     nls = prtbe0 & PRTBE_R_RPDS;
495     if (FIELD_EX64(env->msr, MSR, HV) || vhyp_flat_addressing(cpu)) {
496         /*
497          * Can treat process table addresses as real addresses
498          */
499         ret = ppc_radix64_walk_tree(cs->as, eaddr & R_EADDR_MASK, base_addr,
500                                     nls, g_raddr, g_page_size, &pte,
501                                     &fault_cause, &pte_addr);
502         if (ret) {
503             /* No valid PTE */
504             if (guest_visible) {
505                 ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause);
506             }
507             return ret;
508         }
509     } else {
510         uint64_t rpn, mask;
511         int level = 0;
512 
513         index = (eaddr & R_EADDR_MASK) >> (*g_page_size - nls); /* Shift */
514         index &= ((1UL << nls) - 1);                            /* Mask */
515         pte_addr = base_addr + (index * sizeof(pte));
516 
517         /*
518          * Each process table address is subject to a partition-scoped
519          * translation
520          */
521         do {
522             ret = ppc_radix64_partition_scoped_xlate(cpu, 0, eaddr, pte_addr,
523                                                      pate, &h_raddr, &h_prot,
524                                                      &h_page_size, true,
525             /* mmu_idx is 5 because we're translating from hypervisor scope */
526                                                      5, guest_visible);
527             if (ret) {
528                 return ret;
529             }
530 
531             if (!ppc_radix64_is_valid_level(level++, *g_page_size, nls)) {
532                 fault_cause |= DSISR_R_BADCONFIG;
533                 ret = 1;
534             } else {
535                 ret = ppc_radix64_next_level(cs->as, eaddr & R_EADDR_MASK,
536                                              &h_raddr, &nls, g_page_size,
537                                              &pte, &fault_cause);
538             }
539 
540             if (ret) {
541                 /* No valid pte */
542                 if (guest_visible) {
543                     ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause);
544                 }
545                 return ret;
546             }
547             pte_addr = h_raddr;
548         } while (!(pte & R_PTE_LEAF));
549 
550         rpn = pte & R_PTE_RPN;
551         mask = (1UL << *g_page_size) - 1;
552 
553         /* Or high bits of rpn and low bits to ea to form whole real addr */
554         *g_raddr = (rpn & ~mask) | (eaddr & mask);
555     }
556 
557     if (ppc_radix64_check_prot(cpu, access_type, pte, &fault_cause,
558                                g_prot, mmu_idx, false)) {
559         /* Access denied due to protection */
560         if (guest_visible) {
561             ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause);
562         }
563         return 1;
564     }
565 
566     if (guest_visible) {
567         ppc_radix64_set_rc(cpu, access_type, pte, pte_addr, g_prot);
568     }
569 
570     return 0;
571 }
572 
573 /*
574  * Radix tree translation is a 2 steps translation process:
575  *
576  * 1. Process-scoped translation:   Guest Eff Addr  -> Guest Real Addr
577  * 2. Partition-scoped translation: Guest Real Addr -> Host Real Addr
578  *
579  *                                  MSR[HV]
580  *              +-------------+----------------+---------------+
581  *              |             |     HV = 0     |     HV = 1    |
582  *              +-------------+----------------+---------------+
583  *              | Relocation  |    Partition   |      No       |
584  *              | = Off       |     Scoped     |  Translation  |
585  *  Relocation  +-------------+----------------+---------------+
586  *              | Relocation  |   Partition &  |    Process    |
587  *              | = On        | Process Scoped |    Scoped     |
588  *              +-------------+----------------+---------------+
589  */
590 static bool ppc_radix64_xlate_impl(PowerPCCPU *cpu, vaddr eaddr,
591                                    MMUAccessType access_type, hwaddr *raddr,
592                                    int *psizep, int *protp, int mmu_idx,
593                                    bool guest_visible)
594 {
595     CPUPPCState *env = &cpu->env;
596     uint64_t lpid, pid;
597     ppc_v3_pate_t pate;
598     int psize, prot;
599     hwaddr g_raddr;
600     bool relocation;
601 
602     assert(!(mmuidx_hv(mmu_idx) && cpu->vhyp));
603 
604     relocation = !mmuidx_real(mmu_idx);
605 
606     /* HV or virtual hypervisor Real Mode Access */
607     if (!relocation && (mmuidx_hv(mmu_idx) || vhyp_flat_addressing(cpu))) {
608         /* In real mode top 4 effective addr bits (mostly) ignored */
609         *raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
610 
611         /* In HV mode, add HRMOR if top EA bit is clear */
612         if (mmuidx_hv(mmu_idx) || !env->has_hv_mode) {
613             if (!(eaddr >> 63)) {
614                 *raddr |= env->spr[SPR_HRMOR];
615            }
616         }
617         *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
618         *psizep = TARGET_PAGE_BITS;
619         return true;
620     }
621 
622     /*
623      * Check UPRT (we avoid the check in real mode to deal with
624      * transitional states during kexec.
625      */
626     if (guest_visible && !ppc64_use_proc_tbl(cpu)) {
627         qemu_log_mask(LOG_GUEST_ERROR,
628                       "LPCR:UPRT not set in radix mode ! LPCR="
629                       TARGET_FMT_lx "\n", env->spr[SPR_LPCR]);
630     }
631 
632     /* Virtual Mode Access - get the fully qualified address */
633     if (!ppc_radix64_get_fully_qualified_addr(&cpu->env, eaddr, &lpid, &pid)) {
634         if (guest_visible) {
635             ppc_radix64_raise_segi(cpu, access_type, eaddr);
636         }
637         return false;
638     }
639 
640     /* Get Partition Table */
641     if (cpu->vhyp) {
642         PPCVirtualHypervisorClass *vhc;
643         vhc = PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
644         if (!vhc->get_pate(cpu->vhyp, cpu, lpid, &pate)) {
645             if (guest_visible) {
646                 ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr,
647                                       DSISR_R_BADCONFIG);
648             }
649             return false;
650         }
651     } else {
652         if (!ppc64_v3_get_pate(cpu, lpid, &pate)) {
653             if (guest_visible) {
654                 ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr,
655                                       DSISR_R_BADCONFIG);
656             }
657             return false;
658         }
659         if (!validate_pate(cpu, lpid, &pate)) {
660             if (guest_visible) {
661                 ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr,
662                                       DSISR_R_BADCONFIG);
663             }
664             return false;
665         }
666     }
667 
668     *psizep = INT_MAX;
669     *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
670 
671     /*
672      * Perform process-scoped translation if relocation enabled.
673      *
674      * - Translates an effective address to a host real address in
675      *   quadrants 0 and 3 when HV=1.
676      *
677      * - Translates an effective address to a guest real address.
678      */
679     if (relocation) {
680         int ret = ppc_radix64_process_scoped_xlate(cpu, access_type, eaddr, pid,
681                                                    pate, &g_raddr, &prot,
682                                                    &psize, mmu_idx, guest_visible);
683         if (ret) {
684             return false;
685         }
686         *psizep = MIN(*psizep, psize);
687         *protp &= prot;
688     } else {
689         g_raddr = eaddr & R_EADDR_MASK;
690     }
691 
692     if (vhyp_flat_addressing(cpu)) {
693         *raddr = g_raddr;
694     } else {
695         /*
696          * Perform partition-scoped translation if !HV or HV access to
697          * quadrants 1 or 2. Translates a guest real address to a host
698          * real address.
699          */
700         if (lpid || !mmuidx_hv(mmu_idx)) {
701             int ret;
702 
703             ret = ppc_radix64_partition_scoped_xlate(cpu, access_type, eaddr,
704                                                      g_raddr, pate, raddr,
705                                                      &prot, &psize, false,
706                                                      mmu_idx, guest_visible);
707             if (ret) {
708                 return false;
709             }
710             *psizep = MIN(*psizep, psize);
711             *protp &= prot;
712         } else {
713             *raddr = g_raddr;
714         }
715     }
716 
717     return true;
718 }
719 
720 bool ppc_radix64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
721                        hwaddr *raddrp, int *psizep, int *protp, int mmu_idx,
722                        bool guest_visible)
723 {
724     bool ret = ppc_radix64_xlate_impl(cpu, eaddr, access_type, raddrp,
725                                       psizep, protp, mmu_idx, guest_visible);
726 
727     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx
728                   " mmu_idx %u (prot %c%c%c) -> 0x%"HWADDR_PRIx"\n",
729                   __func__, access_str(access_type),
730                   eaddr, mmu_idx,
731                   *protp & PAGE_READ ? 'r' : '-',
732                   *protp & PAGE_WRITE ? 'w' : '-',
733                   *protp & PAGE_EXEC ? 'x' : '-',
734                   *raddrp);
735 
736     return ret;
737 }
738