1 /* 2 * PowerPC Radix MMU mulation helpers for QEMU. 3 * 4 * Copyright (c) 2016 Suraj Jitindar Singh, IBM Corporation 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "exec/exec-all.h" 23 #include "exec/page-protection.h" 24 #include "qemu/error-report.h" 25 #include "sysemu/kvm.h" 26 #include "kvm_ppc.h" 27 #include "exec/log.h" 28 #include "internal.h" 29 #include "mmu-radix64.h" 30 #include "mmu-book3s-v3.h" 31 #include "mmu-books.h" 32 33 /* Radix Partition Table Entry Fields */ 34 #define PATE1_R_PRTB 0x0FFFFFFFFFFFF000 35 #define PATE1_R_PRTS 0x000000000000001F 36 37 /* Radix Process Table Entry Fields */ 38 #define PRTBE_R_GET_RTS(rts) \ 39 ((((rts >> 58) & 0x18) | ((rts >> 5) & 0x7)) + 31) 40 #define PRTBE_R_RPDB 0x0FFFFFFFFFFFFF00 41 #define PRTBE_R_RPDS 0x000000000000001F 42 43 /* Radix Page Directory/Table Entry Fields */ 44 #define R_PTE_VALID 0x8000000000000000 45 #define R_PTE_LEAF 0x4000000000000000 46 #define R_PTE_SW0 0x2000000000000000 47 #define R_PTE_RPN 0x01FFFFFFFFFFF000 48 #define R_PTE_SW1 0x0000000000000E00 49 #define R_GET_SW(sw) (((sw >> 58) & 0x8) | ((sw >> 9) & 0x7)) 50 #define R_PTE_R 0x0000000000000100 51 #define R_PTE_C 0x0000000000000080 52 #define R_PTE_ATT 0x0000000000000030 53 #define R_PTE_ATT_NORMAL 0x0000000000000000 54 #define R_PTE_ATT_SAO 0x0000000000000010 55 #define R_PTE_ATT_NI_IO 0x0000000000000020 56 #define R_PTE_ATT_TOLERANT_IO 0x0000000000000030 57 #define R_PTE_EAA_PRIV 0x0000000000000008 58 #define R_PTE_EAA_R 0x0000000000000004 59 #define R_PTE_EAA_RW 0x0000000000000002 60 #define R_PTE_EAA_X 0x0000000000000001 61 #define R_PDE_NLB PRTBE_R_RPDB 62 #define R_PDE_NLS PRTBE_R_RPDS 63 64 static bool ppc_radix64_get_fully_qualified_addr(const CPUPPCState *env, 65 vaddr eaddr, 66 uint64_t *lpid, uint64_t *pid) 67 { 68 /* When EA(2:11) are nonzero, raise a segment interrupt */ 69 if (eaddr & ~R_EADDR_VALID_MASK) { 70 return false; 71 } 72 73 if (FIELD_EX64(env->msr, MSR, HV)) { /* MSR[HV] -> Hypervisor/bare metal */ 74 switch (eaddr & R_EADDR_QUADRANT) { 75 case R_EADDR_QUADRANT0: 76 *lpid = 0; 77 *pid = env->spr[SPR_BOOKS_PID]; 78 break; 79 case R_EADDR_QUADRANT1: 80 *lpid = env->spr[SPR_LPIDR]; 81 *pid = env->spr[SPR_BOOKS_PID]; 82 break; 83 case R_EADDR_QUADRANT2: 84 *lpid = env->spr[SPR_LPIDR]; 85 *pid = 0; 86 break; 87 case R_EADDR_QUADRANT3: 88 *lpid = 0; 89 *pid = 0; 90 break; 91 default: 92 g_assert_not_reached(); 93 } 94 } else { /* !MSR[HV] -> Guest */ 95 switch (eaddr & R_EADDR_QUADRANT) { 96 case R_EADDR_QUADRANT0: /* Guest application */ 97 *lpid = env->spr[SPR_LPIDR]; 98 *pid = env->spr[SPR_BOOKS_PID]; 99 break; 100 case R_EADDR_QUADRANT1: /* Illegal */ 101 case R_EADDR_QUADRANT2: 102 return false; 103 case R_EADDR_QUADRANT3: /* Guest OS */ 104 *lpid = env->spr[SPR_LPIDR]; 105 *pid = 0; /* pid set to 0 -> addresses guest operating system */ 106 break; 107 default: 108 g_assert_not_reached(); 109 } 110 } 111 112 return true; 113 } 114 115 static void ppc_radix64_raise_segi(PowerPCCPU *cpu, MMUAccessType access_type, 116 vaddr eaddr) 117 { 118 CPUState *cs = CPU(cpu); 119 CPUPPCState *env = &cpu->env; 120 121 switch (access_type) { 122 case MMU_INST_FETCH: 123 /* Instruction Segment Interrupt */ 124 cs->exception_index = POWERPC_EXCP_ISEG; 125 break; 126 case MMU_DATA_STORE: 127 case MMU_DATA_LOAD: 128 /* Data Segment Interrupt */ 129 cs->exception_index = POWERPC_EXCP_DSEG; 130 env->spr[SPR_DAR] = eaddr; 131 break; 132 default: 133 g_assert_not_reached(); 134 } 135 env->error_code = 0; 136 } 137 138 static inline const char *access_str(MMUAccessType access_type) 139 { 140 return access_type == MMU_DATA_LOAD ? "reading" : 141 (access_type == MMU_DATA_STORE ? "writing" : "execute"); 142 } 143 144 static void ppc_radix64_raise_si(PowerPCCPU *cpu, MMUAccessType access_type, 145 vaddr eaddr, uint32_t cause) 146 { 147 CPUState *cs = CPU(cpu); 148 CPUPPCState *env = &cpu->env; 149 150 qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx" cause %08x\n", 151 __func__, access_str(access_type), 152 eaddr, cause); 153 154 switch (access_type) { 155 case MMU_INST_FETCH: 156 /* Instruction Storage Interrupt */ 157 cs->exception_index = POWERPC_EXCP_ISI; 158 env->error_code = cause; 159 break; 160 case MMU_DATA_STORE: 161 cause |= DSISR_ISSTORE; 162 /* fall through */ 163 case MMU_DATA_LOAD: 164 /* Data Storage Interrupt */ 165 cs->exception_index = POWERPC_EXCP_DSI; 166 env->spr[SPR_DSISR] = cause; 167 env->spr[SPR_DAR] = eaddr; 168 env->error_code = 0; 169 break; 170 default: 171 g_assert_not_reached(); 172 } 173 } 174 175 static void ppc_radix64_raise_hsi(PowerPCCPU *cpu, MMUAccessType access_type, 176 vaddr eaddr, hwaddr g_raddr, uint32_t cause) 177 { 178 CPUState *cs = CPU(cpu); 179 CPUPPCState *env = &cpu->env; 180 181 env->error_code = 0; 182 if (cause & DSISR_PRTABLE_FAULT) { 183 /* HDSI PRTABLE_FAULT gets the originating access type in error_code */ 184 env->error_code = access_type; 185 access_type = MMU_DATA_LOAD; 186 } 187 188 qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx" 0x%" 189 HWADDR_PRIx" cause %08x\n", 190 __func__, access_str(access_type), 191 eaddr, g_raddr, cause); 192 193 switch (access_type) { 194 case MMU_INST_FETCH: 195 /* H Instruction Storage Interrupt */ 196 cs->exception_index = POWERPC_EXCP_HISI; 197 env->spr[SPR_ASDR] = g_raddr; 198 env->error_code = cause; 199 break; 200 case MMU_DATA_STORE: 201 cause |= DSISR_ISSTORE; 202 /* fall through */ 203 case MMU_DATA_LOAD: 204 /* H Data Storage Interrupt */ 205 cs->exception_index = POWERPC_EXCP_HDSI; 206 env->spr[SPR_HDSISR] = cause; 207 env->spr[SPR_HDAR] = eaddr; 208 env->spr[SPR_ASDR] = g_raddr; 209 break; 210 default: 211 g_assert_not_reached(); 212 } 213 } 214 215 static int ppc_radix64_get_prot_eaa(uint64_t pte) 216 { 217 return (pte & R_PTE_EAA_R ? PAGE_READ : 0) | 218 (pte & R_PTE_EAA_RW ? PAGE_READ | PAGE_WRITE : 0) | 219 (pte & R_PTE_EAA_X ? PAGE_EXEC : 0); 220 } 221 222 static int ppc_radix64_get_prot_amr(const PowerPCCPU *cpu) 223 { 224 const CPUPPCState *env = &cpu->env; 225 int amr = env->spr[SPR_AMR] >> 62; /* We only care about key0 AMR63:62 */ 226 int iamr = env->spr[SPR_IAMR] >> 62; /* We only care about key0 IAMR63:62 */ 227 228 return (amr & 0x2 ? 0 : PAGE_WRITE) | /* Access denied if bit is set */ 229 (amr & 0x1 ? 0 : PAGE_READ) | 230 (iamr & 0x1 ? 0 : PAGE_EXEC); 231 } 232 233 static bool ppc_radix64_check_prot(PowerPCCPU *cpu, MMUAccessType access_type, 234 uint64_t pte, int *fault_cause, int *prot, 235 int mmu_idx, bool partition_scoped) 236 { 237 CPUPPCState *env = &cpu->env; 238 239 /* Check Page Attributes (pte58:59) */ 240 if ((pte & R_PTE_ATT) == R_PTE_ATT_NI_IO && access_type == MMU_INST_FETCH) { 241 /* 242 * Radix PTE entries with the non-idempotent I/O attribute are treated 243 * as guarded storage 244 */ 245 *fault_cause |= SRR1_NOEXEC_GUARD; 246 return true; 247 } 248 249 /* Determine permissions allowed by Encoded Access Authority */ 250 if (!partition_scoped && (pte & R_PTE_EAA_PRIV) && 251 FIELD_EX64(env->msr, MSR, PR)) { 252 *prot = 0; 253 } else if (mmuidx_pr(mmu_idx) || (pte & R_PTE_EAA_PRIV) || 254 partition_scoped) { 255 *prot = ppc_radix64_get_prot_eaa(pte); 256 } else { /* !MSR_PR && !(pte & R_PTE_EAA_PRIV) && !partition_scoped */ 257 *prot = ppc_radix64_get_prot_eaa(pte); 258 *prot &= ppc_radix64_get_prot_amr(cpu); /* Least combined permissions */ 259 } 260 261 /* Check if requested access type is allowed */ 262 if (!check_prot_access_type(*prot, access_type)) { 263 /* Page Protected for that Access */ 264 *fault_cause |= access_type == MMU_INST_FETCH ? SRR1_NOEXEC_GUARD : 265 DSISR_PROTFAULT; 266 return true; 267 } 268 269 return false; 270 } 271 272 static int ppc_radix64_check_rc(MMUAccessType access_type, uint64_t pte) 273 { 274 switch (access_type) { 275 case MMU_DATA_STORE: 276 if (!(pte & R_PTE_C)) { 277 break; 278 } 279 /* fall through */ 280 case MMU_INST_FETCH: 281 case MMU_DATA_LOAD: 282 if (!(pte & R_PTE_R)) { 283 break; 284 } 285 286 /* R/C bits are already set appropriately for this access */ 287 return 0; 288 } 289 290 return 1; 291 } 292 293 static bool ppc_radix64_is_valid_level(int level, int psize, uint64_t nls) 294 { 295 bool ret; 296 297 /* 298 * Check if this is a valid level, according to POWER9 and POWER10 299 * Processor User's Manuals, sections 4.10.4.1 and 5.10.6.1, respectively: 300 * Supported Radix Tree Configurations and Resulting Page Sizes. 301 * 302 * Note: these checks are specific to POWER9 and POWER10 CPUs. Any future 303 * CPUs that supports a different Radix MMU configuration will need their 304 * own implementation. 305 */ 306 switch (level) { 307 case 0: /* Root Page Dir */ 308 ret = psize == 52 && nls == 13; 309 break; 310 case 1: 311 case 2: 312 ret = nls == 9; 313 break; 314 case 3: 315 ret = nls == 9 || nls == 5; 316 break; 317 default: 318 ret = false; 319 } 320 321 if (unlikely(!ret)) { 322 qemu_log_mask(LOG_GUEST_ERROR, "invalid radix configuration: " 323 "level %d size %d nls %"PRIu64"\n", 324 level, psize, nls); 325 } 326 return ret; 327 } 328 329 static int ppc_radix64_next_level(AddressSpace *as, vaddr eaddr, 330 uint64_t *pte_addr, uint64_t *nls, 331 int *psize, uint64_t *pte, int *fault_cause) 332 { 333 uint64_t index, mask, nlb, pde; 334 335 /* Read page <directory/table> entry from guest address space */ 336 pde = ldq_phys(as, *pte_addr); 337 if (!(pde & R_PTE_VALID)) { /* Invalid Entry */ 338 *fault_cause |= DSISR_NOPTE; 339 return 1; 340 } 341 342 *pte = pde; 343 *psize -= *nls; 344 if (!(pde & R_PTE_LEAF)) { /* Prepare for next iteration */ 345 *nls = pde & R_PDE_NLS; 346 index = eaddr >> (*psize - *nls); /* Shift */ 347 index &= ((1UL << *nls) - 1); /* Mask */ 348 nlb = pde & R_PDE_NLB; 349 mask = MAKE_64BIT_MASK(0, *nls + 3); 350 351 if (nlb & mask) { 352 qemu_log_mask(LOG_GUEST_ERROR, 353 "%s: misaligned page dir/table base: 0x%" PRIx64 354 " page dir size: 0x%" PRIx64 "\n", 355 __func__, nlb, mask + 1); 356 nlb &= ~mask; 357 } 358 *pte_addr = nlb + index * sizeof(pde); 359 } 360 return 0; 361 } 362 363 static int ppc_radix64_walk_tree(AddressSpace *as, vaddr eaddr, 364 uint64_t base_addr, uint64_t nls, 365 hwaddr *raddr, int *psize, uint64_t *pte, 366 int *fault_cause, hwaddr *pte_addr) 367 { 368 uint64_t index, pde, rpn, mask; 369 int level = 0; 370 371 index = eaddr >> (*psize - nls); /* Shift */ 372 index &= ((1UL << nls) - 1); /* Mask */ 373 mask = MAKE_64BIT_MASK(0, nls + 3); 374 375 if (base_addr & mask) { 376 qemu_log_mask(LOG_GUEST_ERROR, 377 "%s: misaligned page dir base: 0x%" PRIx64 378 " page dir size: 0x%" PRIx64 "\n", 379 __func__, base_addr, mask + 1); 380 base_addr &= ~mask; 381 } 382 *pte_addr = base_addr + index * sizeof(pde); 383 384 do { 385 int ret; 386 387 if (!ppc_radix64_is_valid_level(level++, *psize, nls)) { 388 *fault_cause |= DSISR_R_BADCONFIG; 389 return 1; 390 } 391 392 ret = ppc_radix64_next_level(as, eaddr, pte_addr, &nls, psize, &pde, 393 fault_cause); 394 if (ret) { 395 return ret; 396 } 397 } while (!(pde & R_PTE_LEAF)); 398 399 *pte = pde; 400 rpn = pde & R_PTE_RPN; 401 mask = (1UL << *psize) - 1; 402 403 /* Or high bits of rpn and low bits to ea to form whole real addr */ 404 *raddr = (rpn & ~mask) | (eaddr & mask); 405 return 0; 406 } 407 408 static bool validate_pate(PowerPCCPU *cpu, uint64_t lpid, ppc_v3_pate_t *pate) 409 { 410 CPUPPCState *env = &cpu->env; 411 412 if (!(pate->dw0 & PATE0_HR)) { 413 return false; 414 } 415 if (lpid == 0 && !FIELD_EX64(env->msr, MSR, HV)) { 416 return false; 417 } 418 if ((pate->dw0 & PATE1_R_PRTS) < 5) { 419 return false; 420 } 421 /* More checks ... */ 422 return true; 423 } 424 425 static int ppc_radix64_partition_scoped_xlate(PowerPCCPU *cpu, 426 MMUAccessType orig_access_type, 427 vaddr eaddr, hwaddr g_raddr, 428 ppc_v3_pate_t pate, 429 hwaddr *h_raddr, int *h_prot, 430 int *h_page_size, bool pde_addr, 431 int mmu_idx, uint64_t lpid, 432 bool guest_visible) 433 { 434 MMUAccessType access_type = orig_access_type; 435 int fault_cause = 0; 436 hwaddr pte_addr; 437 uint64_t pte; 438 439 if (pde_addr) { 440 /* 441 * Translation of process-scoped tables/directories is performed as 442 * a read-access. 443 */ 444 access_type = MMU_DATA_LOAD; 445 } 446 447 qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx 448 " mmu_idx %u 0x%"HWADDR_PRIx"\n", 449 __func__, access_str(access_type), 450 eaddr, mmu_idx, g_raddr); 451 452 *h_page_size = PRTBE_R_GET_RTS(pate.dw0); 453 /* No valid pte or access denied due to protection */ 454 if (ppc_radix64_walk_tree(CPU(cpu)->as, g_raddr, pate.dw0 & PRTBE_R_RPDB, 455 pate.dw0 & PRTBE_R_RPDS, h_raddr, h_page_size, 456 &pte, &fault_cause, &pte_addr) || 457 ppc_radix64_check_prot(cpu, access_type, pte, 458 &fault_cause, h_prot, mmu_idx, true)) { 459 if (pde_addr) { /* address being translated was that of a guest pde */ 460 fault_cause |= DSISR_PRTABLE_FAULT; 461 } 462 if (guest_visible) { 463 ppc_radix64_raise_hsi(cpu, orig_access_type, 464 eaddr, g_raddr, fault_cause); 465 } 466 return 1; 467 } 468 469 if (guest_visible) { 470 if (ppc_radix64_check_rc(access_type, pte)) { 471 /* 472 * Per ISA 3.1 Book III, 7.5.3 and 7.5.5, failure to set R/C during 473 * partition-scoped translation when effLPID = 0 results in normal 474 * (non-Hypervisor) Data and Instruction Storage Interrupts 475 * respectively. 476 * 477 * ISA 3.0 is ambiguous about this, but tests on POWER9 hardware 478 * seem to exhibit the same behavior. 479 */ 480 if (lpid > 0) { 481 ppc_radix64_raise_hsi(cpu, access_type, eaddr, g_raddr, 482 DSISR_ATOMIC_RC); 483 } else { 484 ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_ATOMIC_RC); 485 } 486 return 1; 487 } 488 } 489 490 return 0; 491 } 492 493 /* 494 * The spapr vhc has a flat partition scope provided by qemu memory when 495 * not nested. 496 * 497 * When running a nested guest, the addressing is 2-level radix on top of the 498 * vhc memory, so it works practically identically to the bare metal 2-level 499 * radix. So that code is selected directly. A cleaner and more flexible nested 500 * hypervisor implementation would allow the vhc to provide a ->nested_xlate() 501 * function but that is not required for the moment. 502 */ 503 static bool vhyp_flat_addressing(PowerPCCPU *cpu) 504 { 505 if (cpu->vhyp) { 506 return !vhyp_cpu_in_nested(cpu); 507 } 508 return false; 509 } 510 511 static int ppc_radix64_process_scoped_xlate(PowerPCCPU *cpu, 512 MMUAccessType access_type, 513 vaddr eaddr, uint64_t pid, 514 ppc_v3_pate_t pate, hwaddr *g_raddr, 515 int *g_prot, int *g_page_size, 516 int mmu_idx, uint64_t lpid, 517 bool guest_visible) 518 { 519 CPUState *cs = CPU(cpu); 520 CPUPPCState *env = &cpu->env; 521 uint64_t offset, size, prtb, prtbe_addr, prtbe0, base_addr, nls, index, pte; 522 int fault_cause = 0, h_page_size, h_prot; 523 hwaddr h_raddr, pte_addr; 524 int ret; 525 526 qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx 527 " mmu_idx %u pid %"PRIu64"\n", 528 __func__, access_str(access_type), 529 eaddr, mmu_idx, pid); 530 531 prtb = (pate.dw1 & PATE1_R_PRTB); 532 size = 1ULL << ((pate.dw1 & PATE1_R_PRTS) + 12); 533 if (prtb & (size - 1)) { 534 /* Process Table not properly aligned */ 535 if (guest_visible) { 536 ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_R_BADCONFIG); 537 } 538 return 1; 539 } 540 541 /* Index Process Table by PID to Find Corresponding Process Table Entry */ 542 offset = pid * sizeof(struct prtb_entry); 543 if (offset >= size) { 544 /* offset exceeds size of the process table */ 545 if (guest_visible) { 546 ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_NOPTE); 547 } 548 return 1; 549 } 550 prtbe_addr = prtb + offset; 551 552 if (vhyp_flat_addressing(cpu)) { 553 prtbe0 = ldq_phys(cs->as, prtbe_addr); 554 } else { 555 /* 556 * Process table addresses are subject to partition-scoped 557 * translation 558 * 559 * On a Radix host, the partition-scoped page table for LPID=0 560 * is only used to translate the effective addresses of the 561 * process table entries. 562 */ 563 /* mmu_idx is 5 because we're translating from hypervisor scope */ 564 ret = ppc_radix64_partition_scoped_xlate(cpu, access_type, eaddr, 565 prtbe_addr, pate, &h_raddr, 566 &h_prot, &h_page_size, true, 567 5, lpid, guest_visible); 568 if (ret) { 569 return ret; 570 } 571 prtbe0 = ldq_phys(cs->as, h_raddr); 572 } 573 574 /* Walk Radix Tree from Process Table Entry to Convert EA to RA */ 575 *g_page_size = PRTBE_R_GET_RTS(prtbe0); 576 base_addr = prtbe0 & PRTBE_R_RPDB; 577 nls = prtbe0 & PRTBE_R_RPDS; 578 if (FIELD_EX64(env->msr, MSR, HV) || vhyp_flat_addressing(cpu)) { 579 /* 580 * Can treat process table addresses as real addresses 581 */ 582 ret = ppc_radix64_walk_tree(cs->as, eaddr & R_EADDR_MASK, base_addr, 583 nls, g_raddr, g_page_size, &pte, 584 &fault_cause, &pte_addr); 585 if (ret) { 586 /* No valid PTE */ 587 if (guest_visible) { 588 ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause); 589 } 590 return ret; 591 } 592 } else { 593 uint64_t rpn, mask; 594 int level = 0; 595 596 index = (eaddr & R_EADDR_MASK) >> (*g_page_size - nls); /* Shift */ 597 index &= ((1UL << nls) - 1); /* Mask */ 598 pte_addr = base_addr + (index * sizeof(pte)); 599 600 /* 601 * Each process table address is subject to a partition-scoped 602 * translation 603 */ 604 do { 605 /* mmu_idx is 5 because we're translating from hypervisor scope */ 606 ret = ppc_radix64_partition_scoped_xlate(cpu, access_type, eaddr, 607 pte_addr, pate, &h_raddr, 608 &h_prot, &h_page_size, 609 true, 5, lpid, 610 guest_visible); 611 if (ret) { 612 return ret; 613 } 614 615 if (!ppc_radix64_is_valid_level(level++, *g_page_size, nls)) { 616 fault_cause |= DSISR_R_BADCONFIG; 617 ret = 1; 618 } else { 619 ret = ppc_radix64_next_level(cs->as, eaddr & R_EADDR_MASK, 620 &h_raddr, &nls, g_page_size, 621 &pte, &fault_cause); 622 } 623 624 if (ret) { 625 /* No valid pte */ 626 if (guest_visible) { 627 ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause); 628 } 629 return ret; 630 } 631 pte_addr = h_raddr; 632 } while (!(pte & R_PTE_LEAF)); 633 634 rpn = pte & R_PTE_RPN; 635 mask = (1UL << *g_page_size) - 1; 636 637 /* Or high bits of rpn and low bits to ea to form whole real addr */ 638 *g_raddr = (rpn & ~mask) | (eaddr & mask); 639 } 640 641 if (ppc_radix64_check_prot(cpu, access_type, pte, &fault_cause, 642 g_prot, mmu_idx, false)) { 643 /* Access denied due to protection */ 644 if (guest_visible) { 645 ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause); 646 } 647 return 1; 648 } 649 650 if (guest_visible) { 651 /* R/C bits not appropriately set for access */ 652 if (ppc_radix64_check_rc(access_type, pte)) { 653 ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_ATOMIC_RC); 654 return 1; 655 } 656 } 657 658 return 0; 659 } 660 661 /* 662 * Radix tree translation is a 2 steps translation process: 663 * 664 * 1. Process-scoped translation: Guest Eff Addr -> Guest Real Addr 665 * 2. Partition-scoped translation: Guest Real Addr -> Host Real Addr 666 * 667 * MSR[HV] 668 * +-------------+----------------+---------------+ 669 * | | HV = 0 | HV = 1 | 670 * +-------------+----------------+---------------+ 671 * | Relocation | Partition | No | 672 * | = Off | Scoped | Translation | 673 * Relocation +-------------+----------------+---------------+ 674 * | Relocation | Partition & | Process | 675 * | = On | Process Scoped | Scoped | 676 * +-------------+----------------+---------------+ 677 */ 678 static bool ppc_radix64_xlate_impl(PowerPCCPU *cpu, vaddr eaddr, 679 MMUAccessType access_type, hwaddr *raddr, 680 int *psizep, int *protp, int mmu_idx, 681 bool guest_visible) 682 { 683 CPUPPCState *env = &cpu->env; 684 uint64_t lpid, pid; 685 ppc_v3_pate_t pate; 686 int psize, prot; 687 hwaddr g_raddr; 688 bool relocation; 689 690 assert(!(mmuidx_hv(mmu_idx) && cpu->vhyp)); 691 692 relocation = !mmuidx_real(mmu_idx); 693 694 /* HV or virtual hypervisor Real Mode Access */ 695 if (!relocation && (mmuidx_hv(mmu_idx) || vhyp_flat_addressing(cpu))) { 696 /* In real mode top 4 effective addr bits (mostly) ignored */ 697 *raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL; 698 699 /* In HV mode, add HRMOR if top EA bit is clear */ 700 if (mmuidx_hv(mmu_idx) || !env->has_hv_mode) { 701 if (!(eaddr >> 63)) { 702 *raddr |= env->spr[SPR_HRMOR]; 703 } 704 } 705 *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 706 *psizep = TARGET_PAGE_BITS; 707 return true; 708 } 709 710 /* 711 * Check UPRT (we avoid the check in real mode to deal with 712 * transitional states during kexec. 713 */ 714 if (guest_visible && !ppc64_use_proc_tbl(cpu)) { 715 qemu_log_mask(LOG_GUEST_ERROR, 716 "LPCR:UPRT not set in radix mode ! LPCR=" 717 TARGET_FMT_lx "\n", env->spr[SPR_LPCR]); 718 } 719 720 /* Virtual Mode Access - get the fully qualified address */ 721 if (!ppc_radix64_get_fully_qualified_addr(&cpu->env, eaddr, &lpid, &pid)) { 722 if (guest_visible) { 723 ppc_radix64_raise_segi(cpu, access_type, eaddr); 724 } 725 return false; 726 } 727 728 /* Get Partition Table */ 729 if (cpu->vhyp) { 730 if (!cpu->vhyp_class->get_pate(cpu->vhyp, cpu, lpid, &pate)) { 731 if (guest_visible) { 732 ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr, 733 DSISR_R_BADCONFIG); 734 } 735 return false; 736 } 737 } else { 738 if (!ppc64_v3_get_pate(cpu, lpid, &pate)) { 739 if (guest_visible) { 740 ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr, 741 DSISR_R_BADCONFIG); 742 } 743 return false; 744 } 745 if (!validate_pate(cpu, lpid, &pate)) { 746 if (guest_visible) { 747 ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr, 748 DSISR_R_BADCONFIG); 749 } 750 return false; 751 } 752 } 753 754 *psizep = INT_MAX; 755 *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 756 757 /* 758 * Perform process-scoped translation if relocation enabled. 759 * 760 * - Translates an effective address to a host real address in 761 * quadrants 0 and 3 when HV=1. 762 * 763 * - Translates an effective address to a guest real address. 764 */ 765 if (relocation) { 766 int ret = ppc_radix64_process_scoped_xlate(cpu, access_type, eaddr, pid, 767 pate, &g_raddr, &prot, 768 &psize, mmu_idx, lpid, 769 guest_visible); 770 if (ret) { 771 return false; 772 } 773 *psizep = MIN(*psizep, psize); 774 *protp &= prot; 775 } else { 776 g_raddr = eaddr & R_EADDR_MASK; 777 } 778 779 if (vhyp_flat_addressing(cpu)) { 780 *raddr = g_raddr; 781 } else { 782 /* 783 * Perform partition-scoped translation if !HV or HV access to 784 * quadrants 1 or 2. Translates a guest real address to a host 785 * real address. 786 */ 787 if (lpid || !mmuidx_hv(mmu_idx)) { 788 int ret; 789 790 ret = ppc_radix64_partition_scoped_xlate(cpu, access_type, eaddr, 791 g_raddr, pate, raddr, 792 &prot, &psize, false, 793 mmu_idx, lpid, 794 guest_visible); 795 if (ret) { 796 return false; 797 } 798 *psizep = MIN(*psizep, psize); 799 *protp &= prot; 800 } else { 801 *raddr = g_raddr; 802 } 803 } 804 805 return true; 806 } 807 808 bool ppc_radix64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type, 809 hwaddr *raddrp, int *psizep, int *protp, int mmu_idx, 810 bool guest_visible) 811 { 812 bool ret = ppc_radix64_xlate_impl(cpu, eaddr, access_type, raddrp, 813 psizep, protp, mmu_idx, guest_visible); 814 815 qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx 816 " mmu_idx %u (prot %c%c%c) -> 0x%"HWADDR_PRIx"\n", 817 __func__, access_str(access_type), 818 eaddr, mmu_idx, 819 *protp & PAGE_READ ? 'r' : '-', 820 *protp & PAGE_WRITE ? 'w' : '-', 821 *protp & PAGE_EXEC ? 'x' : '-', 822 *raddrp); 823 824 return ret; 825 } 826