xref: /openbmc/qemu/target/ppc/mmu-radix64.c (revision 5242ef88)
1 /*
2  *  PowerPC Radix MMU mulation helpers for QEMU.
3  *
4  *  Copyright (c) 2016 Suraj Jitindar Singh, IBM Corporation
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/error-report.h"
24 #include "sysemu/kvm.h"
25 #include "kvm_ppc.h"
26 #include "exec/log.h"
27 #include "internal.h"
28 #include "mmu-radix64.h"
29 #include "mmu-book3s-v3.h"
30 
31 static bool ppc_radix64_get_fully_qualified_addr(const CPUPPCState *env,
32                                                  vaddr eaddr,
33                                                  uint64_t *lpid, uint64_t *pid)
34 {
35     /* When EA(2:11) are nonzero, raise a segment interrupt */
36     if (eaddr & ~R_EADDR_VALID_MASK) {
37         return false;
38     }
39 
40     if (msr_hv) { /* MSR[HV] -> Hypervisor/bare metal */
41         switch (eaddr & R_EADDR_QUADRANT) {
42         case R_EADDR_QUADRANT0:
43             *lpid = 0;
44             *pid = env->spr[SPR_BOOKS_PID];
45             break;
46         case R_EADDR_QUADRANT1:
47             *lpid = env->spr[SPR_LPIDR];
48             *pid = env->spr[SPR_BOOKS_PID];
49             break;
50         case R_EADDR_QUADRANT2:
51             *lpid = env->spr[SPR_LPIDR];
52             *pid = 0;
53             break;
54         case R_EADDR_QUADRANT3:
55             *lpid = 0;
56             *pid = 0;
57             break;
58         default:
59             g_assert_not_reached();
60         }
61     } else {  /* !MSR[HV] -> Guest */
62         switch (eaddr & R_EADDR_QUADRANT) {
63         case R_EADDR_QUADRANT0: /* Guest application */
64             *lpid = env->spr[SPR_LPIDR];
65             *pid = env->spr[SPR_BOOKS_PID];
66             break;
67         case R_EADDR_QUADRANT1: /* Illegal */
68         case R_EADDR_QUADRANT2:
69             return false;
70         case R_EADDR_QUADRANT3: /* Guest OS */
71             *lpid = env->spr[SPR_LPIDR];
72             *pid = 0; /* pid set to 0 -> addresses guest operating system */
73             break;
74         default:
75             g_assert_not_reached();
76         }
77     }
78 
79     return true;
80 }
81 
82 static void ppc_radix64_raise_segi(PowerPCCPU *cpu, MMUAccessType access_type,
83                                    vaddr eaddr)
84 {
85     CPUState *cs = CPU(cpu);
86     CPUPPCState *env = &cpu->env;
87 
88     switch (access_type) {
89     case MMU_INST_FETCH:
90         /* Instruction Segment Interrupt */
91         cs->exception_index = POWERPC_EXCP_ISEG;
92         break;
93     case MMU_DATA_STORE:
94     case MMU_DATA_LOAD:
95         /* Data Segment Interrupt */
96         cs->exception_index = POWERPC_EXCP_DSEG;
97         env->spr[SPR_DAR] = eaddr;
98         break;
99     default:
100         g_assert_not_reached();
101     }
102     env->error_code = 0;
103 }
104 
105 static inline const char *access_str(MMUAccessType access_type)
106 {
107     return access_type == MMU_DATA_LOAD ? "reading" :
108         (access_type == MMU_DATA_STORE ? "writing" : "execute");
109 }
110 
111 static void ppc_radix64_raise_si(PowerPCCPU *cpu, MMUAccessType access_type,
112                                  vaddr eaddr, uint32_t cause)
113 {
114     CPUState *cs = CPU(cpu);
115     CPUPPCState *env = &cpu->env;
116 
117     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx" cause %08x\n",
118                   __func__, access_str(access_type),
119                   eaddr, cause);
120 
121     switch (access_type) {
122     case MMU_INST_FETCH:
123         /* Instruction Storage Interrupt */
124         cs->exception_index = POWERPC_EXCP_ISI;
125         env->error_code = cause;
126         break;
127     case MMU_DATA_STORE:
128         cause |= DSISR_ISSTORE;
129         /* fall through */
130     case MMU_DATA_LOAD:
131         /* Data Storage Interrupt */
132         cs->exception_index = POWERPC_EXCP_DSI;
133         env->spr[SPR_DSISR] = cause;
134         env->spr[SPR_DAR] = eaddr;
135         env->error_code = 0;
136         break;
137     default:
138         g_assert_not_reached();
139     }
140 }
141 
142 static void ppc_radix64_raise_hsi(PowerPCCPU *cpu, MMUAccessType access_type,
143                                   vaddr eaddr, hwaddr g_raddr, uint32_t cause)
144 {
145     CPUState *cs = CPU(cpu);
146     CPUPPCState *env = &cpu->env;
147 
148     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx" 0x%"
149                   HWADDR_PRIx" cause %08x\n",
150                   __func__, access_str(access_type),
151                   eaddr, g_raddr, cause);
152 
153     switch (access_type) {
154     case MMU_INST_FETCH:
155         /* H Instruction Storage Interrupt */
156         cs->exception_index = POWERPC_EXCP_HISI;
157         env->spr[SPR_ASDR] = g_raddr;
158         env->error_code = cause;
159         break;
160     case MMU_DATA_STORE:
161         cause |= DSISR_ISSTORE;
162         /* fall through */
163     case MMU_DATA_LOAD:
164         /* H Data Storage Interrupt */
165         cs->exception_index = POWERPC_EXCP_HDSI;
166         env->spr[SPR_HDSISR] = cause;
167         env->spr[SPR_HDAR] = eaddr;
168         env->spr[SPR_ASDR] = g_raddr;
169         env->error_code = 0;
170         break;
171     default:
172         g_assert_not_reached();
173     }
174 }
175 
176 static bool ppc_radix64_check_prot(PowerPCCPU *cpu, MMUAccessType access_type,
177                                    uint64_t pte, int *fault_cause, int *prot,
178                                    int mmu_idx, bool partition_scoped)
179 {
180     CPUPPCState *env = &cpu->env;
181     int need_prot;
182 
183     /* Check Page Attributes (pte58:59) */
184     if ((pte & R_PTE_ATT) == R_PTE_ATT_NI_IO && access_type == MMU_INST_FETCH) {
185         /*
186          * Radix PTE entries with the non-idempotent I/O attribute are treated
187          * as guarded storage
188          */
189         *fault_cause |= SRR1_NOEXEC_GUARD;
190         return true;
191     }
192 
193     /* Determine permissions allowed by Encoded Access Authority */
194     if (!partition_scoped && (pte & R_PTE_EAA_PRIV) && msr_pr) {
195         *prot = 0;
196     } else if (mmuidx_pr(mmu_idx) || (pte & R_PTE_EAA_PRIV) ||
197                partition_scoped) {
198         *prot = ppc_radix64_get_prot_eaa(pte);
199     } else { /* !msr_pr && !(pte & R_PTE_EAA_PRIV) && !partition_scoped */
200         *prot = ppc_radix64_get_prot_eaa(pte);
201         *prot &= ppc_radix64_get_prot_amr(cpu); /* Least combined permissions */
202     }
203 
204     /* Check if requested access type is allowed */
205     need_prot = prot_for_access_type(access_type);
206     if (need_prot & ~*prot) { /* Page Protected for that Access */
207         *fault_cause |= access_type == MMU_INST_FETCH ? SRR1_NOEXEC_GUARD :
208                                                         DSISR_PROTFAULT;
209         return true;
210     }
211 
212     return false;
213 }
214 
215 static void ppc_radix64_set_rc(PowerPCCPU *cpu, MMUAccessType access_type,
216                                uint64_t pte, hwaddr pte_addr, int *prot)
217 {
218     CPUState *cs = CPU(cpu);
219     uint64_t npte;
220 
221     npte = pte | R_PTE_R; /* Always set reference bit */
222 
223     if (access_type == MMU_DATA_STORE) { /* Store/Write */
224         npte |= R_PTE_C; /* Set change bit */
225     } else {
226         /*
227          * Treat the page as read-only for now, so that a later write
228          * will pass through this function again to set the C bit.
229          */
230         *prot &= ~PAGE_WRITE;
231     }
232 
233     if (pte ^ npte) { /* If pte has changed then write it back */
234         stq_phys(cs->as, pte_addr, npte);
235     }
236 }
237 
238 static int ppc_radix64_next_level(AddressSpace *as, vaddr eaddr,
239                                   uint64_t *pte_addr, uint64_t *nls,
240                                   int *psize, uint64_t *pte, int *fault_cause)
241 {
242     uint64_t index, pde;
243 
244     if (*nls < 5) { /* Directory maps less than 2**5 entries */
245         *fault_cause |= DSISR_R_BADCONFIG;
246         return 1;
247     }
248 
249     /* Read page <directory/table> entry from guest address space */
250     pde = ldq_phys(as, *pte_addr);
251     if (!(pde & R_PTE_VALID)) {         /* Invalid Entry */
252         *fault_cause |= DSISR_NOPTE;
253         return 1;
254     }
255 
256     *pte = pde;
257     *psize -= *nls;
258     if (!(pde & R_PTE_LEAF)) { /* Prepare for next iteration */
259         *nls = pde & R_PDE_NLS;
260         index = eaddr >> (*psize - *nls);       /* Shift */
261         index &= ((1UL << *nls) - 1);           /* Mask */
262         *pte_addr = (pde & R_PDE_NLB) + (index * sizeof(pde));
263     }
264     return 0;
265 }
266 
267 static int ppc_radix64_walk_tree(AddressSpace *as, vaddr eaddr,
268                                  uint64_t base_addr, uint64_t nls,
269                                  hwaddr *raddr, int *psize, uint64_t *pte,
270                                  int *fault_cause, hwaddr *pte_addr)
271 {
272     uint64_t index, pde, rpn , mask;
273 
274     if (nls < 5) { /* Directory maps less than 2**5 entries */
275         *fault_cause |= DSISR_R_BADCONFIG;
276         return 1;
277     }
278 
279     index = eaddr >> (*psize - nls);    /* Shift */
280     index &= ((1UL << nls) - 1);       /* Mask */
281     *pte_addr = base_addr + (index * sizeof(pde));
282     do {
283         int ret;
284 
285         ret = ppc_radix64_next_level(as, eaddr, pte_addr, &nls, psize, &pde,
286                                      fault_cause);
287         if (ret) {
288             return ret;
289         }
290     } while (!(pde & R_PTE_LEAF));
291 
292     *pte = pde;
293     rpn = pde & R_PTE_RPN;
294     mask = (1UL << *psize) - 1;
295 
296     /* Or high bits of rpn and low bits to ea to form whole real addr */
297     *raddr = (rpn & ~mask) | (eaddr & mask);
298     return 0;
299 }
300 
301 static bool validate_pate(PowerPCCPU *cpu, uint64_t lpid, ppc_v3_pate_t *pate)
302 {
303     CPUPPCState *env = &cpu->env;
304 
305     if (!(pate->dw0 & PATE0_HR)) {
306         return false;
307     }
308     if (lpid == 0 && !msr_hv) {
309         return false;
310     }
311     if ((pate->dw0 & PATE1_R_PRTS) < 5) {
312         return false;
313     }
314     /* More checks ... */
315     return true;
316 }
317 
318 static int ppc_radix64_partition_scoped_xlate(PowerPCCPU *cpu,
319                                               MMUAccessType access_type,
320                                               vaddr eaddr, hwaddr g_raddr,
321                                               ppc_v3_pate_t pate,
322                                               hwaddr *h_raddr, int *h_prot,
323                                               int *h_page_size, bool pde_addr,
324                                               int mmu_idx, bool guest_visible)
325 {
326     int fault_cause = 0;
327     hwaddr pte_addr;
328     uint64_t pte;
329 
330     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx
331                   " mmu_idx %u 0x%"HWADDR_PRIx"\n",
332                   __func__, access_str(access_type),
333                   eaddr, mmu_idx, g_raddr);
334 
335     *h_page_size = PRTBE_R_GET_RTS(pate.dw0);
336     /* No valid pte or access denied due to protection */
337     if (ppc_radix64_walk_tree(CPU(cpu)->as, g_raddr, pate.dw0 & PRTBE_R_RPDB,
338                               pate.dw0 & PRTBE_R_RPDS, h_raddr, h_page_size,
339                               &pte, &fault_cause, &pte_addr) ||
340         ppc_radix64_check_prot(cpu, access_type, pte,
341                                &fault_cause, h_prot, mmu_idx, true)) {
342         if (pde_addr) { /* address being translated was that of a guest pde */
343             fault_cause |= DSISR_PRTABLE_FAULT;
344         }
345         if (guest_visible) {
346             ppc_radix64_raise_hsi(cpu, access_type, eaddr, g_raddr, fault_cause);
347         }
348         return 1;
349     }
350 
351     if (guest_visible) {
352         ppc_radix64_set_rc(cpu, access_type, pte, pte_addr, h_prot);
353     }
354 
355     return 0;
356 }
357 
358 /*
359  * The spapr vhc has a flat partition scope provided by qemu memory when
360  * not nested.
361  *
362  * When running a nested guest, the addressing is 2-level radix on top of the
363  * vhc memory, so it works practically identically to the bare metal 2-level
364  * radix. So that code is selected directly. A cleaner and more flexible nested
365  * hypervisor implementation would allow the vhc to provide a ->nested_xlate()
366  * function but that is not required for the moment.
367  */
368 static bool vhyp_flat_addressing(PowerPCCPU *cpu)
369 {
370     if (cpu->vhyp) {
371         return !vhyp_cpu_in_nested(cpu);
372     }
373     return false;
374 }
375 
376 static int ppc_radix64_process_scoped_xlate(PowerPCCPU *cpu,
377                                             MMUAccessType access_type,
378                                             vaddr eaddr, uint64_t pid,
379                                             ppc_v3_pate_t pate, hwaddr *g_raddr,
380                                             int *g_prot, int *g_page_size,
381                                             int mmu_idx, bool guest_visible)
382 {
383     CPUState *cs = CPU(cpu);
384     CPUPPCState *env = &cpu->env;
385     uint64_t offset, size, prtbe_addr, prtbe0, base_addr, nls, index, pte;
386     int fault_cause = 0, h_page_size, h_prot;
387     hwaddr h_raddr, pte_addr;
388     int ret;
389 
390     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx
391                   " mmu_idx %u pid %"PRIu64"\n",
392                   __func__, access_str(access_type),
393                   eaddr, mmu_idx, pid);
394 
395     /* Index Process Table by PID to Find Corresponding Process Table Entry */
396     offset = pid * sizeof(struct prtb_entry);
397     size = 1ULL << ((pate.dw1 & PATE1_R_PRTS) + 12);
398     if (offset >= size) {
399         /* offset exceeds size of the process table */
400         if (guest_visible) {
401             ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_NOPTE);
402         }
403         return 1;
404     }
405     prtbe_addr = (pate.dw1 & PATE1_R_PRTB) + offset;
406 
407     if (vhyp_flat_addressing(cpu)) {
408         prtbe0 = ldq_phys(cs->as, prtbe_addr);
409     } else {
410         /*
411          * Process table addresses are subject to partition-scoped
412          * translation
413          *
414          * On a Radix host, the partition-scoped page table for LPID=0
415          * is only used to translate the effective addresses of the
416          * process table entries.
417          */
418         ret = ppc_radix64_partition_scoped_xlate(cpu, 0, eaddr, prtbe_addr,
419                                                  pate, &h_raddr, &h_prot,
420                                                  &h_page_size, true,
421             /* mmu_idx is 5 because we're translating from hypervisor scope */
422                                                  5, guest_visible);
423         if (ret) {
424             return ret;
425         }
426         prtbe0 = ldq_phys(cs->as, h_raddr);
427     }
428 
429     /* Walk Radix Tree from Process Table Entry to Convert EA to RA */
430     *g_page_size = PRTBE_R_GET_RTS(prtbe0);
431     base_addr = prtbe0 & PRTBE_R_RPDB;
432     nls = prtbe0 & PRTBE_R_RPDS;
433     if (msr_hv || vhyp_flat_addressing(cpu)) {
434         /*
435          * Can treat process table addresses as real addresses
436          */
437         ret = ppc_radix64_walk_tree(cs->as, eaddr & R_EADDR_MASK, base_addr,
438                                     nls, g_raddr, g_page_size, &pte,
439                                     &fault_cause, &pte_addr);
440         if (ret) {
441             /* No valid PTE */
442             if (guest_visible) {
443                 ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause);
444             }
445             return ret;
446         }
447     } else {
448         uint64_t rpn, mask;
449 
450         index = (eaddr & R_EADDR_MASK) >> (*g_page_size - nls); /* Shift */
451         index &= ((1UL << nls) - 1);                            /* Mask */
452         pte_addr = base_addr + (index * sizeof(pte));
453 
454         /*
455          * Each process table address is subject to a partition-scoped
456          * translation
457          */
458         do {
459             ret = ppc_radix64_partition_scoped_xlate(cpu, 0, eaddr, pte_addr,
460                                                      pate, &h_raddr, &h_prot,
461                                                      &h_page_size, true,
462             /* mmu_idx is 5 because we're translating from hypervisor scope */
463                                                      5, guest_visible);
464             if (ret) {
465                 return ret;
466             }
467 
468             ret = ppc_radix64_next_level(cs->as, eaddr & R_EADDR_MASK, &h_raddr,
469                                          &nls, g_page_size, &pte, &fault_cause);
470             if (ret) {
471                 /* No valid pte */
472                 if (guest_visible) {
473                     ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause);
474                 }
475                 return ret;
476             }
477             pte_addr = h_raddr;
478         } while (!(pte & R_PTE_LEAF));
479 
480         rpn = pte & R_PTE_RPN;
481         mask = (1UL << *g_page_size) - 1;
482 
483         /* Or high bits of rpn and low bits to ea to form whole real addr */
484         *g_raddr = (rpn & ~mask) | (eaddr & mask);
485     }
486 
487     if (ppc_radix64_check_prot(cpu, access_type, pte, &fault_cause,
488                                g_prot, mmu_idx, false)) {
489         /* Access denied due to protection */
490         if (guest_visible) {
491             ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause);
492         }
493         return 1;
494     }
495 
496     if (guest_visible) {
497         ppc_radix64_set_rc(cpu, access_type, pte, pte_addr, g_prot);
498     }
499 
500     return 0;
501 }
502 
503 /*
504  * Radix tree translation is a 2 steps translation process:
505  *
506  * 1. Process-scoped translation:   Guest Eff Addr  -> Guest Real Addr
507  * 2. Partition-scoped translation: Guest Real Addr -> Host Real Addr
508  *
509  *                                  MSR[HV]
510  *              +-------------+----------------+---------------+
511  *              |             |     HV = 0     |     HV = 1    |
512  *              +-------------+----------------+---------------+
513  *              | Relocation  |    Partition   |      No       |
514  *              | = Off       |     Scoped     |  Translation  |
515  *  Relocation  +-------------+----------------+---------------+
516  *              | Relocation  |   Partition &  |    Process    |
517  *              | = On        | Process Scoped |    Scoped     |
518  *              +-------------+----------------+---------------+
519  */
520 static bool ppc_radix64_xlate_impl(PowerPCCPU *cpu, vaddr eaddr,
521                                    MMUAccessType access_type, hwaddr *raddr,
522                                    int *psizep, int *protp, int mmu_idx,
523                                    bool guest_visible)
524 {
525     CPUPPCState *env = &cpu->env;
526     uint64_t lpid, pid;
527     ppc_v3_pate_t pate;
528     int psize, prot;
529     hwaddr g_raddr;
530     bool relocation;
531 
532     assert(!(mmuidx_hv(mmu_idx) && cpu->vhyp));
533 
534     relocation = !mmuidx_real(mmu_idx);
535 
536     /* HV or virtual hypervisor Real Mode Access */
537     if (!relocation && (mmuidx_hv(mmu_idx) || vhyp_flat_addressing(cpu))) {
538         /* In real mode top 4 effective addr bits (mostly) ignored */
539         *raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
540 
541         /* In HV mode, add HRMOR if top EA bit is clear */
542         if (mmuidx_hv(mmu_idx) || !env->has_hv_mode) {
543             if (!(eaddr >> 63)) {
544                 *raddr |= env->spr[SPR_HRMOR];
545            }
546         }
547         *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
548         *psizep = TARGET_PAGE_BITS;
549         return true;
550     }
551 
552     /*
553      * Check UPRT (we avoid the check in real mode to deal with
554      * transitional states during kexec.
555      */
556     if (guest_visible && !ppc64_use_proc_tbl(cpu)) {
557         qemu_log_mask(LOG_GUEST_ERROR,
558                       "LPCR:UPRT not set in radix mode ! LPCR="
559                       TARGET_FMT_lx "\n", env->spr[SPR_LPCR]);
560     }
561 
562     /* Virtual Mode Access - get the fully qualified address */
563     if (!ppc_radix64_get_fully_qualified_addr(&cpu->env, eaddr, &lpid, &pid)) {
564         if (guest_visible) {
565             ppc_radix64_raise_segi(cpu, access_type, eaddr);
566         }
567         return false;
568     }
569 
570     /* Get Process Table */
571     if (cpu->vhyp) {
572         PPCVirtualHypervisorClass *vhc;
573         vhc = PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
574         if (!vhc->get_pate(cpu->vhyp, cpu, lpid, &pate)) {
575             if (guest_visible) {
576                 ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr,
577                                       DSISR_R_BADCONFIG);
578             }
579             return false;
580         }
581     } else {
582         if (!ppc64_v3_get_pate(cpu, lpid, &pate)) {
583             if (guest_visible) {
584                 ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr,
585                                       DSISR_R_BADCONFIG);
586             }
587             return false;
588         }
589         if (!validate_pate(cpu, lpid, &pate)) {
590             if (guest_visible) {
591                 ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr,
592                                       DSISR_R_BADCONFIG);
593             }
594             return false;
595         }
596     }
597 
598     *psizep = INT_MAX;
599     *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
600 
601     /*
602      * Perform process-scoped translation if relocation enabled.
603      *
604      * - Translates an effective address to a host real address in
605      *   quadrants 0 and 3 when HV=1.
606      *
607      * - Translates an effective address to a guest real address.
608      */
609     if (relocation) {
610         int ret = ppc_radix64_process_scoped_xlate(cpu, access_type, eaddr, pid,
611                                                    pate, &g_raddr, &prot,
612                                                    &psize, mmu_idx, guest_visible);
613         if (ret) {
614             return false;
615         }
616         *psizep = MIN(*psizep, psize);
617         *protp &= prot;
618     } else {
619         g_raddr = eaddr & R_EADDR_MASK;
620     }
621 
622     if (vhyp_flat_addressing(cpu)) {
623         *raddr = g_raddr;
624     } else {
625         /*
626          * Perform partition-scoped translation if !HV or HV access to
627          * quadrants 1 or 2. Translates a guest real address to a host
628          * real address.
629          */
630         if (lpid || !mmuidx_hv(mmu_idx)) {
631             int ret;
632 
633             ret = ppc_radix64_partition_scoped_xlate(cpu, access_type, eaddr,
634                                                      g_raddr, pate, raddr,
635                                                      &prot, &psize, false,
636                                                      mmu_idx, guest_visible);
637             if (ret) {
638                 return false;
639             }
640             *psizep = MIN(*psizep, psize);
641             *protp &= prot;
642         } else {
643             *raddr = g_raddr;
644         }
645     }
646 
647     return true;
648 }
649 
650 bool ppc_radix64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
651                        hwaddr *raddrp, int *psizep, int *protp, int mmu_idx,
652                        bool guest_visible)
653 {
654     bool ret = ppc_radix64_xlate_impl(cpu, eaddr, access_type, raddrp,
655                                       psizep, protp, mmu_idx, guest_visible);
656 
657     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx
658                   " mmu_idx %u (prot %c%c%c) -> 0x%"HWADDR_PRIx"\n",
659                   __func__, access_str(access_type),
660                   eaddr, mmu_idx,
661                   *protp & PAGE_READ ? 'r' : '-',
662                   *protp & PAGE_WRITE ? 'w' : '-',
663                   *protp & PAGE_EXEC ? 'x' : '-',
664                   *raddrp);
665 
666     return ret;
667 }
668