xref: /openbmc/qemu/target/ppc/mmu-radix64.c (revision 0d98fbb5)
1 /*
2  *  PowerPC Radix MMU mulation helpers for QEMU.
3  *
4  *  Copyright (c) 2016 Suraj Jitindar Singh, IBM Corporation
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/error-report.h"
24 #include "sysemu/kvm.h"
25 #include "kvm_ppc.h"
26 #include "exec/log.h"
27 #include "internal.h"
28 #include "mmu-radix64.h"
29 #include "mmu-book3s-v3.h"
30 
31 static bool ppc_radix64_get_fully_qualified_addr(const CPUPPCState *env,
32                                                  vaddr eaddr,
33                                                  uint64_t *lpid, uint64_t *pid)
34 {
35     /* When EA(2:11) are nonzero, raise a segment interrupt */
36     if (eaddr & ~R_EADDR_VALID_MASK) {
37         return false;
38     }
39 
40     if (FIELD_EX64(env->msr, MSR, HV)) { /* MSR[HV] -> Hypervisor/bare metal */
41         switch (eaddr & R_EADDR_QUADRANT) {
42         case R_EADDR_QUADRANT0:
43             *lpid = 0;
44             *pid = env->spr[SPR_BOOKS_PID];
45             break;
46         case R_EADDR_QUADRANT1:
47             *lpid = env->spr[SPR_LPIDR];
48             *pid = env->spr[SPR_BOOKS_PID];
49             break;
50         case R_EADDR_QUADRANT2:
51             *lpid = env->spr[SPR_LPIDR];
52             *pid = 0;
53             break;
54         case R_EADDR_QUADRANT3:
55             *lpid = 0;
56             *pid = 0;
57             break;
58         default:
59             g_assert_not_reached();
60         }
61     } else {  /* !MSR[HV] -> Guest */
62         switch (eaddr & R_EADDR_QUADRANT) {
63         case R_EADDR_QUADRANT0: /* Guest application */
64             *lpid = env->spr[SPR_LPIDR];
65             *pid = env->spr[SPR_BOOKS_PID];
66             break;
67         case R_EADDR_QUADRANT1: /* Illegal */
68         case R_EADDR_QUADRANT2:
69             return false;
70         case R_EADDR_QUADRANT3: /* Guest OS */
71             *lpid = env->spr[SPR_LPIDR];
72             *pid = 0; /* pid set to 0 -> addresses guest operating system */
73             break;
74         default:
75             g_assert_not_reached();
76         }
77     }
78 
79     return true;
80 }
81 
82 static void ppc_radix64_raise_segi(PowerPCCPU *cpu, MMUAccessType access_type,
83                                    vaddr eaddr)
84 {
85     CPUState *cs = CPU(cpu);
86     CPUPPCState *env = &cpu->env;
87 
88     switch (access_type) {
89     case MMU_INST_FETCH:
90         /* Instruction Segment Interrupt */
91         cs->exception_index = POWERPC_EXCP_ISEG;
92         break;
93     case MMU_DATA_STORE:
94     case MMU_DATA_LOAD:
95         /* Data Segment Interrupt */
96         cs->exception_index = POWERPC_EXCP_DSEG;
97         env->spr[SPR_DAR] = eaddr;
98         break;
99     default:
100         g_assert_not_reached();
101     }
102     env->error_code = 0;
103 }
104 
105 static inline const char *access_str(MMUAccessType access_type)
106 {
107     return access_type == MMU_DATA_LOAD ? "reading" :
108         (access_type == MMU_DATA_STORE ? "writing" : "execute");
109 }
110 
111 static void ppc_radix64_raise_si(PowerPCCPU *cpu, MMUAccessType access_type,
112                                  vaddr eaddr, uint32_t cause)
113 {
114     CPUState *cs = CPU(cpu);
115     CPUPPCState *env = &cpu->env;
116 
117     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx" cause %08x\n",
118                   __func__, access_str(access_type),
119                   eaddr, cause);
120 
121     switch (access_type) {
122     case MMU_INST_FETCH:
123         /* Instruction Storage Interrupt */
124         cs->exception_index = POWERPC_EXCP_ISI;
125         env->error_code = cause;
126         break;
127     case MMU_DATA_STORE:
128         cause |= DSISR_ISSTORE;
129         /* fall through */
130     case MMU_DATA_LOAD:
131         /* Data Storage Interrupt */
132         cs->exception_index = POWERPC_EXCP_DSI;
133         env->spr[SPR_DSISR] = cause;
134         env->spr[SPR_DAR] = eaddr;
135         env->error_code = 0;
136         break;
137     default:
138         g_assert_not_reached();
139     }
140 }
141 
142 static void ppc_radix64_raise_hsi(PowerPCCPU *cpu, MMUAccessType access_type,
143                                   vaddr eaddr, hwaddr g_raddr, uint32_t cause)
144 {
145     CPUState *cs = CPU(cpu);
146     CPUPPCState *env = &cpu->env;
147 
148     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx" 0x%"
149                   HWADDR_PRIx" cause %08x\n",
150                   __func__, access_str(access_type),
151                   eaddr, g_raddr, cause);
152 
153     switch (access_type) {
154     case MMU_INST_FETCH:
155         /* H Instruction Storage Interrupt */
156         cs->exception_index = POWERPC_EXCP_HISI;
157         env->spr[SPR_ASDR] = g_raddr;
158         env->error_code = cause;
159         break;
160     case MMU_DATA_STORE:
161         cause |= DSISR_ISSTORE;
162         /* fall through */
163     case MMU_DATA_LOAD:
164         /* H Data Storage Interrupt */
165         cs->exception_index = POWERPC_EXCP_HDSI;
166         env->spr[SPR_HDSISR] = cause;
167         env->spr[SPR_HDAR] = eaddr;
168         env->spr[SPR_ASDR] = g_raddr;
169         env->error_code = 0;
170         break;
171     default:
172         g_assert_not_reached();
173     }
174 }
175 
176 static bool ppc_radix64_check_prot(PowerPCCPU *cpu, MMUAccessType access_type,
177                                    uint64_t pte, int *fault_cause, int *prot,
178                                    int mmu_idx, bool partition_scoped)
179 {
180     CPUPPCState *env = &cpu->env;
181     int need_prot;
182 
183     /* Check Page Attributes (pte58:59) */
184     if ((pte & R_PTE_ATT) == R_PTE_ATT_NI_IO && access_type == MMU_INST_FETCH) {
185         /*
186          * Radix PTE entries with the non-idempotent I/O attribute are treated
187          * as guarded storage
188          */
189         *fault_cause |= SRR1_NOEXEC_GUARD;
190         return true;
191     }
192 
193     /* Determine permissions allowed by Encoded Access Authority */
194     if (!partition_scoped && (pte & R_PTE_EAA_PRIV) &&
195         FIELD_EX64(env->msr, MSR, PR)) {
196         *prot = 0;
197     } else if (mmuidx_pr(mmu_idx) || (pte & R_PTE_EAA_PRIV) ||
198                partition_scoped) {
199         *prot = ppc_radix64_get_prot_eaa(pte);
200     } else { /* !MSR_PR && !(pte & R_PTE_EAA_PRIV) && !partition_scoped */
201         *prot = ppc_radix64_get_prot_eaa(pte);
202         *prot &= ppc_radix64_get_prot_amr(cpu); /* Least combined permissions */
203     }
204 
205     /* Check if requested access type is allowed */
206     need_prot = prot_for_access_type(access_type);
207     if (need_prot & ~*prot) { /* Page Protected for that Access */
208         *fault_cause |= access_type == MMU_INST_FETCH ? SRR1_NOEXEC_GUARD :
209                                                         DSISR_PROTFAULT;
210         return true;
211     }
212 
213     return false;
214 }
215 
216 static void ppc_radix64_set_rc(PowerPCCPU *cpu, MMUAccessType access_type,
217                                uint64_t pte, hwaddr pte_addr, int *prot)
218 {
219     CPUState *cs = CPU(cpu);
220     uint64_t npte;
221 
222     npte = pte | R_PTE_R; /* Always set reference bit */
223 
224     if (access_type == MMU_DATA_STORE) { /* Store/Write */
225         npte |= R_PTE_C; /* Set change bit */
226     } else {
227         /*
228          * Treat the page as read-only for now, so that a later write
229          * will pass through this function again to set the C bit.
230          */
231         *prot &= ~PAGE_WRITE;
232     }
233 
234     if (pte ^ npte) { /* If pte has changed then write it back */
235         stq_phys(cs->as, pte_addr, npte);
236     }
237 }
238 
239 static int ppc_radix64_next_level(AddressSpace *as, vaddr eaddr,
240                                   uint64_t *pte_addr, uint64_t *nls,
241                                   int *psize, uint64_t *pte, int *fault_cause)
242 {
243     uint64_t index, pde;
244 
245     if (*nls < 5) { /* Directory maps less than 2**5 entries */
246         *fault_cause |= DSISR_R_BADCONFIG;
247         return 1;
248     }
249 
250     /* Read page <directory/table> entry from guest address space */
251     pde = ldq_phys(as, *pte_addr);
252     if (!(pde & R_PTE_VALID)) {         /* Invalid Entry */
253         *fault_cause |= DSISR_NOPTE;
254         return 1;
255     }
256 
257     *pte = pde;
258     *psize -= *nls;
259     if (!(pde & R_PTE_LEAF)) { /* Prepare for next iteration */
260         *nls = pde & R_PDE_NLS;
261         index = eaddr >> (*psize - *nls);       /* Shift */
262         index &= ((1UL << *nls) - 1);           /* Mask */
263         *pte_addr = (pde & R_PDE_NLB) + (index * sizeof(pde));
264     }
265     return 0;
266 }
267 
268 static int ppc_radix64_walk_tree(AddressSpace *as, vaddr eaddr,
269                                  uint64_t base_addr, uint64_t nls,
270                                  hwaddr *raddr, int *psize, uint64_t *pte,
271                                  int *fault_cause, hwaddr *pte_addr)
272 {
273     uint64_t index, pde, rpn , mask;
274 
275     if (nls < 5) { /* Directory maps less than 2**5 entries */
276         *fault_cause |= DSISR_R_BADCONFIG;
277         return 1;
278     }
279 
280     index = eaddr >> (*psize - nls);    /* Shift */
281     index &= ((1UL << nls) - 1);       /* Mask */
282     *pte_addr = base_addr + (index * sizeof(pde));
283     do {
284         int ret;
285 
286         ret = ppc_radix64_next_level(as, eaddr, pte_addr, &nls, psize, &pde,
287                                      fault_cause);
288         if (ret) {
289             return ret;
290         }
291     } while (!(pde & R_PTE_LEAF));
292 
293     *pte = pde;
294     rpn = pde & R_PTE_RPN;
295     mask = (1UL << *psize) - 1;
296 
297     /* Or high bits of rpn and low bits to ea to form whole real addr */
298     *raddr = (rpn & ~mask) | (eaddr & mask);
299     return 0;
300 }
301 
302 static bool validate_pate(PowerPCCPU *cpu, uint64_t lpid, ppc_v3_pate_t *pate)
303 {
304     CPUPPCState *env = &cpu->env;
305 
306     if (!(pate->dw0 & PATE0_HR)) {
307         return false;
308     }
309     if (lpid == 0 && !FIELD_EX64(env->msr, MSR, HV)) {
310         return false;
311     }
312     if ((pate->dw0 & PATE1_R_PRTS) < 5) {
313         return false;
314     }
315     /* More checks ... */
316     return true;
317 }
318 
319 static int ppc_radix64_partition_scoped_xlate(PowerPCCPU *cpu,
320                                               MMUAccessType access_type,
321                                               vaddr eaddr, hwaddr g_raddr,
322                                               ppc_v3_pate_t pate,
323                                               hwaddr *h_raddr, int *h_prot,
324                                               int *h_page_size, bool pde_addr,
325                                               int mmu_idx, bool guest_visible)
326 {
327     int fault_cause = 0;
328     hwaddr pte_addr;
329     uint64_t pte;
330 
331     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx
332                   " mmu_idx %u 0x%"HWADDR_PRIx"\n",
333                   __func__, access_str(access_type),
334                   eaddr, mmu_idx, g_raddr);
335 
336     *h_page_size = PRTBE_R_GET_RTS(pate.dw0);
337     /* No valid pte or access denied due to protection */
338     if (ppc_radix64_walk_tree(CPU(cpu)->as, g_raddr, pate.dw0 & PRTBE_R_RPDB,
339                               pate.dw0 & PRTBE_R_RPDS, h_raddr, h_page_size,
340                               &pte, &fault_cause, &pte_addr) ||
341         ppc_radix64_check_prot(cpu, access_type, pte,
342                                &fault_cause, h_prot, mmu_idx, true)) {
343         if (pde_addr) { /* address being translated was that of a guest pde */
344             fault_cause |= DSISR_PRTABLE_FAULT;
345         }
346         if (guest_visible) {
347             ppc_radix64_raise_hsi(cpu, access_type, eaddr, g_raddr, fault_cause);
348         }
349         return 1;
350     }
351 
352     if (guest_visible) {
353         ppc_radix64_set_rc(cpu, access_type, pte, pte_addr, h_prot);
354     }
355 
356     return 0;
357 }
358 
359 /*
360  * The spapr vhc has a flat partition scope provided by qemu memory when
361  * not nested.
362  *
363  * When running a nested guest, the addressing is 2-level radix on top of the
364  * vhc memory, so it works practically identically to the bare metal 2-level
365  * radix. So that code is selected directly. A cleaner and more flexible nested
366  * hypervisor implementation would allow the vhc to provide a ->nested_xlate()
367  * function but that is not required for the moment.
368  */
369 static bool vhyp_flat_addressing(PowerPCCPU *cpu)
370 {
371     if (cpu->vhyp) {
372         return !vhyp_cpu_in_nested(cpu);
373     }
374     return false;
375 }
376 
377 static int ppc_radix64_process_scoped_xlate(PowerPCCPU *cpu,
378                                             MMUAccessType access_type,
379                                             vaddr eaddr, uint64_t pid,
380                                             ppc_v3_pate_t pate, hwaddr *g_raddr,
381                                             int *g_prot, int *g_page_size,
382                                             int mmu_idx, bool guest_visible)
383 {
384     CPUState *cs = CPU(cpu);
385     CPUPPCState *env = &cpu->env;
386     uint64_t offset, size, prtbe_addr, prtbe0, base_addr, nls, index, pte;
387     int fault_cause = 0, h_page_size, h_prot;
388     hwaddr h_raddr, pte_addr;
389     int ret;
390 
391     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx
392                   " mmu_idx %u pid %"PRIu64"\n",
393                   __func__, access_str(access_type),
394                   eaddr, mmu_idx, pid);
395 
396     /* Index Process Table by PID to Find Corresponding Process Table Entry */
397     offset = pid * sizeof(struct prtb_entry);
398     size = 1ULL << ((pate.dw1 & PATE1_R_PRTS) + 12);
399     if (offset >= size) {
400         /* offset exceeds size of the process table */
401         if (guest_visible) {
402             ppc_radix64_raise_si(cpu, access_type, eaddr, DSISR_NOPTE);
403         }
404         return 1;
405     }
406     prtbe_addr = (pate.dw1 & PATE1_R_PRTB) + offset;
407 
408     if (vhyp_flat_addressing(cpu)) {
409         prtbe0 = ldq_phys(cs->as, prtbe_addr);
410     } else {
411         /*
412          * Process table addresses are subject to partition-scoped
413          * translation
414          *
415          * On a Radix host, the partition-scoped page table for LPID=0
416          * is only used to translate the effective addresses of the
417          * process table entries.
418          */
419         ret = ppc_radix64_partition_scoped_xlate(cpu, 0, eaddr, prtbe_addr,
420                                                  pate, &h_raddr, &h_prot,
421                                                  &h_page_size, true,
422             /* mmu_idx is 5 because we're translating from hypervisor scope */
423                                                  5, guest_visible);
424         if (ret) {
425             return ret;
426         }
427         prtbe0 = ldq_phys(cs->as, h_raddr);
428     }
429 
430     /* Walk Radix Tree from Process Table Entry to Convert EA to RA */
431     *g_page_size = PRTBE_R_GET_RTS(prtbe0);
432     base_addr = prtbe0 & PRTBE_R_RPDB;
433     nls = prtbe0 & PRTBE_R_RPDS;
434     if (FIELD_EX64(env->msr, MSR, HV) || vhyp_flat_addressing(cpu)) {
435         /*
436          * Can treat process table addresses as real addresses
437          */
438         ret = ppc_radix64_walk_tree(cs->as, eaddr & R_EADDR_MASK, base_addr,
439                                     nls, g_raddr, g_page_size, &pte,
440                                     &fault_cause, &pte_addr);
441         if (ret) {
442             /* No valid PTE */
443             if (guest_visible) {
444                 ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause);
445             }
446             return ret;
447         }
448     } else {
449         uint64_t rpn, mask;
450 
451         index = (eaddr & R_EADDR_MASK) >> (*g_page_size - nls); /* Shift */
452         index &= ((1UL << nls) - 1);                            /* Mask */
453         pte_addr = base_addr + (index * sizeof(pte));
454 
455         /*
456          * Each process table address is subject to a partition-scoped
457          * translation
458          */
459         do {
460             ret = ppc_radix64_partition_scoped_xlate(cpu, 0, eaddr, pte_addr,
461                                                      pate, &h_raddr, &h_prot,
462                                                      &h_page_size, true,
463             /* mmu_idx is 5 because we're translating from hypervisor scope */
464                                                      5, guest_visible);
465             if (ret) {
466                 return ret;
467             }
468 
469             ret = ppc_radix64_next_level(cs->as, eaddr & R_EADDR_MASK, &h_raddr,
470                                          &nls, g_page_size, &pte, &fault_cause);
471             if (ret) {
472                 /* No valid pte */
473                 if (guest_visible) {
474                     ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause);
475                 }
476                 return ret;
477             }
478             pte_addr = h_raddr;
479         } while (!(pte & R_PTE_LEAF));
480 
481         rpn = pte & R_PTE_RPN;
482         mask = (1UL << *g_page_size) - 1;
483 
484         /* Or high bits of rpn and low bits to ea to form whole real addr */
485         *g_raddr = (rpn & ~mask) | (eaddr & mask);
486     }
487 
488     if (ppc_radix64_check_prot(cpu, access_type, pte, &fault_cause,
489                                g_prot, mmu_idx, false)) {
490         /* Access denied due to protection */
491         if (guest_visible) {
492             ppc_radix64_raise_si(cpu, access_type, eaddr, fault_cause);
493         }
494         return 1;
495     }
496 
497     if (guest_visible) {
498         ppc_radix64_set_rc(cpu, access_type, pte, pte_addr, g_prot);
499     }
500 
501     return 0;
502 }
503 
504 /*
505  * Radix tree translation is a 2 steps translation process:
506  *
507  * 1. Process-scoped translation:   Guest Eff Addr  -> Guest Real Addr
508  * 2. Partition-scoped translation: Guest Real Addr -> Host Real Addr
509  *
510  *                                  MSR[HV]
511  *              +-------------+----------------+---------------+
512  *              |             |     HV = 0     |     HV = 1    |
513  *              +-------------+----------------+---------------+
514  *              | Relocation  |    Partition   |      No       |
515  *              | = Off       |     Scoped     |  Translation  |
516  *  Relocation  +-------------+----------------+---------------+
517  *              | Relocation  |   Partition &  |    Process    |
518  *              | = On        | Process Scoped |    Scoped     |
519  *              +-------------+----------------+---------------+
520  */
521 static bool ppc_radix64_xlate_impl(PowerPCCPU *cpu, vaddr eaddr,
522                                    MMUAccessType access_type, hwaddr *raddr,
523                                    int *psizep, int *protp, int mmu_idx,
524                                    bool guest_visible)
525 {
526     CPUPPCState *env = &cpu->env;
527     uint64_t lpid, pid;
528     ppc_v3_pate_t pate;
529     int psize, prot;
530     hwaddr g_raddr;
531     bool relocation;
532 
533     assert(!(mmuidx_hv(mmu_idx) && cpu->vhyp));
534 
535     relocation = !mmuidx_real(mmu_idx);
536 
537     /* HV or virtual hypervisor Real Mode Access */
538     if (!relocation && (mmuidx_hv(mmu_idx) || vhyp_flat_addressing(cpu))) {
539         /* In real mode top 4 effective addr bits (mostly) ignored */
540         *raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
541 
542         /* In HV mode, add HRMOR if top EA bit is clear */
543         if (mmuidx_hv(mmu_idx) || !env->has_hv_mode) {
544             if (!(eaddr >> 63)) {
545                 *raddr |= env->spr[SPR_HRMOR];
546            }
547         }
548         *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
549         *psizep = TARGET_PAGE_BITS;
550         return true;
551     }
552 
553     /*
554      * Check UPRT (we avoid the check in real mode to deal with
555      * transitional states during kexec.
556      */
557     if (guest_visible && !ppc64_use_proc_tbl(cpu)) {
558         qemu_log_mask(LOG_GUEST_ERROR,
559                       "LPCR:UPRT not set in radix mode ! LPCR="
560                       TARGET_FMT_lx "\n", env->spr[SPR_LPCR]);
561     }
562 
563     /* Virtual Mode Access - get the fully qualified address */
564     if (!ppc_radix64_get_fully_qualified_addr(&cpu->env, eaddr, &lpid, &pid)) {
565         if (guest_visible) {
566             ppc_radix64_raise_segi(cpu, access_type, eaddr);
567         }
568         return false;
569     }
570 
571     /* Get Process Table */
572     if (cpu->vhyp) {
573         PPCVirtualHypervisorClass *vhc;
574         vhc = PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
575         if (!vhc->get_pate(cpu->vhyp, cpu, lpid, &pate)) {
576             if (guest_visible) {
577                 ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr,
578                                       DSISR_R_BADCONFIG);
579             }
580             return false;
581         }
582     } else {
583         if (!ppc64_v3_get_pate(cpu, lpid, &pate)) {
584             if (guest_visible) {
585                 ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr,
586                                       DSISR_R_BADCONFIG);
587             }
588             return false;
589         }
590         if (!validate_pate(cpu, lpid, &pate)) {
591             if (guest_visible) {
592                 ppc_radix64_raise_hsi(cpu, access_type, eaddr, eaddr,
593                                       DSISR_R_BADCONFIG);
594             }
595             return false;
596         }
597     }
598 
599     *psizep = INT_MAX;
600     *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
601 
602     /*
603      * Perform process-scoped translation if relocation enabled.
604      *
605      * - Translates an effective address to a host real address in
606      *   quadrants 0 and 3 when HV=1.
607      *
608      * - Translates an effective address to a guest real address.
609      */
610     if (relocation) {
611         int ret = ppc_radix64_process_scoped_xlate(cpu, access_type, eaddr, pid,
612                                                    pate, &g_raddr, &prot,
613                                                    &psize, mmu_idx, guest_visible);
614         if (ret) {
615             return false;
616         }
617         *psizep = MIN(*psizep, psize);
618         *protp &= prot;
619     } else {
620         g_raddr = eaddr & R_EADDR_MASK;
621     }
622 
623     if (vhyp_flat_addressing(cpu)) {
624         *raddr = g_raddr;
625     } else {
626         /*
627          * Perform partition-scoped translation if !HV or HV access to
628          * quadrants 1 or 2. Translates a guest real address to a host
629          * real address.
630          */
631         if (lpid || !mmuidx_hv(mmu_idx)) {
632             int ret;
633 
634             ret = ppc_radix64_partition_scoped_xlate(cpu, access_type, eaddr,
635                                                      g_raddr, pate, raddr,
636                                                      &prot, &psize, false,
637                                                      mmu_idx, guest_visible);
638             if (ret) {
639                 return false;
640             }
641             *psizep = MIN(*psizep, psize);
642             *protp &= prot;
643         } else {
644             *raddr = g_raddr;
645         }
646     }
647 
648     return true;
649 }
650 
651 bool ppc_radix64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
652                        hwaddr *raddrp, int *psizep, int *protp, int mmu_idx,
653                        bool guest_visible)
654 {
655     bool ret = ppc_radix64_xlate_impl(cpu, eaddr, access_type, raddrp,
656                                       psizep, protp, mmu_idx, guest_visible);
657 
658     qemu_log_mask(CPU_LOG_MMU, "%s for %s @0x%"VADDR_PRIx
659                   " mmu_idx %u (prot %c%c%c) -> 0x%"HWADDR_PRIx"\n",
660                   __func__, access_str(access_type),
661                   eaddr, mmu_idx,
662                   *protp & PAGE_READ ? 'r' : '-',
663                   *protp & PAGE_WRITE ? 'w' : '-',
664                   *protp & PAGE_EXEC ? 'x' : '-',
665                   *raddrp);
666 
667     return ret;
668 }
669