1 /* 2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU. 3 * 4 * Copyright (c) 2003-2007 Jocelyn Mayer 5 * Copyright (c) 2013 David Gibson, IBM Corporation 6 * 7 * This library is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2 of the License, or (at your option) any later version. 11 * 12 * This library is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 #include "qemu/osdep.h" 21 #include "qapi/error.h" 22 #include "cpu.h" 23 #include "exec/exec-all.h" 24 #include "exec/helper-proto.h" 25 #include "qemu/error-report.h" 26 #include "sysemu/hw_accel.h" 27 #include "kvm_ppc.h" 28 #include "mmu-hash64.h" 29 #include "exec/log.h" 30 31 //#define DEBUG_SLB 32 33 #ifdef DEBUG_SLB 34 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__) 35 #else 36 # define LOG_SLB(...) do { } while (0) 37 #endif 38 39 /* 40 * Used to indicate that a CPU has its hash page table (HPT) managed 41 * within the host kernel 42 */ 43 #define MMU_HASH64_KVM_MANAGED_HPT ((void *)-1) 44 45 /* 46 * SLB handling 47 */ 48 49 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr) 50 { 51 CPUPPCState *env = &cpu->env; 52 uint64_t esid_256M, esid_1T; 53 int n; 54 55 LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr); 56 57 esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V; 58 esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V; 59 60 for (n = 0; n < env->slb_nr; n++) { 61 ppc_slb_t *slb = &env->slb[n]; 62 63 LOG_SLB("%s: slot %d %016" PRIx64 " %016" 64 PRIx64 "\n", __func__, n, slb->esid, slb->vsid); 65 /* We check for 1T matches on all MMUs here - if the MMU 66 * doesn't have 1T segment support, we will have prevented 1T 67 * entries from being inserted in the slbmte code. */ 68 if (((slb->esid == esid_256M) && 69 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M)) 70 || ((slb->esid == esid_1T) && 71 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) { 72 return slb; 73 } 74 } 75 76 return NULL; 77 } 78 79 void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu) 80 { 81 CPUPPCState *env = &cpu->env; 82 int i; 83 uint64_t slbe, slbv; 84 85 cpu_synchronize_state(CPU(cpu)); 86 87 cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n"); 88 for (i = 0; i < env->slb_nr; i++) { 89 slbe = env->slb[i].esid; 90 slbv = env->slb[i].vsid; 91 if (slbe == 0 && slbv == 0) { 92 continue; 93 } 94 cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n", 95 i, slbe, slbv); 96 } 97 } 98 99 void helper_slbia(CPUPPCState *env) 100 { 101 int n; 102 103 /* XXX: Warning: slbia never invalidates the first segment */ 104 for (n = 1; n < env->slb_nr; n++) { 105 ppc_slb_t *slb = &env->slb[n]; 106 107 if (slb->esid & SLB_ESID_V) { 108 slb->esid &= ~SLB_ESID_V; 109 /* XXX: given the fact that segment size is 256 MB or 1TB, 110 * and we still don't have a tlb_flush_mask(env, n, mask) 111 * in QEMU, we just invalidate all TLBs 112 */ 113 env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH; 114 } 115 } 116 } 117 118 void helper_slbie(CPUPPCState *env, target_ulong addr) 119 { 120 PowerPCCPU *cpu = ppc_env_get_cpu(env); 121 ppc_slb_t *slb; 122 123 slb = slb_lookup(cpu, addr); 124 if (!slb) { 125 return; 126 } 127 128 if (slb->esid & SLB_ESID_V) { 129 slb->esid &= ~SLB_ESID_V; 130 131 /* XXX: given the fact that segment size is 256 MB or 1TB, 132 * and we still don't have a tlb_flush_mask(env, n, mask) 133 * in QEMU, we just invalidate all TLBs 134 */ 135 env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH; 136 } 137 } 138 139 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot, 140 target_ulong esid, target_ulong vsid) 141 { 142 CPUPPCState *env = &cpu->env; 143 ppc_slb_t *slb = &env->slb[slot]; 144 const struct ppc_one_seg_page_size *sps = NULL; 145 int i; 146 147 if (slot >= env->slb_nr) { 148 return -1; /* Bad slot number */ 149 } 150 if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) { 151 return -1; /* Reserved bits set */ 152 } 153 if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) { 154 return -1; /* Bad segment size */ 155 } 156 if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) { 157 return -1; /* 1T segment on MMU that doesn't support it */ 158 } 159 160 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { 161 const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i]; 162 163 if (!sps1->page_shift) { 164 break; 165 } 166 167 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) { 168 sps = sps1; 169 break; 170 } 171 } 172 173 if (!sps) { 174 error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu 175 " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx, 176 slot, esid, vsid); 177 return -1; 178 } 179 180 slb->esid = esid; 181 slb->vsid = vsid; 182 slb->sps = sps; 183 184 LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx 185 " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid, 186 slb->esid, slb->vsid); 187 188 return 0; 189 } 190 191 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb, 192 target_ulong *rt) 193 { 194 CPUPPCState *env = &cpu->env; 195 int slot = rb & 0xfff; 196 ppc_slb_t *slb = &env->slb[slot]; 197 198 if (slot >= env->slb_nr) { 199 return -1; 200 } 201 202 *rt = slb->esid; 203 return 0; 204 } 205 206 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb, 207 target_ulong *rt) 208 { 209 CPUPPCState *env = &cpu->env; 210 int slot = rb & 0xfff; 211 ppc_slb_t *slb = &env->slb[slot]; 212 213 if (slot >= env->slb_nr) { 214 return -1; 215 } 216 217 *rt = slb->vsid; 218 return 0; 219 } 220 221 static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb, 222 target_ulong *rt) 223 { 224 CPUPPCState *env = &cpu->env; 225 ppc_slb_t *slb; 226 227 if (!msr_is_64bit(env, env->msr)) { 228 rb &= 0xffffffff; 229 } 230 slb = slb_lookup(cpu, rb); 231 if (slb == NULL) { 232 *rt = (target_ulong)-1ul; 233 } else { 234 *rt = slb->vsid; 235 } 236 return 0; 237 } 238 239 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs) 240 { 241 PowerPCCPU *cpu = ppc_env_get_cpu(env); 242 243 if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) { 244 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, 245 POWERPC_EXCP_INVAL, GETPC()); 246 } 247 } 248 249 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb) 250 { 251 PowerPCCPU *cpu = ppc_env_get_cpu(env); 252 target_ulong rt = 0; 253 254 if (ppc_load_slb_esid(cpu, rb, &rt) < 0) { 255 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, 256 POWERPC_EXCP_INVAL, GETPC()); 257 } 258 return rt; 259 } 260 261 target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb) 262 { 263 PowerPCCPU *cpu = ppc_env_get_cpu(env); 264 target_ulong rt = 0; 265 266 if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) { 267 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, 268 POWERPC_EXCP_INVAL, GETPC()); 269 } 270 return rt; 271 } 272 273 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb) 274 { 275 PowerPCCPU *cpu = ppc_env_get_cpu(env); 276 target_ulong rt = 0; 277 278 if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) { 279 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, 280 POWERPC_EXCP_INVAL, GETPC()); 281 } 282 return rt; 283 } 284 285 /* 286 * 64-bit hash table MMU handling 287 */ 288 void ppc_hash64_set_sdr1(PowerPCCPU *cpu, target_ulong value, 289 Error **errp) 290 { 291 CPUPPCState *env = &cpu->env; 292 target_ulong htabsize = value & SDR_64_HTABSIZE; 293 294 env->spr[SPR_SDR1] = value; 295 if (htabsize > 28) { 296 error_setg(errp, 297 "Invalid HTABSIZE 0x" TARGET_FMT_lx" stored in SDR1", 298 htabsize); 299 htabsize = 28; 300 } 301 env->htab_mask = (1ULL << (htabsize + 18 - 7)) - 1; 302 env->htab_base = value & SDR_64_HTABORG; 303 } 304 305 void ppc_hash64_set_external_hpt(PowerPCCPU *cpu, void *hpt, int shift, 306 Error **errp) 307 { 308 CPUPPCState *env = &cpu->env; 309 Error *local_err = NULL; 310 311 if (hpt) { 312 env->external_htab = hpt; 313 } else { 314 env->external_htab = MMU_HASH64_KVM_MANAGED_HPT; 315 } 316 ppc_hash64_set_sdr1(cpu, (target_ulong)(uintptr_t)hpt | (shift - 18), 317 &local_err); 318 if (local_err) { 319 error_propagate(errp, local_err); 320 return; 321 } 322 323 /* Not strictly necessary, but makes it clearer that an external 324 * htab is in use when debugging */ 325 env->htab_base = -1; 326 327 if (kvm_enabled()) { 328 if (kvmppc_put_books_sregs(cpu) < 0) { 329 error_setg(errp, "Unable to update SDR1 in KVM"); 330 } 331 } 332 } 333 334 static int ppc_hash64_pte_prot(PowerPCCPU *cpu, 335 ppc_slb_t *slb, ppc_hash_pte64_t pte) 336 { 337 CPUPPCState *env = &cpu->env; 338 unsigned pp, key; 339 /* Some pp bit combinations have undefined behaviour, so default 340 * to no access in those cases */ 341 int prot = 0; 342 343 key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP) 344 : (slb->vsid & SLB_VSID_KS)); 345 pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61); 346 347 if (key == 0) { 348 switch (pp) { 349 case 0x0: 350 case 0x1: 351 case 0x2: 352 prot = PAGE_READ | PAGE_WRITE; 353 break; 354 355 case 0x3: 356 case 0x6: 357 prot = PAGE_READ; 358 break; 359 } 360 } else { 361 switch (pp) { 362 case 0x0: 363 case 0x6: 364 prot = 0; 365 break; 366 367 case 0x1: 368 case 0x3: 369 prot = PAGE_READ; 370 break; 371 372 case 0x2: 373 prot = PAGE_READ | PAGE_WRITE; 374 break; 375 } 376 } 377 378 /* No execute if either noexec or guarded bits set */ 379 if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) 380 || (slb->vsid & SLB_VSID_N)) { 381 prot |= PAGE_EXEC; 382 } 383 384 return prot; 385 } 386 387 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte) 388 { 389 CPUPPCState *env = &cpu->env; 390 int key, amrbits; 391 int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 392 393 /* Only recent MMUs implement Virtual Page Class Key Protection */ 394 if (!(env->mmu_model & POWERPC_MMU_AMR)) { 395 return prot; 396 } 397 398 key = HPTE64_R_KEY(pte.pte1); 399 amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3; 400 401 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */ 402 /* env->spr[SPR_AMR]); */ 403 404 /* 405 * A store is permitted if the AMR bit is 0. Remove write 406 * protection if it is set. 407 */ 408 if (amrbits & 0x2) { 409 prot &= ~PAGE_WRITE; 410 } 411 /* 412 * A load is permitted if the AMR bit is 0. Remove read 413 * protection if it is set. 414 */ 415 if (amrbits & 0x1) { 416 prot &= ~PAGE_READ; 417 } 418 419 return prot; 420 } 421 422 uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index) 423 { 424 uint64_t token = 0; 425 hwaddr pte_offset; 426 427 pte_offset = pte_index * HASH_PTE_SIZE_64; 428 if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) { 429 /* 430 * HTAB is controlled by KVM. Fetch the PTEG into a new buffer. 431 */ 432 token = kvmppc_hash64_read_pteg(cpu, pte_index); 433 } else if (cpu->env.external_htab) { 434 /* 435 * HTAB is controlled by QEMU. Just point to the internally 436 * accessible PTEG. 437 */ 438 token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset; 439 } else if (cpu->env.htab_base) { 440 token = cpu->env.htab_base + pte_offset; 441 } 442 return token; 443 } 444 445 void ppc_hash64_stop_access(PowerPCCPU *cpu, uint64_t token) 446 { 447 if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) { 448 kvmppc_hash64_free_pteg(token); 449 } 450 } 451 452 static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps, 453 uint64_t pte0, uint64_t pte1) 454 { 455 int i; 456 457 if (!(pte0 & HPTE64_V_LARGE)) { 458 if (sps->page_shift != 12) { 459 /* 4kiB page in a non 4kiB segment */ 460 return 0; 461 } 462 /* Normal 4kiB page */ 463 return 12; 464 } 465 466 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { 467 const struct ppc_one_page_size *ps = &sps->enc[i]; 468 uint64_t mask; 469 470 if (!ps->page_shift) { 471 break; 472 } 473 474 if (ps->page_shift == 12) { 475 /* L bit is set so this can't be a 4kiB page */ 476 continue; 477 } 478 479 mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN; 480 481 if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) { 482 return ps->page_shift; 483 } 484 } 485 486 return 0; /* Bad page size encoding */ 487 } 488 489 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash, 490 const struct ppc_one_seg_page_size *sps, 491 target_ulong ptem, 492 ppc_hash_pte64_t *pte, unsigned *pshift) 493 { 494 CPUPPCState *env = &cpu->env; 495 int i; 496 uint64_t token; 497 target_ulong pte0, pte1; 498 target_ulong pte_index; 499 500 pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP; 501 token = ppc_hash64_start_access(cpu, pte_index); 502 if (!token) { 503 return -1; 504 } 505 for (i = 0; i < HPTES_PER_GROUP; i++) { 506 pte0 = ppc_hash64_load_hpte0(cpu, token, i); 507 pte1 = ppc_hash64_load_hpte1(cpu, token, i); 508 509 /* This compares V, B, H (secondary) and the AVPN */ 510 if (HPTE64_V_COMPARE(pte0, ptem)) { 511 *pshift = hpte_page_shift(sps, pte0, pte1); 512 /* 513 * If there is no match, ignore the PTE, it could simply 514 * be for a different segment size encoding and the 515 * architecture specifies we should not match. Linux will 516 * potentially leave behind PTEs for the wrong base page 517 * size when demoting segments. 518 */ 519 if (*pshift == 0) { 520 continue; 521 } 522 /* We don't do anything with pshift yet as qemu TLB only deals 523 * with 4K pages anyway 524 */ 525 pte->pte0 = pte0; 526 pte->pte1 = pte1; 527 ppc_hash64_stop_access(cpu, token); 528 return (pte_index + i) * HASH_PTE_SIZE_64; 529 } 530 } 531 ppc_hash64_stop_access(cpu, token); 532 /* 533 * We didn't find a valid entry. 534 */ 535 return -1; 536 } 537 538 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu, 539 ppc_slb_t *slb, target_ulong eaddr, 540 ppc_hash_pte64_t *pte, unsigned *pshift) 541 { 542 CPUPPCState *env = &cpu->env; 543 hwaddr pte_offset; 544 hwaddr hash; 545 uint64_t vsid, epnmask, epn, ptem; 546 const struct ppc_one_seg_page_size *sps = slb->sps; 547 548 /* The SLB store path should prevent any bad page size encodings 549 * getting in there, so: */ 550 assert(sps); 551 552 /* If ISL is set in LPCR we need to clamp the page size to 4K */ 553 if (env->spr[SPR_LPCR] & LPCR_ISL) { 554 /* We assume that when using TCG, 4k is first entry of SPS */ 555 sps = &env->sps.sps[0]; 556 assert(sps->page_shift == 12); 557 } 558 559 epnmask = ~((1ULL << sps->page_shift) - 1); 560 561 if (slb->vsid & SLB_VSID_B) { 562 /* 1TB segment */ 563 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T; 564 epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask; 565 hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift); 566 } else { 567 /* 256M segment */ 568 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT; 569 epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask; 570 hash = vsid ^ (epn >> sps->page_shift); 571 } 572 ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN); 573 ptem |= HPTE64_V_VALID; 574 575 /* Page address translation */ 576 qemu_log_mask(CPU_LOG_MMU, 577 "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx 578 " hash " TARGET_FMT_plx "\n", 579 env->htab_base, env->htab_mask, hash); 580 581 /* Primary PTEG lookup */ 582 qemu_log_mask(CPU_LOG_MMU, 583 "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx 584 " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx 585 " hash=" TARGET_FMT_plx "\n", 586 env->htab_base, env->htab_mask, vsid, ptem, hash); 587 pte_offset = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift); 588 589 if (pte_offset == -1) { 590 /* Secondary PTEG lookup */ 591 ptem |= HPTE64_V_SECONDARY; 592 qemu_log_mask(CPU_LOG_MMU, 593 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx 594 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx 595 " hash=" TARGET_FMT_plx "\n", env->htab_base, 596 env->htab_mask, vsid, ptem, ~hash); 597 598 pte_offset = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift); 599 } 600 601 return pte_offset; 602 } 603 604 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu, 605 uint64_t pte0, uint64_t pte1) 606 { 607 CPUPPCState *env = &cpu->env; 608 int i; 609 610 if (!(pte0 & HPTE64_V_LARGE)) { 611 return 12; 612 } 613 614 /* 615 * The encodings in env->sps need to be carefully chosen so that 616 * this gives an unambiguous result. 617 */ 618 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { 619 const struct ppc_one_seg_page_size *sps = &env->sps.sps[i]; 620 unsigned shift; 621 622 if (!sps->page_shift) { 623 break; 624 } 625 626 shift = hpte_page_shift(sps, pte0, pte1); 627 if (shift) { 628 return shift; 629 } 630 } 631 632 return 0; 633 } 634 635 static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env, 636 uint64_t error_code) 637 { 638 bool vpm; 639 640 if (msr_ir) { 641 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1); 642 } else { 643 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0); 644 } 645 if (vpm && !msr_hv) { 646 cs->exception_index = POWERPC_EXCP_HISI; 647 } else { 648 cs->exception_index = POWERPC_EXCP_ISI; 649 } 650 env->error_code = error_code; 651 } 652 653 static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar, 654 uint64_t dsisr) 655 { 656 bool vpm; 657 658 if (msr_dr) { 659 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1); 660 } else { 661 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0); 662 } 663 if (vpm && !msr_hv) { 664 cs->exception_index = POWERPC_EXCP_HDSI; 665 env->spr[SPR_HDAR] = dar; 666 env->spr[SPR_HDSISR] = dsisr; 667 } else { 668 cs->exception_index = POWERPC_EXCP_DSI; 669 env->spr[SPR_DAR] = dar; 670 env->spr[SPR_DSISR] = dsisr; 671 } 672 env->error_code = 0; 673 } 674 675 676 int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr, 677 int rwx, int mmu_idx) 678 { 679 CPUState *cs = CPU(cpu); 680 CPUPPCState *env = &cpu->env; 681 ppc_slb_t *slb; 682 unsigned apshift; 683 hwaddr pte_offset; 684 ppc_hash_pte64_t pte; 685 int pp_prot, amr_prot, prot; 686 uint64_t new_pte1, dsisr; 687 const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC}; 688 hwaddr raddr; 689 690 assert((rwx == 0) || (rwx == 1) || (rwx == 2)); 691 692 /* Note on LPCR usage: 970 uses HID4, but our special variant 693 * of store_spr copies relevant fields into env->spr[SPR_LPCR]. 694 * Similarily we filter unimplemented bits when storing into 695 * LPCR depending on the MMU version. This code can thus just 696 * use the LPCR "as-is". 697 */ 698 699 /* 1. Handle real mode accesses */ 700 if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) { 701 /* Translation is supposedly "off" */ 702 /* In real mode the top 4 effective address bits are (mostly) ignored */ 703 raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL; 704 705 /* In HV mode, add HRMOR if top EA bit is clear */ 706 if (msr_hv || !env->has_hv_mode) { 707 if (!(eaddr >> 63)) { 708 raddr |= env->spr[SPR_HRMOR]; 709 } 710 } else { 711 /* Otherwise, check VPM for RMA vs VRMA */ 712 if (env->spr[SPR_LPCR] & LPCR_VPM0) { 713 slb = &env->vrma_slb; 714 if (slb->sps) { 715 goto skip_slb_search; 716 } 717 /* Not much else to do here */ 718 cs->exception_index = POWERPC_EXCP_MCHECK; 719 env->error_code = 0; 720 return 1; 721 } else if (raddr < env->rmls) { 722 /* RMA. Check bounds in RMLS */ 723 raddr |= env->spr[SPR_RMOR]; 724 } else { 725 /* The access failed, generate the approriate interrupt */ 726 if (rwx == 2) { 727 ppc_hash64_set_isi(cs, env, 0x08000000); 728 } else { 729 dsisr = 0x08000000; 730 if (rwx == 1) { 731 dsisr |= 0x02000000; 732 } 733 ppc_hash64_set_dsi(cs, env, eaddr, dsisr); 734 } 735 return 1; 736 } 737 } 738 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK, 739 PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx, 740 TARGET_PAGE_SIZE); 741 return 0; 742 } 743 744 /* 2. Translation is on, so look up the SLB */ 745 slb = slb_lookup(cpu, eaddr); 746 if (!slb) { 747 if (rwx == 2) { 748 cs->exception_index = POWERPC_EXCP_ISEG; 749 env->error_code = 0; 750 } else { 751 cs->exception_index = POWERPC_EXCP_DSEG; 752 env->error_code = 0; 753 env->spr[SPR_DAR] = eaddr; 754 } 755 return 1; 756 } 757 758 skip_slb_search: 759 760 /* 3. Check for segment level no-execute violation */ 761 if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) { 762 ppc_hash64_set_isi(cs, env, 0x10000000); 763 return 1; 764 } 765 766 /* 4. Locate the PTE in the hash table */ 767 pte_offset = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift); 768 if (pte_offset == -1) { 769 dsisr = 0x40000000; 770 if (rwx == 2) { 771 ppc_hash64_set_isi(cs, env, dsisr); 772 } else { 773 if (rwx == 1) { 774 dsisr |= 0x02000000; 775 } 776 ppc_hash64_set_dsi(cs, env, eaddr, dsisr); 777 } 778 return 1; 779 } 780 qemu_log_mask(CPU_LOG_MMU, 781 "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset); 782 783 /* 5. Check access permissions */ 784 785 pp_prot = ppc_hash64_pte_prot(cpu, slb, pte); 786 amr_prot = ppc_hash64_amr_prot(cpu, pte); 787 prot = pp_prot & amr_prot; 788 789 if ((need_prot[rwx] & ~prot) != 0) { 790 /* Access right violation */ 791 qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n"); 792 if (rwx == 2) { 793 ppc_hash64_set_isi(cs, env, 0x08000000); 794 } else { 795 dsisr = 0; 796 if (need_prot[rwx] & ~pp_prot) { 797 dsisr |= 0x08000000; 798 } 799 if (rwx == 1) { 800 dsisr |= 0x02000000; 801 } 802 if (need_prot[rwx] & ~amr_prot) { 803 dsisr |= 0x00200000; 804 } 805 ppc_hash64_set_dsi(cs, env, eaddr, dsisr); 806 } 807 return 1; 808 } 809 810 qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n"); 811 812 /* 6. Update PTE referenced and changed bits if necessary */ 813 814 new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */ 815 if (rwx == 1) { 816 new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */ 817 } else { 818 /* Treat the page as read-only for now, so that a later write 819 * will pass through this function again to set the C bit */ 820 prot &= ~PAGE_WRITE; 821 } 822 823 if (new_pte1 != pte.pte1) { 824 ppc_hash64_store_hpte(cpu, pte_offset / HASH_PTE_SIZE_64, 825 pte.pte0, new_pte1); 826 } 827 828 /* 7. Determine the real address from the PTE */ 829 830 raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr); 831 832 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK, 833 prot, mmu_idx, 1ULL << apshift); 834 835 return 0; 836 } 837 838 hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr) 839 { 840 CPUPPCState *env = &cpu->env; 841 ppc_slb_t *slb; 842 hwaddr pte_offset, raddr; 843 ppc_hash_pte64_t pte; 844 unsigned apshift; 845 846 /* Handle real mode */ 847 if (msr_dr == 0) { 848 /* In real mode the top 4 effective address bits are ignored */ 849 raddr = addr & 0x0FFFFFFFFFFFFFFFULL; 850 851 /* In HV mode, add HRMOR if top EA bit is clear */ 852 if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) { 853 return raddr | env->spr[SPR_HRMOR]; 854 } 855 856 /* Otherwise, check VPM for RMA vs VRMA */ 857 if (env->spr[SPR_LPCR] & LPCR_VPM0) { 858 slb = &env->vrma_slb; 859 if (!slb->sps) { 860 return -1; 861 } 862 } else if (raddr < env->rmls) { 863 /* RMA. Check bounds in RMLS */ 864 return raddr | env->spr[SPR_RMOR]; 865 } else { 866 return -1; 867 } 868 } else { 869 slb = slb_lookup(cpu, addr); 870 if (!slb) { 871 return -1; 872 } 873 } 874 875 pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift); 876 if (pte_offset == -1) { 877 return -1; 878 } 879 880 return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr) 881 & TARGET_PAGE_MASK; 882 } 883 884 void ppc_hash64_store_hpte(PowerPCCPU *cpu, 885 target_ulong pte_index, 886 target_ulong pte0, target_ulong pte1) 887 { 888 CPUPPCState *env = &cpu->env; 889 890 if (env->external_htab == MMU_HASH64_KVM_MANAGED_HPT) { 891 kvmppc_hash64_write_pte(env, pte_index, pte0, pte1); 892 return; 893 } 894 895 pte_index *= HASH_PTE_SIZE_64; 896 if (env->external_htab) { 897 stq_p(env->external_htab + pte_index, pte0); 898 stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64 / 2, pte1); 899 } else { 900 stq_phys(CPU(cpu)->as, env->htab_base + pte_index, pte0); 901 stq_phys(CPU(cpu)->as, 902 env->htab_base + pte_index + HASH_PTE_SIZE_64 / 2, pte1); 903 } 904 } 905 906 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, 907 target_ulong pte_index, 908 target_ulong pte0, target_ulong pte1) 909 { 910 /* 911 * XXX: given the fact that there are too many segments to 912 * invalidate, and we still don't have a tlb_flush_mask(env, n, 913 * mask) in QEMU, we just invalidate all TLBs 914 */ 915 cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH; 916 } 917 918 void ppc_hash64_update_rmls(CPUPPCState *env) 919 { 920 uint64_t lpcr = env->spr[SPR_LPCR]; 921 922 /* 923 * This is the full 4 bits encoding of POWER8. Previous 924 * CPUs only support a subset of these but the filtering 925 * is done when writing LPCR 926 */ 927 switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) { 928 case 0x8: /* 32MB */ 929 env->rmls = 0x2000000ull; 930 break; 931 case 0x3: /* 64MB */ 932 env->rmls = 0x4000000ull; 933 break; 934 case 0x7: /* 128MB */ 935 env->rmls = 0x8000000ull; 936 break; 937 case 0x4: /* 256MB */ 938 env->rmls = 0x10000000ull; 939 break; 940 case 0x2: /* 1GB */ 941 env->rmls = 0x40000000ull; 942 break; 943 case 0x1: /* 16GB */ 944 env->rmls = 0x400000000ull; 945 break; 946 default: 947 /* What to do here ??? */ 948 env->rmls = 0; 949 } 950 } 951 952 void ppc_hash64_update_vrma(CPUPPCState *env) 953 { 954 const struct ppc_one_seg_page_size *sps = NULL; 955 target_ulong esid, vsid, lpcr; 956 ppc_slb_t *slb = &env->vrma_slb; 957 uint32_t vrmasd; 958 int i; 959 960 /* First clear it */ 961 slb->esid = slb->vsid = 0; 962 slb->sps = NULL; 963 964 /* Is VRMA enabled ? */ 965 lpcr = env->spr[SPR_LPCR]; 966 if (!(lpcr & LPCR_VPM0)) { 967 return; 968 } 969 970 /* Make one up. Mostly ignore the ESID which will not be 971 * needed for translation 972 */ 973 vsid = SLB_VSID_VRMA; 974 vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT; 975 vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP); 976 esid = SLB_ESID_V; 977 978 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { 979 const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i]; 980 981 if (!sps1->page_shift) { 982 break; 983 } 984 985 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) { 986 sps = sps1; 987 break; 988 } 989 } 990 991 if (!sps) { 992 error_report("Bad page size encoding esid 0x"TARGET_FMT_lx 993 " vsid 0x"TARGET_FMT_lx, esid, vsid); 994 return; 995 } 996 997 slb->vsid = vsid; 998 slb->esid = esid; 999 slb->sps = sps; 1000 } 1001 1002 void helper_store_lpcr(CPUPPCState *env, target_ulong val) 1003 { 1004 uint64_t lpcr = 0; 1005 1006 /* Filter out bits */ 1007 switch (env->mmu_model) { 1008 case POWERPC_MMU_64B: /* 970 */ 1009 if (val & 0x40) { 1010 lpcr |= LPCR_LPES0; 1011 } 1012 if (val & 0x8000000000000000ull) { 1013 lpcr |= LPCR_LPES1; 1014 } 1015 if (val & 0x20) { 1016 lpcr |= (0x4ull << LPCR_RMLS_SHIFT); 1017 } 1018 if (val & 0x4000000000000000ull) { 1019 lpcr |= (0x2ull << LPCR_RMLS_SHIFT); 1020 } 1021 if (val & 0x2000000000000000ull) { 1022 lpcr |= (0x1ull << LPCR_RMLS_SHIFT); 1023 } 1024 env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26; 1025 1026 /* XXX We could also write LPID from HID4 here 1027 * but since we don't tag any translation on it 1028 * it doesn't actually matter 1029 */ 1030 /* XXX For proper emulation of 970 we also need 1031 * to dig HRMOR out of HID5 1032 */ 1033 break; 1034 case POWERPC_MMU_2_03: /* P5p */ 1035 lpcr = val & (LPCR_RMLS | LPCR_ILE | 1036 LPCR_LPES0 | LPCR_LPES1 | 1037 LPCR_RMI | LPCR_HDICE); 1038 break; 1039 case POWERPC_MMU_2_06: /* P7 */ 1040 lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD | 1041 LPCR_VRMASD | LPCR_RMLS | LPCR_ILE | 1042 LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 | 1043 LPCR_MER | LPCR_TC | 1044 LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE); 1045 break; 1046 case POWERPC_MMU_2_07: /* P8 */ 1047 lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV | 1048 LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE | 1049 LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 | 1050 LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 | 1051 LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE); 1052 break; 1053 default: 1054 ; 1055 } 1056 env->spr[SPR_LPCR] = lpcr; 1057 ppc_hash64_update_rmls(env); 1058 ppc_hash64_update_vrma(env); 1059 } 1060