xref: /openbmc/qemu/target/ppc/mmu-hash64.c (revision 4a09d0bb)
1 /*
2  *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *  Copyright (c) 2013 David Gibson, IBM Corporation
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2 of the License, or (at your option) any later version.
11  *
12  * This library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19  */
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/helper-proto.h"
25 #include "qemu/error-report.h"
26 #include "sysemu/hw_accel.h"
27 #include "kvm_ppc.h"
28 #include "mmu-hash64.h"
29 #include "exec/log.h"
30 
31 //#define DEBUG_SLB
32 
33 #ifdef DEBUG_SLB
34 #  define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
35 #else
36 #  define LOG_SLB(...) do { } while (0)
37 #endif
38 
39 /*
40  * Used to indicate that a CPU has its hash page table (HPT) managed
41  * within the host kernel
42  */
43 #define MMU_HASH64_KVM_MANAGED_HPT      ((void *)-1)
44 
45 /*
46  * SLB handling
47  */
48 
49 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
50 {
51     CPUPPCState *env = &cpu->env;
52     uint64_t esid_256M, esid_1T;
53     int n;
54 
55     LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
56 
57     esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
58     esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
59 
60     for (n = 0; n < env->slb_nr; n++) {
61         ppc_slb_t *slb = &env->slb[n];
62 
63         LOG_SLB("%s: slot %d %016" PRIx64 " %016"
64                     PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
65         /* We check for 1T matches on all MMUs here - if the MMU
66          * doesn't have 1T segment support, we will have prevented 1T
67          * entries from being inserted in the slbmte code. */
68         if (((slb->esid == esid_256M) &&
69              ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
70             || ((slb->esid == esid_1T) &&
71                 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
72             return slb;
73         }
74     }
75 
76     return NULL;
77 }
78 
79 void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
80 {
81     CPUPPCState *env = &cpu->env;
82     int i;
83     uint64_t slbe, slbv;
84 
85     cpu_synchronize_state(CPU(cpu));
86 
87     cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
88     for (i = 0; i < env->slb_nr; i++) {
89         slbe = env->slb[i].esid;
90         slbv = env->slb[i].vsid;
91         if (slbe == 0 && slbv == 0) {
92             continue;
93         }
94         cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
95                     i, slbe, slbv);
96     }
97 }
98 
99 void helper_slbia(CPUPPCState *env)
100 {
101     int n;
102 
103     /* XXX: Warning: slbia never invalidates the first segment */
104     for (n = 1; n < env->slb_nr; n++) {
105         ppc_slb_t *slb = &env->slb[n];
106 
107         if (slb->esid & SLB_ESID_V) {
108             slb->esid &= ~SLB_ESID_V;
109             /* XXX: given the fact that segment size is 256 MB or 1TB,
110              *      and we still don't have a tlb_flush_mask(env, n, mask)
111              *      in QEMU, we just invalidate all TLBs
112              */
113             env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
114         }
115     }
116 }
117 
118 void helper_slbie(CPUPPCState *env, target_ulong addr)
119 {
120     PowerPCCPU *cpu = ppc_env_get_cpu(env);
121     ppc_slb_t *slb;
122 
123     slb = slb_lookup(cpu, addr);
124     if (!slb) {
125         return;
126     }
127 
128     if (slb->esid & SLB_ESID_V) {
129         slb->esid &= ~SLB_ESID_V;
130 
131         /* XXX: given the fact that segment size is 256 MB or 1TB,
132          *      and we still don't have a tlb_flush_mask(env, n, mask)
133          *      in QEMU, we just invalidate all TLBs
134          */
135         env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
136     }
137 }
138 
139 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
140                   target_ulong esid, target_ulong vsid)
141 {
142     CPUPPCState *env = &cpu->env;
143     ppc_slb_t *slb = &env->slb[slot];
144     const struct ppc_one_seg_page_size *sps = NULL;
145     int i;
146 
147     if (slot >= env->slb_nr) {
148         return -1; /* Bad slot number */
149     }
150     if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
151         return -1; /* Reserved bits set */
152     }
153     if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
154         return -1; /* Bad segment size */
155     }
156     if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
157         return -1; /* 1T segment on MMU that doesn't support it */
158     }
159 
160     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
161         const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
162 
163         if (!sps1->page_shift) {
164             break;
165         }
166 
167         if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
168             sps = sps1;
169             break;
170         }
171     }
172 
173     if (!sps) {
174         error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
175                      " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
176                      slot, esid, vsid);
177         return -1;
178     }
179 
180     slb->esid = esid;
181     slb->vsid = vsid;
182     slb->sps = sps;
183 
184     LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
185             " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
186             slb->esid, slb->vsid);
187 
188     return 0;
189 }
190 
191 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
192                              target_ulong *rt)
193 {
194     CPUPPCState *env = &cpu->env;
195     int slot = rb & 0xfff;
196     ppc_slb_t *slb = &env->slb[slot];
197 
198     if (slot >= env->slb_nr) {
199         return -1;
200     }
201 
202     *rt = slb->esid;
203     return 0;
204 }
205 
206 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
207                              target_ulong *rt)
208 {
209     CPUPPCState *env = &cpu->env;
210     int slot = rb & 0xfff;
211     ppc_slb_t *slb = &env->slb[slot];
212 
213     if (slot >= env->slb_nr) {
214         return -1;
215     }
216 
217     *rt = slb->vsid;
218     return 0;
219 }
220 
221 static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
222                              target_ulong *rt)
223 {
224     CPUPPCState *env = &cpu->env;
225     ppc_slb_t *slb;
226 
227     if (!msr_is_64bit(env, env->msr)) {
228         rb &= 0xffffffff;
229     }
230     slb = slb_lookup(cpu, rb);
231     if (slb == NULL) {
232         *rt = (target_ulong)-1ul;
233     } else {
234         *rt = slb->vsid;
235     }
236     return 0;
237 }
238 
239 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
240 {
241     PowerPCCPU *cpu = ppc_env_get_cpu(env);
242 
243     if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
244         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
245                                POWERPC_EXCP_INVAL, GETPC());
246     }
247 }
248 
249 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
250 {
251     PowerPCCPU *cpu = ppc_env_get_cpu(env);
252     target_ulong rt = 0;
253 
254     if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
255         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
256                                POWERPC_EXCP_INVAL, GETPC());
257     }
258     return rt;
259 }
260 
261 target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
262 {
263     PowerPCCPU *cpu = ppc_env_get_cpu(env);
264     target_ulong rt = 0;
265 
266     if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
267         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
268                                POWERPC_EXCP_INVAL, GETPC());
269     }
270     return rt;
271 }
272 
273 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
274 {
275     PowerPCCPU *cpu = ppc_env_get_cpu(env);
276     target_ulong rt = 0;
277 
278     if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
279         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
280                                POWERPC_EXCP_INVAL, GETPC());
281     }
282     return rt;
283 }
284 
285 /*
286  * 64-bit hash table MMU handling
287  */
288 void ppc_hash64_set_sdr1(PowerPCCPU *cpu, target_ulong value,
289                          Error **errp)
290 {
291     CPUPPCState *env = &cpu->env;
292     target_ulong htabsize = value & SDR_64_HTABSIZE;
293 
294     env->spr[SPR_SDR1] = value;
295     if (htabsize > 28) {
296         error_setg(errp,
297                    "Invalid HTABSIZE 0x" TARGET_FMT_lx" stored in SDR1",
298                    htabsize);
299         htabsize = 28;
300     }
301     env->htab_mask = (1ULL << (htabsize + 18 - 7)) - 1;
302     env->htab_base = value & SDR_64_HTABORG;
303 }
304 
305 void ppc_hash64_set_external_hpt(PowerPCCPU *cpu, void *hpt, int shift,
306                                  Error **errp)
307 {
308     CPUPPCState *env = &cpu->env;
309     Error *local_err = NULL;
310 
311     if (hpt) {
312         env->external_htab = hpt;
313     } else {
314         env->external_htab = MMU_HASH64_KVM_MANAGED_HPT;
315     }
316     ppc_hash64_set_sdr1(cpu, (target_ulong)(uintptr_t)hpt | (shift - 18),
317                         &local_err);
318     if (local_err) {
319         error_propagate(errp, local_err);
320         return;
321     }
322 
323     /* Not strictly necessary, but makes it clearer that an external
324      * htab is in use when debugging */
325     env->htab_base = -1;
326 
327     if (kvm_enabled()) {
328         if (kvmppc_put_books_sregs(cpu) < 0) {
329             error_setg(errp, "Unable to update SDR1 in KVM");
330         }
331     }
332 }
333 
334 static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
335                                ppc_slb_t *slb, ppc_hash_pte64_t pte)
336 {
337     CPUPPCState *env = &cpu->env;
338     unsigned pp, key;
339     /* Some pp bit combinations have undefined behaviour, so default
340      * to no access in those cases */
341     int prot = 0;
342 
343     key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
344              : (slb->vsid & SLB_VSID_KS));
345     pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
346 
347     if (key == 0) {
348         switch (pp) {
349         case 0x0:
350         case 0x1:
351         case 0x2:
352             prot = PAGE_READ | PAGE_WRITE;
353             break;
354 
355         case 0x3:
356         case 0x6:
357             prot = PAGE_READ;
358             break;
359         }
360     } else {
361         switch (pp) {
362         case 0x0:
363         case 0x6:
364             prot = 0;
365             break;
366 
367         case 0x1:
368         case 0x3:
369             prot = PAGE_READ;
370             break;
371 
372         case 0x2:
373             prot = PAGE_READ | PAGE_WRITE;
374             break;
375         }
376     }
377 
378     /* No execute if either noexec or guarded bits set */
379     if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
380         || (slb->vsid & SLB_VSID_N)) {
381         prot |= PAGE_EXEC;
382     }
383 
384     return prot;
385 }
386 
387 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
388 {
389     CPUPPCState *env = &cpu->env;
390     int key, amrbits;
391     int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
392 
393     /* Only recent MMUs implement Virtual Page Class Key Protection */
394     if (!(env->mmu_model & POWERPC_MMU_AMR)) {
395         return prot;
396     }
397 
398     key = HPTE64_R_KEY(pte.pte1);
399     amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
400 
401     /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
402     /*         env->spr[SPR_AMR]); */
403 
404     /*
405      * A store is permitted if the AMR bit is 0. Remove write
406      * protection if it is set.
407      */
408     if (amrbits & 0x2) {
409         prot &= ~PAGE_WRITE;
410     }
411     /*
412      * A load is permitted if the AMR bit is 0. Remove read
413      * protection if it is set.
414      */
415     if (amrbits & 0x1) {
416         prot &= ~PAGE_READ;
417     }
418 
419     return prot;
420 }
421 
422 uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index)
423 {
424     uint64_t token = 0;
425     hwaddr pte_offset;
426 
427     pte_offset = pte_index * HASH_PTE_SIZE_64;
428     if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
429         /*
430          * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
431          */
432         token = kvmppc_hash64_read_pteg(cpu, pte_index);
433     } else if (cpu->env.external_htab) {
434         /*
435          * HTAB is controlled by QEMU. Just point to the internally
436          * accessible PTEG.
437          */
438         token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset;
439     } else if (cpu->env.htab_base) {
440         token = cpu->env.htab_base + pte_offset;
441     }
442     return token;
443 }
444 
445 void ppc_hash64_stop_access(PowerPCCPU *cpu, uint64_t token)
446 {
447     if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
448         kvmppc_hash64_free_pteg(token);
449     }
450 }
451 
452 static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
453     uint64_t pte0, uint64_t pte1)
454 {
455     int i;
456 
457     if (!(pte0 & HPTE64_V_LARGE)) {
458         if (sps->page_shift != 12) {
459             /* 4kiB page in a non 4kiB segment */
460             return 0;
461         }
462         /* Normal 4kiB page */
463         return 12;
464     }
465 
466     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
467         const struct ppc_one_page_size *ps = &sps->enc[i];
468         uint64_t mask;
469 
470         if (!ps->page_shift) {
471             break;
472         }
473 
474         if (ps->page_shift == 12) {
475             /* L bit is set so this can't be a 4kiB page */
476             continue;
477         }
478 
479         mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
480 
481         if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
482             return ps->page_shift;
483         }
484     }
485 
486     return 0; /* Bad page size encoding */
487 }
488 
489 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
490                                      const struct ppc_one_seg_page_size *sps,
491                                      target_ulong ptem,
492                                      ppc_hash_pte64_t *pte, unsigned *pshift)
493 {
494     CPUPPCState *env = &cpu->env;
495     int i;
496     uint64_t token;
497     target_ulong pte0, pte1;
498     target_ulong pte_index;
499 
500     pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP;
501     token = ppc_hash64_start_access(cpu, pte_index);
502     if (!token) {
503         return -1;
504     }
505     for (i = 0; i < HPTES_PER_GROUP; i++) {
506         pte0 = ppc_hash64_load_hpte0(cpu, token, i);
507         pte1 = ppc_hash64_load_hpte1(cpu, token, i);
508 
509         /* This compares V, B, H (secondary) and the AVPN */
510         if (HPTE64_V_COMPARE(pte0, ptem)) {
511             *pshift = hpte_page_shift(sps, pte0, pte1);
512             /*
513              * If there is no match, ignore the PTE, it could simply
514              * be for a different segment size encoding and the
515              * architecture specifies we should not match. Linux will
516              * potentially leave behind PTEs for the wrong base page
517              * size when demoting segments.
518              */
519             if (*pshift == 0) {
520                 continue;
521             }
522             /* We don't do anything with pshift yet as qemu TLB only deals
523              * with 4K pages anyway
524              */
525             pte->pte0 = pte0;
526             pte->pte1 = pte1;
527             ppc_hash64_stop_access(cpu, token);
528             return (pte_index + i) * HASH_PTE_SIZE_64;
529         }
530     }
531     ppc_hash64_stop_access(cpu, token);
532     /*
533      * We didn't find a valid entry.
534      */
535     return -1;
536 }
537 
538 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
539                                      ppc_slb_t *slb, target_ulong eaddr,
540                                      ppc_hash_pte64_t *pte, unsigned *pshift)
541 {
542     CPUPPCState *env = &cpu->env;
543     hwaddr pte_offset;
544     hwaddr hash;
545     uint64_t vsid, epnmask, epn, ptem;
546     const struct ppc_one_seg_page_size *sps = slb->sps;
547 
548     /* The SLB store path should prevent any bad page size encodings
549      * getting in there, so: */
550     assert(sps);
551 
552     /* If ISL is set in LPCR we need to clamp the page size to 4K */
553     if (env->spr[SPR_LPCR] & LPCR_ISL) {
554         /* We assume that when using TCG, 4k is first entry of SPS */
555         sps = &env->sps.sps[0];
556         assert(sps->page_shift == 12);
557     }
558 
559     epnmask = ~((1ULL << sps->page_shift) - 1);
560 
561     if (slb->vsid & SLB_VSID_B) {
562         /* 1TB segment */
563         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
564         epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
565         hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
566     } else {
567         /* 256M segment */
568         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
569         epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
570         hash = vsid ^ (epn >> sps->page_shift);
571     }
572     ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
573     ptem |= HPTE64_V_VALID;
574 
575     /* Page address translation */
576     qemu_log_mask(CPU_LOG_MMU,
577             "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
578             " hash " TARGET_FMT_plx "\n",
579             env->htab_base, env->htab_mask, hash);
580 
581     /* Primary PTEG lookup */
582     qemu_log_mask(CPU_LOG_MMU,
583             "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
584             " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
585             " hash=" TARGET_FMT_plx "\n",
586             env->htab_base, env->htab_mask, vsid, ptem,  hash);
587     pte_offset = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
588 
589     if (pte_offset == -1) {
590         /* Secondary PTEG lookup */
591         ptem |= HPTE64_V_SECONDARY;
592         qemu_log_mask(CPU_LOG_MMU,
593                 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
594                 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
595                 " hash=" TARGET_FMT_plx "\n", env->htab_base,
596                 env->htab_mask, vsid, ptem, ~hash);
597 
598         pte_offset = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
599     }
600 
601     return pte_offset;
602 }
603 
604 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
605                                           uint64_t pte0, uint64_t pte1)
606 {
607     CPUPPCState *env = &cpu->env;
608     int i;
609 
610     if (!(pte0 & HPTE64_V_LARGE)) {
611         return 12;
612     }
613 
614     /*
615      * The encodings in env->sps need to be carefully chosen so that
616      * this gives an unambiguous result.
617      */
618     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
619         const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
620         unsigned shift;
621 
622         if (!sps->page_shift) {
623             break;
624         }
625 
626         shift = hpte_page_shift(sps, pte0, pte1);
627         if (shift) {
628             return shift;
629         }
630     }
631 
632     return 0;
633 }
634 
635 static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env,
636                                uint64_t error_code)
637 {
638     bool vpm;
639 
640     if (msr_ir) {
641         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
642     } else {
643         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
644     }
645     if (vpm && !msr_hv) {
646         cs->exception_index = POWERPC_EXCP_HISI;
647     } else {
648         cs->exception_index = POWERPC_EXCP_ISI;
649     }
650     env->error_code = error_code;
651 }
652 
653 static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar,
654                                uint64_t dsisr)
655 {
656     bool vpm;
657 
658     if (msr_dr) {
659         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
660     } else {
661         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
662     }
663     if (vpm && !msr_hv) {
664         cs->exception_index = POWERPC_EXCP_HDSI;
665         env->spr[SPR_HDAR] = dar;
666         env->spr[SPR_HDSISR] = dsisr;
667     } else {
668         cs->exception_index = POWERPC_EXCP_DSI;
669         env->spr[SPR_DAR] = dar;
670         env->spr[SPR_DSISR] = dsisr;
671    }
672     env->error_code = 0;
673 }
674 
675 
676 int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
677                                 int rwx, int mmu_idx)
678 {
679     CPUState *cs = CPU(cpu);
680     CPUPPCState *env = &cpu->env;
681     ppc_slb_t *slb;
682     unsigned apshift;
683     hwaddr pte_offset;
684     ppc_hash_pte64_t pte;
685     int pp_prot, amr_prot, prot;
686     uint64_t new_pte1, dsisr;
687     const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
688     hwaddr raddr;
689 
690     assert((rwx == 0) || (rwx == 1) || (rwx == 2));
691 
692     /* Note on LPCR usage: 970 uses HID4, but our special variant
693      * of store_spr copies relevant fields into env->spr[SPR_LPCR].
694      * Similarily we filter unimplemented bits when storing into
695      * LPCR depending on the MMU version. This code can thus just
696      * use the LPCR "as-is".
697      */
698 
699     /* 1. Handle real mode accesses */
700     if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
701         /* Translation is supposedly "off"  */
702         /* In real mode the top 4 effective address bits are (mostly) ignored */
703         raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
704 
705         /* In HV mode, add HRMOR if top EA bit is clear */
706         if (msr_hv || !env->has_hv_mode) {
707             if (!(eaddr >> 63)) {
708                 raddr |= env->spr[SPR_HRMOR];
709             }
710         } else {
711             /* Otherwise, check VPM for RMA vs VRMA */
712             if (env->spr[SPR_LPCR] & LPCR_VPM0) {
713                 slb = &env->vrma_slb;
714                 if (slb->sps) {
715                     goto skip_slb_search;
716                 }
717                 /* Not much else to do here */
718                 cs->exception_index = POWERPC_EXCP_MCHECK;
719                 env->error_code = 0;
720                 return 1;
721             } else if (raddr < env->rmls) {
722                 /* RMA. Check bounds in RMLS */
723                 raddr |= env->spr[SPR_RMOR];
724             } else {
725                 /* The access failed, generate the approriate interrupt */
726                 if (rwx == 2) {
727                     ppc_hash64_set_isi(cs, env, 0x08000000);
728                 } else {
729                     dsisr = 0x08000000;
730                     if (rwx == 1) {
731                         dsisr |= 0x02000000;
732                     }
733                     ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
734                 }
735                 return 1;
736             }
737         }
738         tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
739                      PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
740                      TARGET_PAGE_SIZE);
741         return 0;
742     }
743 
744     /* 2. Translation is on, so look up the SLB */
745     slb = slb_lookup(cpu, eaddr);
746     if (!slb) {
747         if (rwx == 2) {
748             cs->exception_index = POWERPC_EXCP_ISEG;
749             env->error_code = 0;
750         } else {
751             cs->exception_index = POWERPC_EXCP_DSEG;
752             env->error_code = 0;
753             env->spr[SPR_DAR] = eaddr;
754         }
755         return 1;
756     }
757 
758 skip_slb_search:
759 
760     /* 3. Check for segment level no-execute violation */
761     if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
762         ppc_hash64_set_isi(cs, env, 0x10000000);
763         return 1;
764     }
765 
766     /* 4. Locate the PTE in the hash table */
767     pte_offset = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
768     if (pte_offset == -1) {
769         dsisr = 0x40000000;
770         if (rwx == 2) {
771             ppc_hash64_set_isi(cs, env, dsisr);
772         } else {
773             if (rwx == 1) {
774                 dsisr |= 0x02000000;
775             }
776             ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
777         }
778         return 1;
779     }
780     qemu_log_mask(CPU_LOG_MMU,
781                 "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
782 
783     /* 5. Check access permissions */
784 
785     pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
786     amr_prot = ppc_hash64_amr_prot(cpu, pte);
787     prot = pp_prot & amr_prot;
788 
789     if ((need_prot[rwx] & ~prot) != 0) {
790         /* Access right violation */
791         qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
792         if (rwx == 2) {
793             ppc_hash64_set_isi(cs, env, 0x08000000);
794         } else {
795             dsisr = 0;
796             if (need_prot[rwx] & ~pp_prot) {
797                 dsisr |= 0x08000000;
798             }
799             if (rwx == 1) {
800                 dsisr |= 0x02000000;
801             }
802             if (need_prot[rwx] & ~amr_prot) {
803                 dsisr |= 0x00200000;
804             }
805             ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
806         }
807         return 1;
808     }
809 
810     qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
811 
812     /* 6. Update PTE referenced and changed bits if necessary */
813 
814     new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
815     if (rwx == 1) {
816         new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
817     } else {
818         /* Treat the page as read-only for now, so that a later write
819          * will pass through this function again to set the C bit */
820         prot &= ~PAGE_WRITE;
821     }
822 
823     if (new_pte1 != pte.pte1) {
824         ppc_hash64_store_hpte(cpu, pte_offset / HASH_PTE_SIZE_64,
825                               pte.pte0, new_pte1);
826     }
827 
828     /* 7. Determine the real address from the PTE */
829 
830     raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
831 
832     tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
833                  prot, mmu_idx, 1ULL << apshift);
834 
835     return 0;
836 }
837 
838 hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
839 {
840     CPUPPCState *env = &cpu->env;
841     ppc_slb_t *slb;
842     hwaddr pte_offset, raddr;
843     ppc_hash_pte64_t pte;
844     unsigned apshift;
845 
846     /* Handle real mode */
847     if (msr_dr == 0) {
848         /* In real mode the top 4 effective address bits are ignored */
849         raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
850 
851         /* In HV mode, add HRMOR if top EA bit is clear */
852         if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
853             return raddr | env->spr[SPR_HRMOR];
854         }
855 
856         /* Otherwise, check VPM for RMA vs VRMA */
857         if (env->spr[SPR_LPCR] & LPCR_VPM0) {
858             slb = &env->vrma_slb;
859             if (!slb->sps) {
860                 return -1;
861             }
862         } else if (raddr < env->rmls) {
863             /* RMA. Check bounds in RMLS */
864             return raddr | env->spr[SPR_RMOR];
865         } else {
866             return -1;
867         }
868     } else {
869         slb = slb_lookup(cpu, addr);
870         if (!slb) {
871             return -1;
872         }
873     }
874 
875     pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
876     if (pte_offset == -1) {
877         return -1;
878     }
879 
880     return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
881         & TARGET_PAGE_MASK;
882 }
883 
884 void ppc_hash64_store_hpte(PowerPCCPU *cpu,
885                            target_ulong pte_index,
886                            target_ulong pte0, target_ulong pte1)
887 {
888     CPUPPCState *env = &cpu->env;
889 
890     if (env->external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
891         kvmppc_hash64_write_pte(env, pte_index, pte0, pte1);
892         return;
893     }
894 
895     pte_index *= HASH_PTE_SIZE_64;
896     if (env->external_htab) {
897         stq_p(env->external_htab + pte_index, pte0);
898         stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
899     } else {
900         stq_phys(CPU(cpu)->as, env->htab_base + pte_index, pte0);
901         stq_phys(CPU(cpu)->as,
902                  env->htab_base + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
903     }
904 }
905 
906 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu,
907                                target_ulong pte_index,
908                                target_ulong pte0, target_ulong pte1)
909 {
910     /*
911      * XXX: given the fact that there are too many segments to
912      * invalidate, and we still don't have a tlb_flush_mask(env, n,
913      * mask) in QEMU, we just invalidate all TLBs
914      */
915     cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
916 }
917 
918 void ppc_hash64_update_rmls(CPUPPCState *env)
919 {
920     uint64_t lpcr = env->spr[SPR_LPCR];
921 
922     /*
923      * This is the full 4 bits encoding of POWER8. Previous
924      * CPUs only support a subset of these but the filtering
925      * is done when writing LPCR
926      */
927     switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
928     case 0x8: /* 32MB */
929         env->rmls = 0x2000000ull;
930         break;
931     case 0x3: /* 64MB */
932         env->rmls = 0x4000000ull;
933         break;
934     case 0x7: /* 128MB */
935         env->rmls = 0x8000000ull;
936         break;
937     case 0x4: /* 256MB */
938         env->rmls = 0x10000000ull;
939         break;
940     case 0x2: /* 1GB */
941         env->rmls = 0x40000000ull;
942         break;
943     case 0x1: /* 16GB */
944         env->rmls = 0x400000000ull;
945         break;
946     default:
947         /* What to do here ??? */
948         env->rmls = 0;
949     }
950 }
951 
952 void ppc_hash64_update_vrma(CPUPPCState *env)
953 {
954     const struct ppc_one_seg_page_size *sps = NULL;
955     target_ulong esid, vsid, lpcr;
956     ppc_slb_t *slb = &env->vrma_slb;
957     uint32_t vrmasd;
958     int i;
959 
960     /* First clear it */
961     slb->esid = slb->vsid = 0;
962     slb->sps = NULL;
963 
964     /* Is VRMA enabled ? */
965     lpcr = env->spr[SPR_LPCR];
966     if (!(lpcr & LPCR_VPM0)) {
967         return;
968     }
969 
970     /* Make one up. Mostly ignore the ESID which will not be
971      * needed for translation
972      */
973     vsid = SLB_VSID_VRMA;
974     vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
975     vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
976     esid = SLB_ESID_V;
977 
978    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
979         const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
980 
981         if (!sps1->page_shift) {
982             break;
983         }
984 
985         if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
986             sps = sps1;
987             break;
988         }
989     }
990 
991     if (!sps) {
992         error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
993                      " vsid 0x"TARGET_FMT_lx, esid, vsid);
994         return;
995     }
996 
997     slb->vsid = vsid;
998     slb->esid = esid;
999     slb->sps = sps;
1000 }
1001 
1002 void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1003 {
1004     uint64_t lpcr = 0;
1005 
1006     /* Filter out bits */
1007     switch (env->mmu_model) {
1008     case POWERPC_MMU_64B: /* 970 */
1009         if (val & 0x40) {
1010             lpcr |= LPCR_LPES0;
1011         }
1012         if (val & 0x8000000000000000ull) {
1013             lpcr |= LPCR_LPES1;
1014         }
1015         if (val & 0x20) {
1016             lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
1017         }
1018         if (val & 0x4000000000000000ull) {
1019             lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
1020         }
1021         if (val & 0x2000000000000000ull) {
1022             lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
1023         }
1024         env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
1025 
1026         /* XXX We could also write LPID from HID4 here
1027          * but since we don't tag any translation on it
1028          * it doesn't actually matter
1029          */
1030         /* XXX For proper emulation of 970 we also need
1031          * to dig HRMOR out of HID5
1032          */
1033         break;
1034     case POWERPC_MMU_2_03: /* P5p */
1035         lpcr = val & (LPCR_RMLS | LPCR_ILE |
1036                       LPCR_LPES0 | LPCR_LPES1 |
1037                       LPCR_RMI | LPCR_HDICE);
1038         break;
1039     case POWERPC_MMU_2_06: /* P7 */
1040         lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
1041                       LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1042                       LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
1043                       LPCR_MER | LPCR_TC |
1044                       LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
1045         break;
1046     case POWERPC_MMU_2_07: /* P8 */
1047         lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
1048                       LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1049                       LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
1050                       LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
1051                       LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
1052         break;
1053     default:
1054         ;
1055     }
1056     env->spr[SPR_LPCR] = lpcr;
1057     ppc_hash64_update_rmls(env);
1058     ppc_hash64_update_vrma(env);
1059 }
1060