xref: /openbmc/qemu/target/ppc/mmu-hash64.c (revision 2f95279a)
1 /*
2  *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *  Copyright (c) 2013 David Gibson, IBM Corporation
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * This library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19  */
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/page-protection.h"
25 #include "qemu/error-report.h"
26 #include "qemu/qemu-print.h"
27 #include "sysemu/hw_accel.h"
28 #include "kvm_ppc.h"
29 #include "mmu-hash64.h"
30 #include "exec/log.h"
31 #include "hw/hw.h"
32 #include "internal.h"
33 #include "mmu-book3s-v3.h"
34 #include "helper_regs.h"
35 
36 #ifdef CONFIG_TCG
37 #include "exec/helper-proto.h"
38 #endif
39 
40 /* #define DEBUG_SLB */
41 
42 #ifdef DEBUG_SLB
43 #  define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
44 #else
45 #  define LOG_SLB(...) do { } while (0)
46 #endif
47 
48 /*
49  * SLB handling
50  */
51 
52 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
53 {
54     CPUPPCState *env = &cpu->env;
55     uint64_t esid_256M, esid_1T;
56     int n;
57 
58     LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
59 
60     esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
61     esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
62 
63     for (n = 0; n < cpu->hash64_opts->slb_size; n++) {
64         ppc_slb_t *slb = &env->slb[n];
65 
66         LOG_SLB("%s: slot %d %016" PRIx64 " %016"
67                     PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
68         /*
69          * We check for 1T matches on all MMUs here - if the MMU
70          * doesn't have 1T segment support, we will have prevented 1T
71          * entries from being inserted in the slbmte code.
72          */
73         if (((slb->esid == esid_256M) &&
74              ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
75             || ((slb->esid == esid_1T) &&
76                 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
77             return slb;
78         }
79     }
80 
81     return NULL;
82 }
83 
84 void dump_slb(PowerPCCPU *cpu)
85 {
86     CPUPPCState *env = &cpu->env;
87     int i;
88     uint64_t slbe, slbv;
89 
90     cpu_synchronize_state(CPU(cpu));
91 
92     qemu_printf("SLB\tESID\t\t\tVSID\n");
93     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
94         slbe = env->slb[i].esid;
95         slbv = env->slb[i].vsid;
96         if (slbe == 0 && slbv == 0) {
97             continue;
98         }
99         qemu_printf("%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
100                     i, slbe, slbv);
101     }
102 }
103 
104 #ifdef CONFIG_TCG
105 void helper_SLBIA(CPUPPCState *env, uint32_t ih)
106 {
107     PowerPCCPU *cpu = env_archcpu(env);
108     int starting_entry;
109     int n;
110 
111     /*
112      * slbia must always flush all TLB (which is equivalent to ERAT in ppc
113      * architecture). Matching on SLB_ESID_V is not good enough, because slbmte
114      * can overwrite a valid SLB without flushing its lookaside information.
115      *
116      * It would be possible to keep the TLB in synch with the SLB by flushing
117      * when a valid entry is overwritten by slbmte, and therefore slbia would
118      * not have to flush unless it evicts a valid SLB entry. However it is
119      * expected that slbmte is more common than slbia, and slbia is usually
120      * going to evict valid SLB entries, so that tradeoff is unlikely to be a
121      * good one.
122      *
123      * ISA v2.05 introduced IH field with values 0,1,2,6. These all invalidate
124      * the same SLB entries (everything but entry 0), but differ in what
125      * "lookaside information" is invalidated. TCG can ignore this and flush
126      * everything.
127      *
128      * ISA v3.0 introduced additional values 3,4,7, which change what SLBs are
129      * invalidated.
130      */
131 
132     env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
133 
134     starting_entry = 1; /* default for IH=0,1,2,6 */
135 
136     if (env->mmu_model == POWERPC_MMU_3_00) {
137         switch (ih) {
138         case 0x7:
139             /* invalidate no SLBs, but all lookaside information */
140             return;
141 
142         case 0x3:
143         case 0x4:
144             /* also considers SLB entry 0 */
145             starting_entry = 0;
146             break;
147 
148         case 0x5:
149             /* treat undefined values as ih==0, and warn */
150             qemu_log_mask(LOG_GUEST_ERROR,
151                           "slbia undefined IH field %u.\n", ih);
152             break;
153 
154         default:
155             /* 0,1,2,6 */
156             break;
157         }
158     }
159 
160     for (n = starting_entry; n < cpu->hash64_opts->slb_size; n++) {
161         ppc_slb_t *slb = &env->slb[n];
162 
163         if (!(slb->esid & SLB_ESID_V)) {
164             continue;
165         }
166         if (env->mmu_model == POWERPC_MMU_3_00) {
167             if (ih == 0x3 && (slb->vsid & SLB_VSID_C) == 0) {
168                 /* preserves entries with a class value of 0 */
169                 continue;
170             }
171         }
172 
173         slb->esid &= ~SLB_ESID_V;
174     }
175 }
176 
177 #if defined(TARGET_PPC64)
178 void helper_SLBIAG(CPUPPCState *env, target_ulong rs, uint32_t l)
179 {
180     PowerPCCPU *cpu = env_archcpu(env);
181     int n;
182 
183     /*
184      * slbiag must always flush all TLB (which is equivalent to ERAT in ppc
185      * architecture). Matching on SLB_ESID_V is not good enough, because slbmte
186      * can overwrite a valid SLB without flushing its lookaside information.
187      *
188      * It would be possible to keep the TLB in synch with the SLB by flushing
189      * when a valid entry is overwritten by slbmte, and therefore slbiag would
190      * not have to flush unless it evicts a valid SLB entry. However it is
191      * expected that slbmte is more common than slbiag, and slbiag is usually
192      * going to evict valid SLB entries, so that tradeoff is unlikely to be a
193      * good one.
194      */
195     env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
196 
197     for (n = 0; n < cpu->hash64_opts->slb_size; n++) {
198         ppc_slb_t *slb = &env->slb[n];
199         slb->esid &= ~SLB_ESID_V;
200     }
201 }
202 #endif
203 
204 static void __helper_slbie(CPUPPCState *env, target_ulong addr,
205                            target_ulong global)
206 {
207     PowerPCCPU *cpu = env_archcpu(env);
208     ppc_slb_t *slb;
209 
210     slb = slb_lookup(cpu, addr);
211     if (!slb) {
212         return;
213     }
214 
215     if (slb->esid & SLB_ESID_V) {
216         slb->esid &= ~SLB_ESID_V;
217 
218         /*
219          * XXX: given the fact that segment size is 256 MB or 1TB,
220          *      and we still don't have a tlb_flush_mask(env, n, mask)
221          *      in QEMU, we just invalidate all TLBs
222          */
223         env->tlb_need_flush |=
224             (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
225     }
226 }
227 
228 void helper_SLBIE(CPUPPCState *env, target_ulong addr)
229 {
230     __helper_slbie(env, addr, false);
231 }
232 
233 void helper_SLBIEG(CPUPPCState *env, target_ulong addr)
234 {
235     __helper_slbie(env, addr, true);
236 }
237 #endif
238 
239 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
240                   target_ulong esid, target_ulong vsid)
241 {
242     CPUPPCState *env = &cpu->env;
243     ppc_slb_t *slb = &env->slb[slot];
244     const PPCHash64SegmentPageSizes *sps = NULL;
245     int i;
246 
247     if (slot >= cpu->hash64_opts->slb_size) {
248         return -1; /* Bad slot number */
249     }
250     if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
251         return -1; /* Reserved bits set */
252     }
253     if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
254         return -1; /* Bad segment size */
255     }
256     if ((vsid & SLB_VSID_B) && !(ppc_hash64_has(cpu, PPC_HASH64_1TSEG))) {
257         return -1; /* 1T segment on MMU that doesn't support it */
258     }
259 
260     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
261         const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];
262 
263         if (!sps1->page_shift) {
264             break;
265         }
266 
267         if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
268             sps = sps1;
269             break;
270         }
271     }
272 
273     if (!sps) {
274         error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
275                      " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
276                      slot, esid, vsid);
277         return -1;
278     }
279 
280     slb->esid = esid;
281     slb->vsid = vsid;
282     slb->sps = sps;
283 
284     LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
285             " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
286             slb->esid, slb->vsid);
287 
288     return 0;
289 }
290 
291 #ifdef CONFIG_TCG
292 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
293                              target_ulong *rt)
294 {
295     CPUPPCState *env = &cpu->env;
296     int slot = rb & 0xfff;
297     ppc_slb_t *slb = &env->slb[slot];
298 
299     if (slot >= cpu->hash64_opts->slb_size) {
300         return -1;
301     }
302 
303     *rt = slb->esid;
304     return 0;
305 }
306 
307 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
308                              target_ulong *rt)
309 {
310     CPUPPCState *env = &cpu->env;
311     int slot = rb & 0xfff;
312     ppc_slb_t *slb = &env->slb[slot];
313 
314     if (slot >= cpu->hash64_opts->slb_size) {
315         return -1;
316     }
317 
318     *rt = slb->vsid;
319     return 0;
320 }
321 
322 static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
323                              target_ulong *rt)
324 {
325     CPUPPCState *env = &cpu->env;
326     ppc_slb_t *slb;
327 
328     if (!msr_is_64bit(env, env->msr)) {
329         rb &= 0xffffffff;
330     }
331     slb = slb_lookup(cpu, rb);
332     if (slb == NULL) {
333         *rt = (target_ulong)-1ul;
334     } else {
335         *rt = slb->vsid;
336     }
337     return 0;
338 }
339 
340 void helper_SLBMTE(CPUPPCState *env, target_ulong rb, target_ulong rs)
341 {
342     PowerPCCPU *cpu = env_archcpu(env);
343 
344     if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
345         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
346                                POWERPC_EXCP_INVAL, GETPC());
347     }
348 }
349 
350 target_ulong helper_SLBMFEE(CPUPPCState *env, target_ulong rb)
351 {
352     PowerPCCPU *cpu = env_archcpu(env);
353     target_ulong rt = 0;
354 
355     if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
356         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
357                                POWERPC_EXCP_INVAL, GETPC());
358     }
359     return rt;
360 }
361 
362 target_ulong helper_SLBFEE(CPUPPCState *env, target_ulong rb)
363 {
364     PowerPCCPU *cpu = env_archcpu(env);
365     target_ulong rt = 0;
366 
367     if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
368         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
369                                POWERPC_EXCP_INVAL, GETPC());
370     }
371     return rt;
372 }
373 
374 target_ulong helper_SLBMFEV(CPUPPCState *env, target_ulong rb)
375 {
376     PowerPCCPU *cpu = env_archcpu(env);
377     target_ulong rt = 0;
378 
379     if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
380         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
381                                POWERPC_EXCP_INVAL, GETPC());
382     }
383     return rt;
384 }
385 #endif
386 
387 /* Check No-Execute or Guarded Storage */
388 static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
389                                               ppc_hash_pte64_t pte)
390 {
391     /* Exec permissions CANNOT take away read or write permissions */
392     return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ?
393             PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC;
394 }
395 
396 /* Check Basic Storage Protection */
397 static int ppc_hash64_pte_prot(int mmu_idx,
398                                ppc_slb_t *slb, ppc_hash_pte64_t pte)
399 {
400     unsigned pp, key;
401     /*
402      * Some pp bit combinations have undefined behaviour, so default
403      * to no access in those cases
404      */
405     int prot = 0;
406 
407     key = !!(mmuidx_pr(mmu_idx) ? (slb->vsid & SLB_VSID_KP)
408              : (slb->vsid & SLB_VSID_KS));
409     pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
410 
411     if (key == 0) {
412         switch (pp) {
413         case 0x0:
414         case 0x1:
415         case 0x2:
416             prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
417             break;
418 
419         case 0x3:
420         case 0x6:
421             prot = PAGE_READ | PAGE_EXEC;
422             break;
423         }
424     } else {
425         switch (pp) {
426         case 0x0:
427         case 0x6:
428             break;
429 
430         case 0x1:
431         case 0x3:
432             prot = PAGE_READ | PAGE_EXEC;
433             break;
434 
435         case 0x2:
436             prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
437             break;
438         }
439     }
440 
441     return prot;
442 }
443 
444 /* Check the instruction access permissions specified in the IAMR */
445 static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key)
446 {
447     CPUPPCState *env = &cpu->env;
448     int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3;
449 
450     /*
451      * An instruction fetch is permitted if the IAMR bit is 0.
452      * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
453      * can only take away EXEC permissions not READ or WRITE permissions.
454      * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
455      * EXEC permissions are allowed.
456      */
457     return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE :
458                                PAGE_READ | PAGE_WRITE | PAGE_EXEC;
459 }
460 
461 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
462 {
463     CPUPPCState *env = &cpu->env;
464     int key, amrbits;
465     int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
466 
467     /* Only recent MMUs implement Virtual Page Class Key Protection */
468     if (!ppc_hash64_has(cpu, PPC_HASH64_AMR)) {
469         return prot;
470     }
471 
472     key = HPTE64_R_KEY(pte.pte1);
473     amrbits = (env->spr[SPR_AMR] >> 2 * (31 - key)) & 0x3;
474 
475     /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
476     /*         env->spr[SPR_AMR]); */
477 
478     /*
479      * A store is permitted if the AMR bit is 0. Remove write
480      * protection if it is set.
481      */
482     if (amrbits & 0x2) {
483         prot &= ~PAGE_WRITE;
484     }
485     /*
486      * A load is permitted if the AMR bit is 0. Remove read
487      * protection if it is set.
488      */
489     if (amrbits & 0x1) {
490         prot &= ~PAGE_READ;
491     }
492 
493     switch (env->mmu_model) {
494     /*
495      * MMU version 2.07 and later support IAMR
496      * Check if the IAMR allows the instruction access - it will return
497      * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
498      * if it does (and prot will be unchanged indicating execution support).
499      */
500     case POWERPC_MMU_2_07:
501     case POWERPC_MMU_3_00:
502         prot &= ppc_hash64_iamr_prot(cpu, key);
503         break;
504     default:
505         break;
506     }
507 
508     return prot;
509 }
510 
511 const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
512                                              hwaddr ptex, int n)
513 {
514     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
515     hwaddr base;
516     hwaddr plen = n * HASH_PTE_SIZE_64;
517     const ppc_hash_pte64_t *hptes;
518 
519     if (cpu->vhyp) {
520         return cpu->vhyp_class->map_hptes(cpu->vhyp, ptex, n);
521     }
522     base = ppc_hash64_hpt_base(cpu);
523 
524     if (!base) {
525         return NULL;
526     }
527 
528     hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false,
529                               MEMTXATTRS_UNSPECIFIED);
530     if (plen < (n * HASH_PTE_SIZE_64)) {
531         hw_error("%s: Unable to map all requested HPTEs\n", __func__);
532     }
533     return hptes;
534 }
535 
536 void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
537                             hwaddr ptex, int n)
538 {
539     if (cpu->vhyp) {
540         cpu->vhyp_class->unmap_hptes(cpu->vhyp, hptes, ptex, n);
541         return;
542     }
543 
544     address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
545                         false, n * HASH_PTE_SIZE_64);
546 }
547 
548 static unsigned hpte_page_shift(const PPCHash64SegmentPageSizes *sps,
549                                 uint64_t pte0, uint64_t pte1)
550 {
551     int i;
552 
553     if (!(pte0 & HPTE64_V_LARGE)) {
554         if (sps->page_shift != 12) {
555             /* 4kiB page in a non 4kiB segment */
556             return 0;
557         }
558         /* Normal 4kiB page */
559         return 12;
560     }
561 
562     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
563         const PPCHash64PageSize *ps = &sps->enc[i];
564         uint64_t mask;
565 
566         if (!ps->page_shift) {
567             break;
568         }
569 
570         if (ps->page_shift == 12) {
571             /* L bit is set so this can't be a 4kiB page */
572             continue;
573         }
574 
575         mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
576 
577         if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
578             return ps->page_shift;
579         }
580     }
581 
582     return 0; /* Bad page size encoding */
583 }
584 
585 static void ppc64_v3_new_to_old_hpte(target_ulong *pte0, target_ulong *pte1)
586 {
587     /* Insert B into pte0 */
588     *pte0 = (*pte0 & HPTE64_V_COMMON_BITS) |
589             ((*pte1 & HPTE64_R_3_0_SSIZE_MASK) <<
590              (HPTE64_V_SSIZE_SHIFT - HPTE64_R_3_0_SSIZE_SHIFT));
591 
592     /* Remove B from pte1 */
593     *pte1 = *pte1 & ~HPTE64_R_3_0_SSIZE_MASK;
594 }
595 
596 
597 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
598                                      const PPCHash64SegmentPageSizes *sps,
599                                      target_ulong ptem,
600                                      ppc_hash_pte64_t *pte, unsigned *pshift)
601 {
602     int i;
603     const ppc_hash_pte64_t *pteg;
604     target_ulong pte0, pte1;
605     target_ulong ptex;
606 
607     ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
608     pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
609     if (!pteg) {
610         return -1;
611     }
612     for (i = 0; i < HPTES_PER_GROUP; i++) {
613         pte0 = ppc_hash64_hpte0(cpu, pteg, i);
614         /*
615          * pte0 contains the valid bit and must be read before pte1,
616          * otherwise we might see an old pte1 with a new valid bit and
617          * thus an inconsistent hpte value
618          */
619         smp_rmb();
620         pte1 = ppc_hash64_hpte1(cpu, pteg, i);
621 
622         /* Convert format if necessary */
623         if (cpu->env.mmu_model == POWERPC_MMU_3_00 && !cpu->vhyp) {
624             ppc64_v3_new_to_old_hpte(&pte0, &pte1);
625         }
626 
627         /* This compares V, B, H (secondary) and the AVPN */
628         if (HPTE64_V_COMPARE(pte0, ptem)) {
629             *pshift = hpte_page_shift(sps, pte0, pte1);
630             /*
631              * If there is no match, ignore the PTE, it could simply
632              * be for a different segment size encoding and the
633              * architecture specifies we should not match. Linux will
634              * potentially leave behind PTEs for the wrong base page
635              * size when demoting segments.
636              */
637             if (*pshift == 0) {
638                 continue;
639             }
640             /*
641              * We don't do anything with pshift yet as qemu TLB only
642              * deals with 4K pages anyway
643              */
644             pte->pte0 = pte0;
645             pte->pte1 = pte1;
646             ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
647             return ptex + i;
648         }
649     }
650     ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
651     /*
652      * We didn't find a valid entry.
653      */
654     return -1;
655 }
656 
657 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
658                                      ppc_slb_t *slb, target_ulong eaddr,
659                                      ppc_hash_pte64_t *pte, unsigned *pshift)
660 {
661     CPUPPCState *env = &cpu->env;
662     hwaddr hash, ptex;
663     uint64_t vsid, epnmask, epn, ptem;
664     const PPCHash64SegmentPageSizes *sps = slb->sps;
665 
666     /*
667      * The SLB store path should prevent any bad page size encodings
668      * getting in there, so:
669      */
670     assert(sps);
671 
672     /* If ISL is set in LPCR we need to clamp the page size to 4K */
673     if (env->spr[SPR_LPCR] & LPCR_ISL) {
674         /* We assume that when using TCG, 4k is first entry of SPS */
675         sps = &cpu->hash64_opts->sps[0];
676         assert(sps->page_shift == 12);
677     }
678 
679     epnmask = ~((1ULL << sps->page_shift) - 1);
680 
681     if (slb->vsid & SLB_VSID_B) {
682         /* 1TB segment */
683         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
684         epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
685         hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
686     } else {
687         /* 256M segment */
688         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
689         epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
690         hash = vsid ^ (epn >> sps->page_shift);
691     }
692     ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
693     ptem |= HPTE64_V_VALID;
694 
695     /* Page address translation */
696     qemu_log_mask(CPU_LOG_MMU,
697             "htab_base " HWADDR_FMT_plx " htab_mask " HWADDR_FMT_plx
698             " hash " HWADDR_FMT_plx "\n",
699             ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);
700 
701     /* Primary PTEG lookup */
702     qemu_log_mask(CPU_LOG_MMU,
703             "0 htab=" HWADDR_FMT_plx "/" HWADDR_FMT_plx
704             " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
705             " hash=" HWADDR_FMT_plx "\n",
706             ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
707             vsid, ptem,  hash);
708     ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
709 
710     if (ptex == -1) {
711         /* Secondary PTEG lookup */
712         ptem |= HPTE64_V_SECONDARY;
713         qemu_log_mask(CPU_LOG_MMU,
714                 "1 htab=" HWADDR_FMT_plx "/" HWADDR_FMT_plx
715                 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
716                 " hash=" HWADDR_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
717                 ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);
718 
719         ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
720     }
721 
722     return ptex;
723 }
724 
725 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
726                                           uint64_t pte0, uint64_t pte1)
727 {
728     int i;
729 
730     if (!(pte0 & HPTE64_V_LARGE)) {
731         return 12;
732     }
733 
734     /*
735      * The encodings in env->sps need to be carefully chosen so that
736      * this gives an unambiguous result.
737      */
738     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
739         const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
740         unsigned shift;
741 
742         if (!sps->page_shift) {
743             break;
744         }
745 
746         shift = hpte_page_shift(sps, pte0, pte1);
747         if (shift) {
748             return shift;
749         }
750     }
751 
752     return 0;
753 }
754 
755 static bool ppc_hash64_use_vrma(CPUPPCState *env)
756 {
757     switch (env->mmu_model) {
758     case POWERPC_MMU_3_00:
759         /*
760          * ISAv3.0 (POWER9) always uses VRMA, the VPM0 field and RMOR
761          * register no longer exist
762          */
763         return true;
764 
765     default:
766         return !!(env->spr[SPR_LPCR] & LPCR_VPM0);
767     }
768 }
769 
770 static void ppc_hash64_set_isi(CPUState *cs, int mmu_idx, uint64_t slb_vsid,
771                                uint64_t error_code)
772 {
773     CPUPPCState *env = &POWERPC_CPU(cs)->env;
774     bool vpm;
775 
776     if (!mmuidx_real(mmu_idx)) {
777         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
778     } else {
779         vpm = ppc_hash64_use_vrma(env);
780     }
781     if (vpm && !mmuidx_hv(mmu_idx)) {
782         cs->exception_index = POWERPC_EXCP_HISI;
783         env->spr[SPR_ASDR] = slb_vsid;
784     } else {
785         cs->exception_index = POWERPC_EXCP_ISI;
786     }
787     env->error_code = error_code;
788 }
789 
790 static void ppc_hash64_set_dsi(CPUState *cs, int mmu_idx, uint64_t slb_vsid,
791                                uint64_t dar, uint64_t dsisr)
792 {
793     CPUPPCState *env = &POWERPC_CPU(cs)->env;
794     bool vpm;
795 
796     if (!mmuidx_real(mmu_idx)) {
797         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
798     } else {
799         vpm = ppc_hash64_use_vrma(env);
800     }
801     if (vpm && !mmuidx_hv(mmu_idx)) {
802         cs->exception_index = POWERPC_EXCP_HDSI;
803         env->spr[SPR_HDAR] = dar;
804         env->spr[SPR_HDSISR] = dsisr;
805         env->spr[SPR_ASDR] = slb_vsid;
806     } else {
807         cs->exception_index = POWERPC_EXCP_DSI;
808         env->spr[SPR_DAR] = dar;
809         env->spr[SPR_DSISR] = dsisr;
810    }
811     env->error_code = 0;
812 }
813 
814 
815 static void ppc_hash64_set_r(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
816 {
817     hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
818 
819     if (cpu->vhyp) {
820         cpu->vhyp_class->hpte_set_r(cpu->vhyp, ptex, pte1);
821         return;
822     }
823     base = ppc_hash64_hpt_base(cpu);
824 
825 
826     /* The HW performs a non-atomic byte update */
827     stb_phys(CPU(cpu)->as, base + offset, ((pte1 >> 8) & 0xff) | 0x01);
828 }
829 
830 static void ppc_hash64_set_c(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
831 {
832     hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
833 
834     if (cpu->vhyp) {
835         cpu->vhyp_class->hpte_set_c(cpu->vhyp, ptex, pte1);
836         return;
837     }
838     base = ppc_hash64_hpt_base(cpu);
839 
840     /* The HW performs a non-atomic byte update */
841     stb_phys(CPU(cpu)->as, base + offset, (pte1 & 0xff) | 0x80);
842 }
843 
844 static target_ulong rmls_limit(PowerPCCPU *cpu)
845 {
846     CPUPPCState *env = &cpu->env;
847     /*
848      * In theory the meanings of RMLS values are implementation
849      * dependent.  In practice, this seems to have been the set from
850      * POWER4+..POWER8, and RMLS is no longer supported in POWER9.
851      *
852      * Unsupported values mean the OS has shot itself in the
853      * foot. Return a 0-sized RMA in this case, which we expect
854      * to trigger an immediate DSI or ISI
855      */
856     static const target_ulong rma_sizes[16] = {
857         [0] = 256 * GiB,
858         [1] = 16 * GiB,
859         [2] = 1 * GiB,
860         [3] = 64 * MiB,
861         [4] = 256 * MiB,
862         [7] = 128 * MiB,
863         [8] = 32 * MiB,
864     };
865     target_ulong rmls = (env->spr[SPR_LPCR] & LPCR_RMLS) >> LPCR_RMLS_SHIFT;
866 
867     return rma_sizes[rmls];
868 }
869 
870 /* Return the LLP in SLB_VSID format */
871 static uint64_t get_vrma_llp(PowerPCCPU *cpu)
872 {
873     CPUPPCState *env = &cpu->env;
874     uint64_t llp;
875 
876     if (env->mmu_model == POWERPC_MMU_3_00) {
877         ppc_v3_pate_t pate;
878         uint64_t ps, l, lp;
879 
880         /*
881          * ISA v3.0 removes the LPCR[VRMASD] field and puts the VRMA base
882          * page size (L||LP equivalent) in the PS field in the HPT partition
883          * table entry.
884          */
885         if (!ppc64_v3_get_pate(cpu, cpu->env.spr[SPR_LPIDR], &pate)) {
886             error_report("Bad VRMA with no partition table entry");
887             return 0;
888         }
889         ps = PATE0_GET_PS(pate.dw0);
890         /* PS has L||LP in 3 consecutive bits, put them into SLB LLP format */
891         l = (ps >> 2) & 0x1;
892         lp = ps & 0x3;
893         llp = (l << SLB_VSID_L_SHIFT) | (lp << SLB_VSID_LP_SHIFT);
894 
895     } else {
896         uint64_t lpcr = env->spr[SPR_LPCR];
897         target_ulong vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
898 
899         /* VRMASD LLP matches SLB format, just shift and mask it */
900         llp = (vrmasd << SLB_VSID_LP_SHIFT) & SLB_VSID_LLP_MASK;
901     }
902 
903     return llp;
904 }
905 
906 static int build_vrma_slbe(PowerPCCPU *cpu, ppc_slb_t *slb)
907 {
908     uint64_t llp = get_vrma_llp(cpu);
909     target_ulong vsid = SLB_VSID_VRMA | llp;
910     int i;
911 
912     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
913         const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
914 
915         if (!sps->page_shift) {
916             break;
917         }
918 
919         if ((vsid & SLB_VSID_LLP_MASK) == sps->slb_enc) {
920             slb->esid = SLB_ESID_V;
921             slb->vsid = vsid;
922             slb->sps = sps;
923             return 0;
924         }
925     }
926 
927     error_report("Bad VRMA page size encoding 0x" TARGET_FMT_lx, llp);
928 
929     return -1;
930 }
931 
932 bool ppc_hash64_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
933                       hwaddr *raddrp, int *psizep, int *protp, int mmu_idx,
934                       bool guest_visible)
935 {
936     CPUState *cs = CPU(cpu);
937     CPUPPCState *env = &cpu->env;
938     ppc_slb_t vrma_slbe;
939     ppc_slb_t *slb;
940     unsigned apshift;
941     hwaddr ptex;
942     ppc_hash_pte64_t pte;
943     int exec_prot, pp_prot, amr_prot, prot;
944     int need_prot;
945     hwaddr raddr;
946 
947     /*
948      * Note on LPCR usage: 970 uses HID4, but our special variant of
949      * store_spr copies relevant fields into env->spr[SPR_LPCR].
950      * Similarly we filter unimplemented bits when storing into LPCR
951      * depending on the MMU version. This code can thus just use the
952      * LPCR "as-is".
953      */
954 
955     /* 1. Handle real mode accesses */
956     if (mmuidx_real(mmu_idx)) {
957         /*
958          * Translation is supposedly "off", but in real mode the top 4
959          * effective address bits are (mostly) ignored
960          */
961         raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
962 
963         if (cpu->vhyp) {
964             /*
965              * In virtual hypervisor mode, there's nothing to do:
966              *   EA == GPA == qemu guest address
967              */
968         } else if (mmuidx_hv(mmu_idx) || !env->has_hv_mode) {
969             /* In HV mode, add HRMOR if top EA bit is clear */
970             if (!(eaddr >> 63)) {
971                 raddr |= env->spr[SPR_HRMOR];
972             }
973         } else if (ppc_hash64_use_vrma(env)) {
974             /* Emulated VRMA mode */
975             slb = &vrma_slbe;
976             if (build_vrma_slbe(cpu, slb) != 0) {
977                 /* Invalid VRMA setup, machine check */
978                 if (guest_visible) {
979                     cs->exception_index = POWERPC_EXCP_MCHECK;
980                     env->error_code = 0;
981                 }
982                 return false;
983             }
984 
985             goto skip_slb_search;
986         } else {
987             target_ulong limit = rmls_limit(cpu);
988 
989             /* Emulated old-style RMO mode, bounds check against RMLS */
990             if (raddr >= limit) {
991                 if (!guest_visible) {
992                     return false;
993                 }
994                 switch (access_type) {
995                 case MMU_INST_FETCH:
996                     ppc_hash64_set_isi(cs, mmu_idx, 0, SRR1_PROTFAULT);
997                     break;
998                 case MMU_DATA_LOAD:
999                     ppc_hash64_set_dsi(cs, mmu_idx, 0, eaddr, DSISR_PROTFAULT);
1000                     break;
1001                 case MMU_DATA_STORE:
1002                     ppc_hash64_set_dsi(cs, mmu_idx, 0, eaddr,
1003                                        DSISR_PROTFAULT | DSISR_ISSTORE);
1004                     break;
1005                 default:
1006                     g_assert_not_reached();
1007                 }
1008                 return false;
1009             }
1010 
1011             raddr |= env->spr[SPR_RMOR];
1012         }
1013 
1014         *raddrp = raddr;
1015         *protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1016         *psizep = TARGET_PAGE_BITS;
1017         return true;
1018     }
1019 
1020     /* 2. Translation is on, so look up the SLB */
1021     slb = slb_lookup(cpu, eaddr);
1022     if (!slb) {
1023         /* No entry found, check if in-memory segment tables are in use */
1024         if (ppc64_use_proc_tbl(cpu)) {
1025             /* TODO - Unsupported */
1026             error_report("Segment Table Support Unimplemented");
1027             exit(1);
1028         }
1029         /* Segment still not found, generate the appropriate interrupt */
1030         if (!guest_visible) {
1031             return false;
1032         }
1033         switch (access_type) {
1034         case MMU_INST_FETCH:
1035             cs->exception_index = POWERPC_EXCP_ISEG;
1036             env->error_code = 0;
1037             break;
1038         case MMU_DATA_LOAD:
1039         case MMU_DATA_STORE:
1040             cs->exception_index = POWERPC_EXCP_DSEG;
1041             env->error_code = 0;
1042             env->spr[SPR_DAR] = eaddr;
1043             break;
1044         default:
1045             g_assert_not_reached();
1046         }
1047         return false;
1048     }
1049 
1050  skip_slb_search:
1051 
1052     /* 3. Check for segment level no-execute violation */
1053     if (access_type == MMU_INST_FETCH && (slb->vsid & SLB_VSID_N)) {
1054         if (guest_visible) {
1055             ppc_hash64_set_isi(cs, mmu_idx, slb->vsid, SRR1_NOEXEC_GUARD);
1056         }
1057         return false;
1058     }
1059 
1060     /* 4. Locate the PTE in the hash table */
1061     ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
1062     if (ptex == -1) {
1063         if (!guest_visible) {
1064             return false;
1065         }
1066         switch (access_type) {
1067         case MMU_INST_FETCH:
1068             ppc_hash64_set_isi(cs, mmu_idx, slb->vsid, SRR1_NOPTE);
1069             break;
1070         case MMU_DATA_LOAD:
1071             ppc_hash64_set_dsi(cs, mmu_idx, slb->vsid, eaddr, DSISR_NOPTE);
1072             break;
1073         case MMU_DATA_STORE:
1074             ppc_hash64_set_dsi(cs, mmu_idx, slb->vsid, eaddr,
1075                                DSISR_NOPTE | DSISR_ISSTORE);
1076             break;
1077         default:
1078             g_assert_not_reached();
1079         }
1080         return false;
1081     }
1082     qemu_log_mask(CPU_LOG_MMU,
1083                   "found PTE at index %08" HWADDR_PRIx "\n", ptex);
1084 
1085     /* 5. Check access permissions */
1086 
1087     exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
1088     pp_prot = ppc_hash64_pte_prot(mmu_idx, slb, pte);
1089     amr_prot = ppc_hash64_amr_prot(cpu, pte);
1090     prot = exec_prot & pp_prot & amr_prot;
1091 
1092     need_prot = check_prot_access_type(PAGE_RWX, access_type);
1093     if (need_prot & ~prot) {
1094         /* Access right violation */
1095         qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
1096         if (!guest_visible) {
1097             return false;
1098         }
1099         if (access_type == MMU_INST_FETCH) {
1100             int srr1 = 0;
1101             if (PAGE_EXEC & ~exec_prot) {
1102                 srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */
1103             } else if (PAGE_EXEC & ~pp_prot) {
1104                 srr1 |= SRR1_PROTFAULT; /* Access violates access authority */
1105             }
1106             if (PAGE_EXEC & ~amr_prot) {
1107                 srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
1108             }
1109             ppc_hash64_set_isi(cs, mmu_idx, slb->vsid, srr1);
1110         } else {
1111             int dsisr = 0;
1112             if (need_prot & ~pp_prot) {
1113                 dsisr |= DSISR_PROTFAULT;
1114             }
1115             if (access_type == MMU_DATA_STORE) {
1116                 dsisr |= DSISR_ISSTORE;
1117             }
1118             if (need_prot & ~amr_prot) {
1119                 dsisr |= DSISR_AMR;
1120             }
1121             ppc_hash64_set_dsi(cs, mmu_idx, slb->vsid, eaddr, dsisr);
1122         }
1123         return false;
1124     }
1125 
1126     qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
1127 
1128     /* 6. Update PTE referenced and changed bits if necessary */
1129 
1130     if (!(pte.pte1 & HPTE64_R_R)) {
1131         ppc_hash64_set_r(cpu, ptex, pte.pte1);
1132     }
1133     if (!(pte.pte1 & HPTE64_R_C)) {
1134         if (access_type == MMU_DATA_STORE) {
1135             ppc_hash64_set_c(cpu, ptex, pte.pte1);
1136         } else {
1137             /*
1138              * Treat the page as read-only for now, so that a later write
1139              * will pass through this function again to set the C bit
1140              */
1141             prot &= ~PAGE_WRITE;
1142         }
1143     }
1144 
1145     /* 7. Determine the real address from the PTE */
1146 
1147     *raddrp = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
1148     *protp = prot;
1149     *psizep = apshift;
1150     return true;
1151 }
1152 
1153 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
1154                                target_ulong pte0, target_ulong pte1)
1155 {
1156     /*
1157      * XXX: given the fact that there are too many segments to
1158      * invalidate, and we still don't have a tlb_flush_mask(env, n,
1159      * mask) in QEMU, we just invalidate all TLBs
1160      */
1161     cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
1162 }
1163 
1164 #ifdef CONFIG_TCG
1165 void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1166 {
1167     PowerPCCPU *cpu = env_archcpu(env);
1168 
1169     ppc_store_lpcr(cpu, val);
1170 }
1171 #endif
1172 
1173 void ppc_hash64_init(PowerPCCPU *cpu)
1174 {
1175     CPUPPCState *env = &cpu->env;
1176     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1177 
1178     if (!pcc->hash64_opts) {
1179         assert(!mmu_is_64bit(env->mmu_model));
1180         return;
1181     }
1182 
1183     cpu->hash64_opts = g_memdup2(pcc->hash64_opts, sizeof(*cpu->hash64_opts));
1184 }
1185 
1186 void ppc_hash64_finalize(PowerPCCPU *cpu)
1187 {
1188     g_free(cpu->hash64_opts);
1189 }
1190 
1191 const PPCHash64Options ppc_hash64_opts_basic = {
1192     .flags = 0,
1193     .slb_size = 64,
1194     .sps = {
1195         { .page_shift = 12, /* 4K */
1196           .slb_enc = 0,
1197           .enc = { { .page_shift = 12, .pte_enc = 0 } }
1198         },
1199         { .page_shift = 24, /* 16M */
1200           .slb_enc = 0x100,
1201           .enc = { { .page_shift = 24, .pte_enc = 0 } }
1202         },
1203     },
1204 };
1205 
1206 const PPCHash64Options ppc_hash64_opts_POWER7 = {
1207     .flags = PPC_HASH64_1TSEG | PPC_HASH64_AMR | PPC_HASH64_CI_LARGEPAGE,
1208     .slb_size = 32,
1209     .sps = {
1210         {
1211             .page_shift = 12, /* 4K */
1212             .slb_enc = 0,
1213             .enc = { { .page_shift = 12, .pte_enc = 0 },
1214                      { .page_shift = 16, .pte_enc = 0x7 },
1215                      { .page_shift = 24, .pte_enc = 0x38 }, },
1216         },
1217         {
1218             .page_shift = 16, /* 64K */
1219             .slb_enc = SLB_VSID_64K,
1220             .enc = { { .page_shift = 16, .pte_enc = 0x1 },
1221                      { .page_shift = 24, .pte_enc = 0x8 }, },
1222         },
1223         {
1224             .page_shift = 24, /* 16M */
1225             .slb_enc = SLB_VSID_16M,
1226             .enc = { { .page_shift = 24, .pte_enc = 0 }, },
1227         },
1228         {
1229             .page_shift = 34, /* 16G */
1230             .slb_enc = SLB_VSID_16G,
1231             .enc = { { .page_shift = 34, .pte_enc = 0x3 }, },
1232         },
1233     }
1234 };
1235 
1236 
1237