xref: /openbmc/qemu/target/ppc/mmu-hash64.c (revision 2a53cff4)
1 /*
2  *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *  Copyright (c) 2013 David Gibson, IBM Corporation
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2 of the License, or (at your option) any later version.
11  *
12  * This library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19  */
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "qemu/error-report.h"
25 #include "sysemu/hw_accel.h"
26 #include "kvm_ppc.h"
27 #include "mmu-hash64.h"
28 #include "exec/log.h"
29 #include "hw/hw.h"
30 #include "mmu-book3s-v3.h"
31 
32 //#define DEBUG_SLB
33 
34 #ifdef DEBUG_SLB
35 #  define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
36 #else
37 #  define LOG_SLB(...) do { } while (0)
38 #endif
39 
40 /*
41  * SLB handling
42  */
43 
44 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
45 {
46     CPUPPCState *env = &cpu->env;
47     uint64_t esid_256M, esid_1T;
48     int n;
49 
50     LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
51 
52     esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
53     esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
54 
55     for (n = 0; n < cpu->hash64_opts->slb_size; n++) {
56         ppc_slb_t *slb = &env->slb[n];
57 
58         LOG_SLB("%s: slot %d %016" PRIx64 " %016"
59                     PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
60         /* We check for 1T matches on all MMUs here - if the MMU
61          * doesn't have 1T segment support, we will have prevented 1T
62          * entries from being inserted in the slbmte code. */
63         if (((slb->esid == esid_256M) &&
64              ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
65             || ((slb->esid == esid_1T) &&
66                 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
67             return slb;
68         }
69     }
70 
71     return NULL;
72 }
73 
74 void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
75 {
76     CPUPPCState *env = &cpu->env;
77     int i;
78     uint64_t slbe, slbv;
79 
80     cpu_synchronize_state(CPU(cpu));
81 
82     cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
83     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
84         slbe = env->slb[i].esid;
85         slbv = env->slb[i].vsid;
86         if (slbe == 0 && slbv == 0) {
87             continue;
88         }
89         cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
90                     i, slbe, slbv);
91     }
92 }
93 
94 void helper_slbia(CPUPPCState *env)
95 {
96     PowerPCCPU *cpu = ppc_env_get_cpu(env);
97     int n;
98 
99     /* XXX: Warning: slbia never invalidates the first segment */
100     for (n = 1; n < cpu->hash64_opts->slb_size; n++) {
101         ppc_slb_t *slb = &env->slb[n];
102 
103         if (slb->esid & SLB_ESID_V) {
104             slb->esid &= ~SLB_ESID_V;
105             /* XXX: given the fact that segment size is 256 MB or 1TB,
106              *      and we still don't have a tlb_flush_mask(env, n, mask)
107              *      in QEMU, we just invalidate all TLBs
108              */
109             env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
110         }
111     }
112 }
113 
114 static void __helper_slbie(CPUPPCState *env, target_ulong addr,
115                            target_ulong global)
116 {
117     PowerPCCPU *cpu = ppc_env_get_cpu(env);
118     ppc_slb_t *slb;
119 
120     slb = slb_lookup(cpu, addr);
121     if (!slb) {
122         return;
123     }
124 
125     if (slb->esid & SLB_ESID_V) {
126         slb->esid &= ~SLB_ESID_V;
127 
128         /* XXX: given the fact that segment size is 256 MB or 1TB,
129          *      and we still don't have a tlb_flush_mask(env, n, mask)
130          *      in QEMU, we just invalidate all TLBs
131          */
132         env->tlb_need_flush |=
133             (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
134     }
135 }
136 
137 void helper_slbie(CPUPPCState *env, target_ulong addr)
138 {
139     __helper_slbie(env, addr, false);
140 }
141 
142 void helper_slbieg(CPUPPCState *env, target_ulong addr)
143 {
144     __helper_slbie(env, addr, true);
145 }
146 
147 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
148                   target_ulong esid, target_ulong vsid)
149 {
150     CPUPPCState *env = &cpu->env;
151     ppc_slb_t *slb = &env->slb[slot];
152     const PPCHash64SegmentPageSizes *sps = NULL;
153     int i;
154 
155     if (slot >= cpu->hash64_opts->slb_size) {
156         return -1; /* Bad slot number */
157     }
158     if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
159         return -1; /* Reserved bits set */
160     }
161     if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
162         return -1; /* Bad segment size */
163     }
164     if ((vsid & SLB_VSID_B) && !(ppc_hash64_has(cpu, PPC_HASH64_1TSEG))) {
165         return -1; /* 1T segment on MMU that doesn't support it */
166     }
167 
168     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
169         const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];
170 
171         if (!sps1->page_shift) {
172             break;
173         }
174 
175         if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
176             sps = sps1;
177             break;
178         }
179     }
180 
181     if (!sps) {
182         error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
183                      " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
184                      slot, esid, vsid);
185         return -1;
186     }
187 
188     slb->esid = esid;
189     slb->vsid = vsid;
190     slb->sps = sps;
191 
192     LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
193             " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
194             slb->esid, slb->vsid);
195 
196     return 0;
197 }
198 
199 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
200                              target_ulong *rt)
201 {
202     CPUPPCState *env = &cpu->env;
203     int slot = rb & 0xfff;
204     ppc_slb_t *slb = &env->slb[slot];
205 
206     if (slot >= cpu->hash64_opts->slb_size) {
207         return -1;
208     }
209 
210     *rt = slb->esid;
211     return 0;
212 }
213 
214 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
215                              target_ulong *rt)
216 {
217     CPUPPCState *env = &cpu->env;
218     int slot = rb & 0xfff;
219     ppc_slb_t *slb = &env->slb[slot];
220 
221     if (slot >= cpu->hash64_opts->slb_size) {
222         return -1;
223     }
224 
225     *rt = slb->vsid;
226     return 0;
227 }
228 
229 static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
230                              target_ulong *rt)
231 {
232     CPUPPCState *env = &cpu->env;
233     ppc_slb_t *slb;
234 
235     if (!msr_is_64bit(env, env->msr)) {
236         rb &= 0xffffffff;
237     }
238     slb = slb_lookup(cpu, rb);
239     if (slb == NULL) {
240         *rt = (target_ulong)-1ul;
241     } else {
242         *rt = slb->vsid;
243     }
244     return 0;
245 }
246 
247 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
248 {
249     PowerPCCPU *cpu = ppc_env_get_cpu(env);
250 
251     if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
252         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
253                                POWERPC_EXCP_INVAL, GETPC());
254     }
255 }
256 
257 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
258 {
259     PowerPCCPU *cpu = ppc_env_get_cpu(env);
260     target_ulong rt = 0;
261 
262     if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
263         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
264                                POWERPC_EXCP_INVAL, GETPC());
265     }
266     return rt;
267 }
268 
269 target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
270 {
271     PowerPCCPU *cpu = ppc_env_get_cpu(env);
272     target_ulong rt = 0;
273 
274     if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
275         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
276                                POWERPC_EXCP_INVAL, GETPC());
277     }
278     return rt;
279 }
280 
281 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
282 {
283     PowerPCCPU *cpu = ppc_env_get_cpu(env);
284     target_ulong rt = 0;
285 
286     if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
287         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
288                                POWERPC_EXCP_INVAL, GETPC());
289     }
290     return rt;
291 }
292 
293 /* Check No-Execute or Guarded Storage */
294 static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
295                                               ppc_hash_pte64_t pte)
296 {
297     /* Exec permissions CANNOT take away read or write permissions */
298     return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ?
299             PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC;
300 }
301 
302 /* Check Basic Storage Protection */
303 static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
304                                ppc_slb_t *slb, ppc_hash_pte64_t pte)
305 {
306     CPUPPCState *env = &cpu->env;
307     unsigned pp, key;
308     /* Some pp bit combinations have undefined behaviour, so default
309      * to no access in those cases */
310     int prot = 0;
311 
312     key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
313              : (slb->vsid & SLB_VSID_KS));
314     pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
315 
316     if (key == 0) {
317         switch (pp) {
318         case 0x0:
319         case 0x1:
320         case 0x2:
321             prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
322             break;
323 
324         case 0x3:
325         case 0x6:
326             prot = PAGE_READ | PAGE_EXEC;
327             break;
328         }
329     } else {
330         switch (pp) {
331         case 0x0:
332         case 0x6:
333             break;
334 
335         case 0x1:
336         case 0x3:
337             prot = PAGE_READ | PAGE_EXEC;
338             break;
339 
340         case 0x2:
341             prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
342             break;
343         }
344     }
345 
346     return prot;
347 }
348 
349 /* Check the instruction access permissions specified in the IAMR */
350 static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key)
351 {
352     CPUPPCState *env = &cpu->env;
353     int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3;
354 
355     /*
356      * An instruction fetch is permitted if the IAMR bit is 0.
357      * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
358      * can only take away EXEC permissions not READ or WRITE permissions.
359      * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
360      * EXEC permissions are allowed.
361      */
362     return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE :
363                                PAGE_READ | PAGE_WRITE | PAGE_EXEC;
364 }
365 
366 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
367 {
368     CPUPPCState *env = &cpu->env;
369     int key, amrbits;
370     int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
371 
372     /* Only recent MMUs implement Virtual Page Class Key Protection */
373     if (!ppc_hash64_has(cpu, PPC_HASH64_AMR)) {
374         return prot;
375     }
376 
377     key = HPTE64_R_KEY(pte.pte1);
378     amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
379 
380     /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
381     /*         env->spr[SPR_AMR]); */
382 
383     /*
384      * A store is permitted if the AMR bit is 0. Remove write
385      * protection if it is set.
386      */
387     if (amrbits & 0x2) {
388         prot &= ~PAGE_WRITE;
389     }
390     /*
391      * A load is permitted if the AMR bit is 0. Remove read
392      * protection if it is set.
393      */
394     if (amrbits & 0x1) {
395         prot &= ~PAGE_READ;
396     }
397 
398     switch (env->mmu_model) {
399     /*
400      * MMU version 2.07 and later support IAMR
401      * Check if the IAMR allows the instruction access - it will return
402      * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
403      * if it does (and prot will be unchanged indicating execution support).
404      */
405     case POWERPC_MMU_2_07:
406     case POWERPC_MMU_3_00:
407         prot &= ppc_hash64_iamr_prot(cpu, key);
408         break;
409     default:
410         break;
411     }
412 
413     return prot;
414 }
415 
416 const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
417                                              hwaddr ptex, int n)
418 {
419     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
420     hwaddr base;
421     hwaddr plen = n * HASH_PTE_SIZE_64;
422     const ppc_hash_pte64_t *hptes;
423 
424     if (cpu->vhyp) {
425         PPCVirtualHypervisorClass *vhc =
426             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
427         return vhc->map_hptes(cpu->vhyp, ptex, n);
428     }
429     base = ppc_hash64_hpt_base(cpu);
430 
431     if (!base) {
432         return NULL;
433     }
434 
435     hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false,
436                               MEMTXATTRS_UNSPECIFIED);
437     if (plen < (n * HASH_PTE_SIZE_64)) {
438         hw_error("%s: Unable to map all requested HPTEs\n", __func__);
439     }
440     return hptes;
441 }
442 
443 void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
444                             hwaddr ptex, int n)
445 {
446     if (cpu->vhyp) {
447         PPCVirtualHypervisorClass *vhc =
448             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
449         vhc->unmap_hptes(cpu->vhyp, hptes, ptex, n);
450         return;
451     }
452 
453     address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
454                         false, n * HASH_PTE_SIZE_64);
455 }
456 
457 static unsigned hpte_page_shift(const PPCHash64SegmentPageSizes *sps,
458                                 uint64_t pte0, uint64_t pte1)
459 {
460     int i;
461 
462     if (!(pte0 & HPTE64_V_LARGE)) {
463         if (sps->page_shift != 12) {
464             /* 4kiB page in a non 4kiB segment */
465             return 0;
466         }
467         /* Normal 4kiB page */
468         return 12;
469     }
470 
471     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
472         const PPCHash64PageSize *ps = &sps->enc[i];
473         uint64_t mask;
474 
475         if (!ps->page_shift) {
476             break;
477         }
478 
479         if (ps->page_shift == 12) {
480             /* L bit is set so this can't be a 4kiB page */
481             continue;
482         }
483 
484         mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
485 
486         if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
487             return ps->page_shift;
488         }
489     }
490 
491     return 0; /* Bad page size encoding */
492 }
493 
494 static void ppc64_v3_new_to_old_hpte(target_ulong *pte0, target_ulong *pte1)
495 {
496     /* Insert B into pte0 */
497     *pte0 = (*pte0 & HPTE64_V_COMMON_BITS) |
498             ((*pte1 & HPTE64_R_3_0_SSIZE_MASK) <<
499              (HPTE64_V_SSIZE_SHIFT - HPTE64_R_3_0_SSIZE_SHIFT));
500 
501     /* Remove B from pte1 */
502     *pte1 = *pte1 & ~HPTE64_R_3_0_SSIZE_MASK;
503 }
504 
505 
506 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
507                                      const PPCHash64SegmentPageSizes *sps,
508                                      target_ulong ptem,
509                                      ppc_hash_pte64_t *pte, unsigned *pshift)
510 {
511     int i;
512     const ppc_hash_pte64_t *pteg;
513     target_ulong pte0, pte1;
514     target_ulong ptex;
515 
516     ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
517     pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
518     if (!pteg) {
519         return -1;
520     }
521     for (i = 0; i < HPTES_PER_GROUP; i++) {
522         pte0 = ppc_hash64_hpte0(cpu, pteg, i);
523         /*
524          * pte0 contains the valid bit and must be read before pte1,
525          * otherwise we might see an old pte1 with a new valid bit and
526          * thus an inconsistent hpte value
527          */
528         smp_rmb();
529         pte1 = ppc_hash64_hpte1(cpu, pteg, i);
530 
531         /* Convert format if necessary */
532         if (cpu->env.mmu_model == POWERPC_MMU_3_00 && !cpu->vhyp) {
533             ppc64_v3_new_to_old_hpte(&pte0, &pte1);
534         }
535 
536         /* This compares V, B, H (secondary) and the AVPN */
537         if (HPTE64_V_COMPARE(pte0, ptem)) {
538             *pshift = hpte_page_shift(sps, pte0, pte1);
539             /*
540              * If there is no match, ignore the PTE, it could simply
541              * be for a different segment size encoding and the
542              * architecture specifies we should not match. Linux will
543              * potentially leave behind PTEs for the wrong base page
544              * size when demoting segments.
545              */
546             if (*pshift == 0) {
547                 continue;
548             }
549             /* We don't do anything with pshift yet as qemu TLB only deals
550              * with 4K pages anyway
551              */
552             pte->pte0 = pte0;
553             pte->pte1 = pte1;
554             ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
555             return ptex + i;
556         }
557     }
558     ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
559     /*
560      * We didn't find a valid entry.
561      */
562     return -1;
563 }
564 
565 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
566                                      ppc_slb_t *slb, target_ulong eaddr,
567                                      ppc_hash_pte64_t *pte, unsigned *pshift)
568 {
569     CPUPPCState *env = &cpu->env;
570     hwaddr hash, ptex;
571     uint64_t vsid, epnmask, epn, ptem;
572     const PPCHash64SegmentPageSizes *sps = slb->sps;
573 
574     /* The SLB store path should prevent any bad page size encodings
575      * getting in there, so: */
576     assert(sps);
577 
578     /* If ISL is set in LPCR we need to clamp the page size to 4K */
579     if (env->spr[SPR_LPCR] & LPCR_ISL) {
580         /* We assume that when using TCG, 4k is first entry of SPS */
581         sps = &cpu->hash64_opts->sps[0];
582         assert(sps->page_shift == 12);
583     }
584 
585     epnmask = ~((1ULL << sps->page_shift) - 1);
586 
587     if (slb->vsid & SLB_VSID_B) {
588         /* 1TB segment */
589         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
590         epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
591         hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
592     } else {
593         /* 256M segment */
594         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
595         epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
596         hash = vsid ^ (epn >> sps->page_shift);
597     }
598     ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
599     ptem |= HPTE64_V_VALID;
600 
601     /* Page address translation */
602     qemu_log_mask(CPU_LOG_MMU,
603             "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
604             " hash " TARGET_FMT_plx "\n",
605             ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);
606 
607     /* Primary PTEG lookup */
608     qemu_log_mask(CPU_LOG_MMU,
609             "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
610             " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
611             " hash=" TARGET_FMT_plx "\n",
612             ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
613             vsid, ptem,  hash);
614     ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
615 
616     if (ptex == -1) {
617         /* Secondary PTEG lookup */
618         ptem |= HPTE64_V_SECONDARY;
619         qemu_log_mask(CPU_LOG_MMU,
620                 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
621                 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
622                 " hash=" TARGET_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
623                 ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);
624 
625         ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
626     }
627 
628     return ptex;
629 }
630 
631 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
632                                           uint64_t pte0, uint64_t pte1)
633 {
634     int i;
635 
636     if (!(pte0 & HPTE64_V_LARGE)) {
637         return 12;
638     }
639 
640     /*
641      * The encodings in env->sps need to be carefully chosen so that
642      * this gives an unambiguous result.
643      */
644     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
645         const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
646         unsigned shift;
647 
648         if (!sps->page_shift) {
649             break;
650         }
651 
652         shift = hpte_page_shift(sps, pte0, pte1);
653         if (shift) {
654             return shift;
655         }
656     }
657 
658     return 0;
659 }
660 
661 static void ppc_hash64_set_isi(CPUState *cs, uint64_t error_code)
662 {
663     CPUPPCState *env = &POWERPC_CPU(cs)->env;
664     bool vpm;
665 
666     if (msr_ir) {
667         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
668     } else {
669         switch (env->mmu_model) {
670         case POWERPC_MMU_3_00:
671             /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
672             vpm = true;
673             break;
674         default:
675             vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
676             break;
677         }
678     }
679     if (vpm && !msr_hv) {
680         cs->exception_index = POWERPC_EXCP_HISI;
681     } else {
682         cs->exception_index = POWERPC_EXCP_ISI;
683     }
684     env->error_code = error_code;
685 }
686 
687 static void ppc_hash64_set_dsi(CPUState *cs, uint64_t dar, uint64_t dsisr)
688 {
689     CPUPPCState *env = &POWERPC_CPU(cs)->env;
690     bool vpm;
691 
692     if (msr_dr) {
693         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
694     } else {
695         switch (env->mmu_model) {
696         case POWERPC_MMU_3_00:
697             /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
698             vpm = true;
699             break;
700         default:
701             vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
702             break;
703         }
704     }
705     if (vpm && !msr_hv) {
706         cs->exception_index = POWERPC_EXCP_HDSI;
707         env->spr[SPR_HDAR] = dar;
708         env->spr[SPR_HDSISR] = dsisr;
709     } else {
710         cs->exception_index = POWERPC_EXCP_DSI;
711         env->spr[SPR_DAR] = dar;
712         env->spr[SPR_DSISR] = dsisr;
713    }
714     env->error_code = 0;
715 }
716 
717 
718 int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
719                                 int rwx, int mmu_idx)
720 {
721     CPUState *cs = CPU(cpu);
722     CPUPPCState *env = &cpu->env;
723     ppc_slb_t *slb;
724     unsigned apshift;
725     hwaddr ptex;
726     ppc_hash_pte64_t pte;
727     int exec_prot, pp_prot, amr_prot, prot;
728     uint64_t new_pte1;
729     const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
730     hwaddr raddr;
731 
732     assert((rwx == 0) || (rwx == 1) || (rwx == 2));
733 
734     /* Note on LPCR usage: 970 uses HID4, but our special variant
735      * of store_spr copies relevant fields into env->spr[SPR_LPCR].
736      * Similarily we filter unimplemented bits when storing into
737      * LPCR depending on the MMU version. This code can thus just
738      * use the LPCR "as-is".
739      */
740 
741     /* 1. Handle real mode accesses */
742     if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
743         /* Translation is supposedly "off"  */
744         /* In real mode the top 4 effective address bits are (mostly) ignored */
745         raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
746 
747         /* In HV mode, add HRMOR if top EA bit is clear */
748         if (msr_hv || !env->has_hv_mode) {
749             if (!(eaddr >> 63)) {
750                 raddr |= env->spr[SPR_HRMOR];
751             }
752         } else {
753             /* Otherwise, check VPM for RMA vs VRMA */
754             if (env->spr[SPR_LPCR] & LPCR_VPM0) {
755                 slb = &env->vrma_slb;
756                 if (slb->sps) {
757                     goto skip_slb_search;
758                 }
759                 /* Not much else to do here */
760                 cs->exception_index = POWERPC_EXCP_MCHECK;
761                 env->error_code = 0;
762                 return 1;
763             } else if (raddr < env->rmls) {
764                 /* RMA. Check bounds in RMLS */
765                 raddr |= env->spr[SPR_RMOR];
766             } else {
767                 /* The access failed, generate the approriate interrupt */
768                 if (rwx == 2) {
769                     ppc_hash64_set_isi(cs, SRR1_PROTFAULT);
770                 } else {
771                     int dsisr = DSISR_PROTFAULT;
772                     if (rwx == 1) {
773                         dsisr |= DSISR_ISSTORE;
774                     }
775                     ppc_hash64_set_dsi(cs, eaddr, dsisr);
776                 }
777                 return 1;
778             }
779         }
780         tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
781                      PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
782                      TARGET_PAGE_SIZE);
783         return 0;
784     }
785 
786     /* 2. Translation is on, so look up the SLB */
787     slb = slb_lookup(cpu, eaddr);
788     if (!slb) {
789         /* No entry found, check if in-memory segment tables are in use */
790         if (ppc64_use_proc_tbl(cpu)) {
791             /* TODO - Unsupported */
792             error_report("Segment Table Support Unimplemented");
793             exit(1);
794         }
795         /* Segment still not found, generate the appropriate interrupt */
796         if (rwx == 2) {
797             cs->exception_index = POWERPC_EXCP_ISEG;
798             env->error_code = 0;
799         } else {
800             cs->exception_index = POWERPC_EXCP_DSEG;
801             env->error_code = 0;
802             env->spr[SPR_DAR] = eaddr;
803         }
804         return 1;
805     }
806 
807 skip_slb_search:
808 
809     /* 3. Check for segment level no-execute violation */
810     if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
811         ppc_hash64_set_isi(cs, SRR1_NOEXEC_GUARD);
812         return 1;
813     }
814 
815     /* 4. Locate the PTE in the hash table */
816     ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
817     if (ptex == -1) {
818         if (rwx == 2) {
819             ppc_hash64_set_isi(cs, SRR1_NOPTE);
820         } else {
821             int dsisr = DSISR_NOPTE;
822             if (rwx == 1) {
823                 dsisr |= DSISR_ISSTORE;
824             }
825             ppc_hash64_set_dsi(cs, eaddr, dsisr);
826         }
827         return 1;
828     }
829     qemu_log_mask(CPU_LOG_MMU,
830                   "found PTE at index %08" HWADDR_PRIx "\n", ptex);
831 
832     /* 5. Check access permissions */
833 
834     exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
835     pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
836     amr_prot = ppc_hash64_amr_prot(cpu, pte);
837     prot = exec_prot & pp_prot & amr_prot;
838 
839     if ((need_prot[rwx] & ~prot) != 0) {
840         /* Access right violation */
841         qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
842         if (rwx == 2) {
843             int srr1 = 0;
844             if (PAGE_EXEC & ~exec_prot) {
845                 srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */
846             } else if (PAGE_EXEC & ~pp_prot) {
847                 srr1 |= SRR1_PROTFAULT; /* Access violates access authority */
848             }
849             if (PAGE_EXEC & ~amr_prot) {
850                 srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
851             }
852             ppc_hash64_set_isi(cs, srr1);
853         } else {
854             int dsisr = 0;
855             if (need_prot[rwx] & ~pp_prot) {
856                 dsisr |= DSISR_PROTFAULT;
857             }
858             if (rwx == 1) {
859                 dsisr |= DSISR_ISSTORE;
860             }
861             if (need_prot[rwx] & ~amr_prot) {
862                 dsisr |= DSISR_AMR;
863             }
864             ppc_hash64_set_dsi(cs, eaddr, dsisr);
865         }
866         return 1;
867     }
868 
869     qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
870 
871     /* 6. Update PTE referenced and changed bits if necessary */
872 
873     new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
874     if (rwx == 1) {
875         new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
876     } else {
877         /* Treat the page as read-only for now, so that a later write
878          * will pass through this function again to set the C bit */
879         prot &= ~PAGE_WRITE;
880     }
881 
882     if (new_pte1 != pte.pte1) {
883         ppc_hash64_store_hpte(cpu, ptex, pte.pte0, new_pte1);
884     }
885 
886     /* 7. Determine the real address from the PTE */
887 
888     raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
889 
890     tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
891                  prot, mmu_idx, 1ULL << apshift);
892 
893     return 0;
894 }
895 
896 hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
897 {
898     CPUPPCState *env = &cpu->env;
899     ppc_slb_t *slb;
900     hwaddr ptex, raddr;
901     ppc_hash_pte64_t pte;
902     unsigned apshift;
903 
904     /* Handle real mode */
905     if (msr_dr == 0) {
906         /* In real mode the top 4 effective address bits are ignored */
907         raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
908 
909         /* In HV mode, add HRMOR if top EA bit is clear */
910         if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
911             return raddr | env->spr[SPR_HRMOR];
912         }
913 
914         /* Otherwise, check VPM for RMA vs VRMA */
915         if (env->spr[SPR_LPCR] & LPCR_VPM0) {
916             slb = &env->vrma_slb;
917             if (!slb->sps) {
918                 return -1;
919             }
920         } else if (raddr < env->rmls) {
921             /* RMA. Check bounds in RMLS */
922             return raddr | env->spr[SPR_RMOR];
923         } else {
924             return -1;
925         }
926     } else {
927         slb = slb_lookup(cpu, addr);
928         if (!slb) {
929             return -1;
930         }
931     }
932 
933     ptex = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
934     if (ptex == -1) {
935         return -1;
936     }
937 
938     return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
939         & TARGET_PAGE_MASK;
940 }
941 
942 void ppc_hash64_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
943                            uint64_t pte0, uint64_t pte1)
944 {
945     hwaddr base;
946     hwaddr offset = ptex * HASH_PTE_SIZE_64;
947 
948     if (cpu->vhyp) {
949         PPCVirtualHypervisorClass *vhc =
950             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
951         vhc->store_hpte(cpu->vhyp, ptex, pte0, pte1);
952         return;
953     }
954     base = ppc_hash64_hpt_base(cpu);
955 
956     stq_phys(CPU(cpu)->as, base + offset, pte0);
957     stq_phys(CPU(cpu)->as, base + offset + HASH_PTE_SIZE_64 / 2, pte1);
958 }
959 
960 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
961                                target_ulong pte0, target_ulong pte1)
962 {
963     /*
964      * XXX: given the fact that there are too many segments to
965      * invalidate, and we still don't have a tlb_flush_mask(env, n,
966      * mask) in QEMU, we just invalidate all TLBs
967      */
968     cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
969 }
970 
971 static void ppc_hash64_update_rmls(PowerPCCPU *cpu)
972 {
973     CPUPPCState *env = &cpu->env;
974     uint64_t lpcr = env->spr[SPR_LPCR];
975 
976     /*
977      * This is the full 4 bits encoding of POWER8. Previous
978      * CPUs only support a subset of these but the filtering
979      * is done when writing LPCR
980      */
981     switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
982     case 0x8: /* 32MB */
983         env->rmls = 0x2000000ull;
984         break;
985     case 0x3: /* 64MB */
986         env->rmls = 0x4000000ull;
987         break;
988     case 0x7: /* 128MB */
989         env->rmls = 0x8000000ull;
990         break;
991     case 0x4: /* 256MB */
992         env->rmls = 0x10000000ull;
993         break;
994     case 0x2: /* 1GB */
995         env->rmls = 0x40000000ull;
996         break;
997     case 0x1: /* 16GB */
998         env->rmls = 0x400000000ull;
999         break;
1000     default:
1001         /* What to do here ??? */
1002         env->rmls = 0;
1003     }
1004 }
1005 
1006 static void ppc_hash64_update_vrma(PowerPCCPU *cpu)
1007 {
1008     CPUPPCState *env = &cpu->env;
1009     const PPCHash64SegmentPageSizes *sps = NULL;
1010     target_ulong esid, vsid, lpcr;
1011     ppc_slb_t *slb = &env->vrma_slb;
1012     uint32_t vrmasd;
1013     int i;
1014 
1015     /* First clear it */
1016     slb->esid = slb->vsid = 0;
1017     slb->sps = NULL;
1018 
1019     /* Is VRMA enabled ? */
1020     lpcr = env->spr[SPR_LPCR];
1021     if (!(lpcr & LPCR_VPM0)) {
1022         return;
1023     }
1024 
1025     /* Make one up. Mostly ignore the ESID which will not be
1026      * needed for translation
1027      */
1028     vsid = SLB_VSID_VRMA;
1029     vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
1030     vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
1031     esid = SLB_ESID_V;
1032 
1033     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
1034         const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];
1035 
1036         if (!sps1->page_shift) {
1037             break;
1038         }
1039 
1040         if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
1041             sps = sps1;
1042             break;
1043         }
1044     }
1045 
1046     if (!sps) {
1047         error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
1048                      " vsid 0x"TARGET_FMT_lx, esid, vsid);
1049         return;
1050     }
1051 
1052     slb->vsid = vsid;
1053     slb->esid = esid;
1054     slb->sps = sps;
1055 }
1056 
1057 void ppc_store_lpcr(PowerPCCPU *cpu, target_ulong val)
1058 {
1059     CPUPPCState *env = &cpu->env;
1060     uint64_t lpcr = 0;
1061 
1062     /* Filter out bits */
1063     switch (env->mmu_model) {
1064     case POWERPC_MMU_64B: /* 970 */
1065         if (val & 0x40) {
1066             lpcr |= LPCR_LPES0;
1067         }
1068         if (val & 0x8000000000000000ull) {
1069             lpcr |= LPCR_LPES1;
1070         }
1071         if (val & 0x20) {
1072             lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
1073         }
1074         if (val & 0x4000000000000000ull) {
1075             lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
1076         }
1077         if (val & 0x2000000000000000ull) {
1078             lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
1079         }
1080         env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
1081 
1082         /* XXX We could also write LPID from HID4 here
1083          * but since we don't tag any translation on it
1084          * it doesn't actually matter
1085          */
1086         /* XXX For proper emulation of 970 we also need
1087          * to dig HRMOR out of HID5
1088          */
1089         break;
1090     case POWERPC_MMU_2_03: /* P5p */
1091         lpcr = val & (LPCR_RMLS | LPCR_ILE |
1092                       LPCR_LPES0 | LPCR_LPES1 |
1093                       LPCR_RMI | LPCR_HDICE);
1094         break;
1095     case POWERPC_MMU_2_06: /* P7 */
1096         lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
1097                       LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1098                       LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
1099                       LPCR_MER | LPCR_TC |
1100                       LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
1101         break;
1102     case POWERPC_MMU_2_07: /* P8 */
1103         lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
1104                       LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1105                       LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
1106                       LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
1107                       LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
1108         break;
1109     case POWERPC_MMU_3_00: /* P9 */
1110         lpcr = val & (LPCR_VPM1 | LPCR_ISL | LPCR_KBV | LPCR_DPFD |
1111                       (LPCR_PECE_U_MASK & LPCR_HVEE) | LPCR_ILE | LPCR_AIL |
1112                       LPCR_UPRT | LPCR_EVIRT | LPCR_ONL | LPCR_HR | LPCR_LD |
1113                       (LPCR_PECE_L_MASK & (LPCR_PDEE | LPCR_HDEE | LPCR_EEE |
1114                       LPCR_DEE | LPCR_OEE)) | LPCR_MER | LPCR_GTSE | LPCR_TC |
1115                       LPCR_HEIC | LPCR_LPES0 | LPCR_HVICE | LPCR_HDICE);
1116         /*
1117          * If we have a virtual hypervisor, we need to bring back RMLS. It
1118          * doesn't exist on an actual P9 but that's all we know how to
1119          * configure with softmmu at the moment
1120          */
1121         if (cpu->vhyp) {
1122             lpcr |= (val & LPCR_RMLS);
1123         }
1124         break;
1125     default:
1126         ;
1127     }
1128     env->spr[SPR_LPCR] = lpcr;
1129     ppc_hash64_update_rmls(cpu);
1130     ppc_hash64_update_vrma(cpu);
1131 }
1132 
1133 void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1134 {
1135     PowerPCCPU *cpu = ppc_env_get_cpu(env);
1136 
1137     ppc_store_lpcr(cpu, val);
1138 }
1139 
1140 void ppc_hash64_init(PowerPCCPU *cpu)
1141 {
1142     CPUPPCState *env = &cpu->env;
1143     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1144 
1145     if (!pcc->hash64_opts) {
1146         assert(!(env->mmu_model & POWERPC_MMU_64));
1147         return;
1148     }
1149 
1150     cpu->hash64_opts = g_memdup(pcc->hash64_opts, sizeof(*cpu->hash64_opts));
1151 }
1152 
1153 void ppc_hash64_finalize(PowerPCCPU *cpu)
1154 {
1155     g_free(cpu->hash64_opts);
1156 }
1157 
1158 const PPCHash64Options ppc_hash64_opts_basic = {
1159     .flags = 0,
1160     .slb_size = 64,
1161     .sps = {
1162         { .page_shift = 12, /* 4K */
1163           .slb_enc = 0,
1164           .enc = { { .page_shift = 12, .pte_enc = 0 } }
1165         },
1166         { .page_shift = 24, /* 16M */
1167           .slb_enc = 0x100,
1168           .enc = { { .page_shift = 24, .pte_enc = 0 } }
1169         },
1170     },
1171 };
1172 
1173 const PPCHash64Options ppc_hash64_opts_POWER7 = {
1174     .flags = PPC_HASH64_1TSEG | PPC_HASH64_AMR | PPC_HASH64_CI_LARGEPAGE,
1175     .slb_size = 32,
1176     .sps = {
1177         {
1178             .page_shift = 12, /* 4K */
1179             .slb_enc = 0,
1180             .enc = { { .page_shift = 12, .pte_enc = 0 },
1181                      { .page_shift = 16, .pte_enc = 0x7 },
1182                      { .page_shift = 24, .pte_enc = 0x38 }, },
1183         },
1184         {
1185             .page_shift = 16, /* 64K */
1186             .slb_enc = SLB_VSID_64K,
1187             .enc = { { .page_shift = 16, .pte_enc = 0x1 },
1188                      { .page_shift = 24, .pte_enc = 0x8 }, },
1189         },
1190         {
1191             .page_shift = 24, /* 16M */
1192             .slb_enc = SLB_VSID_16M,
1193             .enc = { { .page_shift = 24, .pte_enc = 0 }, },
1194         },
1195         {
1196             .page_shift = 34, /* 16G */
1197             .slb_enc = SLB_VSID_16G,
1198             .enc = { { .page_shift = 34, .pte_enc = 0x3 }, },
1199         },
1200     }
1201 };
1202 
1203 void ppc_hash64_filter_pagesizes(PowerPCCPU *cpu,
1204                                  bool (*cb)(void *, uint32_t, uint32_t),
1205                                  void *opaque)
1206 {
1207     PPCHash64Options *opts = cpu->hash64_opts;
1208     int i;
1209     int n = 0;
1210     bool ci_largepage = false;
1211 
1212     assert(opts);
1213 
1214     n = 0;
1215     for (i = 0; i < ARRAY_SIZE(opts->sps); i++) {
1216         PPCHash64SegmentPageSizes *sps = &opts->sps[i];
1217         int j;
1218         int m = 0;
1219 
1220         assert(n <= i);
1221 
1222         if (!sps->page_shift) {
1223             break;
1224         }
1225 
1226         for (j = 0; j < ARRAY_SIZE(sps->enc); j++) {
1227             PPCHash64PageSize *ps = &sps->enc[j];
1228 
1229             assert(m <= j);
1230             if (!ps->page_shift) {
1231                 break;
1232             }
1233 
1234             if (cb(opaque, sps->page_shift, ps->page_shift)) {
1235                 if (ps->page_shift >= 16) {
1236                     ci_largepage = true;
1237                 }
1238                 sps->enc[m++] = *ps;
1239             }
1240         }
1241 
1242         /* Clear rest of the row */
1243         for (j = m; j < ARRAY_SIZE(sps->enc); j++) {
1244             memset(&sps->enc[j], 0, sizeof(sps->enc[j]));
1245         }
1246 
1247         if (m) {
1248             n++;
1249         }
1250     }
1251 
1252     /* Clear the rest of the table */
1253     for (i = n; i < ARRAY_SIZE(opts->sps); i++) {
1254         memset(&opts->sps[i], 0, sizeof(opts->sps[i]));
1255     }
1256 
1257     if (!ci_largepage) {
1258         opts->flags &= ~PPC_HASH64_CI_LARGEPAGE;
1259     }
1260 }
1261