xref: /openbmc/qemu/target/ppc/mmu-hash64.c (revision 10df8ff1)
1 /*
2  *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *  Copyright (c) 2013 David Gibson, IBM Corporation
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2 of the License, or (at your option) any later version.
11  *
12  * This library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19  */
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "qemu/error-report.h"
25 #include "sysemu/hw_accel.h"
26 #include "kvm_ppc.h"
27 #include "mmu-hash64.h"
28 #include "exec/log.h"
29 #include "hw/hw.h"
30 #include "mmu-book3s-v3.h"
31 
32 //#define DEBUG_SLB
33 
34 #ifdef DEBUG_SLB
35 #  define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
36 #else
37 #  define LOG_SLB(...) do { } while (0)
38 #endif
39 
40 /*
41  * SLB handling
42  */
43 
44 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
45 {
46     CPUPPCState *env = &cpu->env;
47     uint64_t esid_256M, esid_1T;
48     int n;
49 
50     LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
51 
52     esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
53     esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
54 
55     for (n = 0; n < cpu->hash64_opts->slb_size; n++) {
56         ppc_slb_t *slb = &env->slb[n];
57 
58         LOG_SLB("%s: slot %d %016" PRIx64 " %016"
59                     PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
60         /* We check for 1T matches on all MMUs here - if the MMU
61          * doesn't have 1T segment support, we will have prevented 1T
62          * entries from being inserted in the slbmte code. */
63         if (((slb->esid == esid_256M) &&
64              ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
65             || ((slb->esid == esid_1T) &&
66                 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
67             return slb;
68         }
69     }
70 
71     return NULL;
72 }
73 
74 void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
75 {
76     CPUPPCState *env = &cpu->env;
77     int i;
78     uint64_t slbe, slbv;
79 
80     cpu_synchronize_state(CPU(cpu));
81 
82     cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
83     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
84         slbe = env->slb[i].esid;
85         slbv = env->slb[i].vsid;
86         if (slbe == 0 && slbv == 0) {
87             continue;
88         }
89         cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
90                     i, slbe, slbv);
91     }
92 }
93 
94 void helper_slbia(CPUPPCState *env)
95 {
96     PowerPCCPU *cpu = ppc_env_get_cpu(env);
97     int n;
98 
99     /* XXX: Warning: slbia never invalidates the first segment */
100     for (n = 1; n < cpu->hash64_opts->slb_size; n++) {
101         ppc_slb_t *slb = &env->slb[n];
102 
103         if (slb->esid & SLB_ESID_V) {
104             slb->esid &= ~SLB_ESID_V;
105             /* XXX: given the fact that segment size is 256 MB or 1TB,
106              *      and we still don't have a tlb_flush_mask(env, n, mask)
107              *      in QEMU, we just invalidate all TLBs
108              */
109             env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
110         }
111     }
112 }
113 
114 static void __helper_slbie(CPUPPCState *env, target_ulong addr,
115                            target_ulong global)
116 {
117     PowerPCCPU *cpu = ppc_env_get_cpu(env);
118     ppc_slb_t *slb;
119 
120     slb = slb_lookup(cpu, addr);
121     if (!slb) {
122         return;
123     }
124 
125     if (slb->esid & SLB_ESID_V) {
126         slb->esid &= ~SLB_ESID_V;
127 
128         /* XXX: given the fact that segment size is 256 MB or 1TB,
129          *      and we still don't have a tlb_flush_mask(env, n, mask)
130          *      in QEMU, we just invalidate all TLBs
131          */
132         env->tlb_need_flush |=
133             (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
134     }
135 }
136 
137 void helper_slbie(CPUPPCState *env, target_ulong addr)
138 {
139     __helper_slbie(env, addr, false);
140 }
141 
142 void helper_slbieg(CPUPPCState *env, target_ulong addr)
143 {
144     __helper_slbie(env, addr, true);
145 }
146 
147 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
148                   target_ulong esid, target_ulong vsid)
149 {
150     CPUPPCState *env = &cpu->env;
151     ppc_slb_t *slb = &env->slb[slot];
152     const PPCHash64SegmentPageSizes *sps = NULL;
153     int i;
154 
155     if (slot >= cpu->hash64_opts->slb_size) {
156         return -1; /* Bad slot number */
157     }
158     if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
159         return -1; /* Reserved bits set */
160     }
161     if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
162         return -1; /* Bad segment size */
163     }
164     if ((vsid & SLB_VSID_B) && !(ppc_hash64_has(cpu, PPC_HASH64_1TSEG))) {
165         return -1; /* 1T segment on MMU that doesn't support it */
166     }
167 
168     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
169         const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];
170 
171         if (!sps1->page_shift) {
172             break;
173         }
174 
175         if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
176             sps = sps1;
177             break;
178         }
179     }
180 
181     if (!sps) {
182         error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
183                      " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
184                      slot, esid, vsid);
185         return -1;
186     }
187 
188     slb->esid = esid;
189     slb->vsid = vsid;
190     slb->sps = sps;
191 
192     LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
193             " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
194             slb->esid, slb->vsid);
195 
196     return 0;
197 }
198 
199 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
200                              target_ulong *rt)
201 {
202     CPUPPCState *env = &cpu->env;
203     int slot = rb & 0xfff;
204     ppc_slb_t *slb = &env->slb[slot];
205 
206     if (slot >= cpu->hash64_opts->slb_size) {
207         return -1;
208     }
209 
210     *rt = slb->esid;
211     return 0;
212 }
213 
214 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
215                              target_ulong *rt)
216 {
217     CPUPPCState *env = &cpu->env;
218     int slot = rb & 0xfff;
219     ppc_slb_t *slb = &env->slb[slot];
220 
221     if (slot >= cpu->hash64_opts->slb_size) {
222         return -1;
223     }
224 
225     *rt = slb->vsid;
226     return 0;
227 }
228 
229 static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
230                              target_ulong *rt)
231 {
232     CPUPPCState *env = &cpu->env;
233     ppc_slb_t *slb;
234 
235     if (!msr_is_64bit(env, env->msr)) {
236         rb &= 0xffffffff;
237     }
238     slb = slb_lookup(cpu, rb);
239     if (slb == NULL) {
240         *rt = (target_ulong)-1ul;
241     } else {
242         *rt = slb->vsid;
243     }
244     return 0;
245 }
246 
247 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
248 {
249     PowerPCCPU *cpu = ppc_env_get_cpu(env);
250 
251     if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
252         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
253                                POWERPC_EXCP_INVAL, GETPC());
254     }
255 }
256 
257 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
258 {
259     PowerPCCPU *cpu = ppc_env_get_cpu(env);
260     target_ulong rt = 0;
261 
262     if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
263         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
264                                POWERPC_EXCP_INVAL, GETPC());
265     }
266     return rt;
267 }
268 
269 target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
270 {
271     PowerPCCPU *cpu = ppc_env_get_cpu(env);
272     target_ulong rt = 0;
273 
274     if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
275         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
276                                POWERPC_EXCP_INVAL, GETPC());
277     }
278     return rt;
279 }
280 
281 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
282 {
283     PowerPCCPU *cpu = ppc_env_get_cpu(env);
284     target_ulong rt = 0;
285 
286     if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
287         raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
288                                POWERPC_EXCP_INVAL, GETPC());
289     }
290     return rt;
291 }
292 
293 /* Check No-Execute or Guarded Storage */
294 static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
295                                               ppc_hash_pte64_t pte)
296 {
297     /* Exec permissions CANNOT take away read or write permissions */
298     return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ?
299             PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC;
300 }
301 
302 /* Check Basic Storage Protection */
303 static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
304                                ppc_slb_t *slb, ppc_hash_pte64_t pte)
305 {
306     CPUPPCState *env = &cpu->env;
307     unsigned pp, key;
308     /* Some pp bit combinations have undefined behaviour, so default
309      * to no access in those cases */
310     int prot = 0;
311 
312     key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
313              : (slb->vsid & SLB_VSID_KS));
314     pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
315 
316     if (key == 0) {
317         switch (pp) {
318         case 0x0:
319         case 0x1:
320         case 0x2:
321             prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
322             break;
323 
324         case 0x3:
325         case 0x6:
326             prot = PAGE_READ | PAGE_EXEC;
327             break;
328         }
329     } else {
330         switch (pp) {
331         case 0x0:
332         case 0x6:
333             break;
334 
335         case 0x1:
336         case 0x3:
337             prot = PAGE_READ | PAGE_EXEC;
338             break;
339 
340         case 0x2:
341             prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
342             break;
343         }
344     }
345 
346     return prot;
347 }
348 
349 /* Check the instruction access permissions specified in the IAMR */
350 static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key)
351 {
352     CPUPPCState *env = &cpu->env;
353     int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3;
354 
355     /*
356      * An instruction fetch is permitted if the IAMR bit is 0.
357      * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
358      * can only take away EXEC permissions not READ or WRITE permissions.
359      * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
360      * EXEC permissions are allowed.
361      */
362     return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE :
363                                PAGE_READ | PAGE_WRITE | PAGE_EXEC;
364 }
365 
366 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
367 {
368     CPUPPCState *env = &cpu->env;
369     int key, amrbits;
370     int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
371 
372     /* Only recent MMUs implement Virtual Page Class Key Protection */
373     if (!ppc_hash64_has(cpu, PPC_HASH64_AMR)) {
374         return prot;
375     }
376 
377     key = HPTE64_R_KEY(pte.pte1);
378     amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
379 
380     /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
381     /*         env->spr[SPR_AMR]); */
382 
383     /*
384      * A store is permitted if the AMR bit is 0. Remove write
385      * protection if it is set.
386      */
387     if (amrbits & 0x2) {
388         prot &= ~PAGE_WRITE;
389     }
390     /*
391      * A load is permitted if the AMR bit is 0. Remove read
392      * protection if it is set.
393      */
394     if (amrbits & 0x1) {
395         prot &= ~PAGE_READ;
396     }
397 
398     switch (env->mmu_model) {
399     /*
400      * MMU version 2.07 and later support IAMR
401      * Check if the IAMR allows the instruction access - it will return
402      * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
403      * if it does (and prot will be unchanged indicating execution support).
404      */
405     case POWERPC_MMU_2_07:
406     case POWERPC_MMU_3_00:
407         prot &= ppc_hash64_iamr_prot(cpu, key);
408         break;
409     default:
410         break;
411     }
412 
413     return prot;
414 }
415 
416 const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
417                                              hwaddr ptex, int n)
418 {
419     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
420     hwaddr base = ppc_hash64_hpt_base(cpu);
421     hwaddr plen = n * HASH_PTE_SIZE_64;
422     const ppc_hash_pte64_t *hptes;
423 
424     if (cpu->vhyp) {
425         PPCVirtualHypervisorClass *vhc =
426             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
427         return vhc->map_hptes(cpu->vhyp, ptex, n);
428     }
429 
430     if (!base) {
431         return NULL;
432     }
433 
434     hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false,
435                               MEMTXATTRS_UNSPECIFIED);
436     if (plen < (n * HASH_PTE_SIZE_64)) {
437         hw_error("%s: Unable to map all requested HPTEs\n", __func__);
438     }
439     return hptes;
440 }
441 
442 void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
443                             hwaddr ptex, int n)
444 {
445     if (cpu->vhyp) {
446         PPCVirtualHypervisorClass *vhc =
447             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
448         vhc->unmap_hptes(cpu->vhyp, hptes, ptex, n);
449         return;
450     }
451 
452     address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
453                         false, n * HASH_PTE_SIZE_64);
454 }
455 
456 static unsigned hpte_page_shift(const PPCHash64SegmentPageSizes *sps,
457                                 uint64_t pte0, uint64_t pte1)
458 {
459     int i;
460 
461     if (!(pte0 & HPTE64_V_LARGE)) {
462         if (sps->page_shift != 12) {
463             /* 4kiB page in a non 4kiB segment */
464             return 0;
465         }
466         /* Normal 4kiB page */
467         return 12;
468     }
469 
470     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
471         const PPCHash64PageSize *ps = &sps->enc[i];
472         uint64_t mask;
473 
474         if (!ps->page_shift) {
475             break;
476         }
477 
478         if (ps->page_shift == 12) {
479             /* L bit is set so this can't be a 4kiB page */
480             continue;
481         }
482 
483         mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
484 
485         if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
486             return ps->page_shift;
487         }
488     }
489 
490     return 0; /* Bad page size encoding */
491 }
492 
493 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
494                                      const PPCHash64SegmentPageSizes *sps,
495                                      target_ulong ptem,
496                                      ppc_hash_pte64_t *pte, unsigned *pshift)
497 {
498     int i;
499     const ppc_hash_pte64_t *pteg;
500     target_ulong pte0, pte1;
501     target_ulong ptex;
502 
503     ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
504     pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
505     if (!pteg) {
506         return -1;
507     }
508     for (i = 0; i < HPTES_PER_GROUP; i++) {
509         pte0 = ppc_hash64_hpte0(cpu, pteg, i);
510         pte1 = ppc_hash64_hpte1(cpu, pteg, i);
511 
512         /* This compares V, B, H (secondary) and the AVPN */
513         if (HPTE64_V_COMPARE(pte0, ptem)) {
514             *pshift = hpte_page_shift(sps, pte0, pte1);
515             /*
516              * If there is no match, ignore the PTE, it could simply
517              * be for a different segment size encoding and the
518              * architecture specifies we should not match. Linux will
519              * potentially leave behind PTEs for the wrong base page
520              * size when demoting segments.
521              */
522             if (*pshift == 0) {
523                 continue;
524             }
525             /* We don't do anything with pshift yet as qemu TLB only deals
526              * with 4K pages anyway
527              */
528             pte->pte0 = pte0;
529             pte->pte1 = pte1;
530             ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
531             return ptex + i;
532         }
533     }
534     ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
535     /*
536      * We didn't find a valid entry.
537      */
538     return -1;
539 }
540 
541 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
542                                      ppc_slb_t *slb, target_ulong eaddr,
543                                      ppc_hash_pte64_t *pte, unsigned *pshift)
544 {
545     CPUPPCState *env = &cpu->env;
546     hwaddr hash, ptex;
547     uint64_t vsid, epnmask, epn, ptem;
548     const PPCHash64SegmentPageSizes *sps = slb->sps;
549 
550     /* The SLB store path should prevent any bad page size encodings
551      * getting in there, so: */
552     assert(sps);
553 
554     /* If ISL is set in LPCR we need to clamp the page size to 4K */
555     if (env->spr[SPR_LPCR] & LPCR_ISL) {
556         /* We assume that when using TCG, 4k is first entry of SPS */
557         sps = &cpu->hash64_opts->sps[0];
558         assert(sps->page_shift == 12);
559     }
560 
561     epnmask = ~((1ULL << sps->page_shift) - 1);
562 
563     if (slb->vsid & SLB_VSID_B) {
564         /* 1TB segment */
565         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
566         epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
567         hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
568     } else {
569         /* 256M segment */
570         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
571         epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
572         hash = vsid ^ (epn >> sps->page_shift);
573     }
574     ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
575     ptem |= HPTE64_V_VALID;
576 
577     /* Page address translation */
578     qemu_log_mask(CPU_LOG_MMU,
579             "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
580             " hash " TARGET_FMT_plx "\n",
581             ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);
582 
583     /* Primary PTEG lookup */
584     qemu_log_mask(CPU_LOG_MMU,
585             "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
586             " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
587             " hash=" TARGET_FMT_plx "\n",
588             ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
589             vsid, ptem,  hash);
590     ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
591 
592     if (ptex == -1) {
593         /* Secondary PTEG lookup */
594         ptem |= HPTE64_V_SECONDARY;
595         qemu_log_mask(CPU_LOG_MMU,
596                 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
597                 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
598                 " hash=" TARGET_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
599                 ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);
600 
601         ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
602     }
603 
604     return ptex;
605 }
606 
607 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
608                                           uint64_t pte0, uint64_t pte1)
609 {
610     int i;
611 
612     if (!(pte0 & HPTE64_V_LARGE)) {
613         return 12;
614     }
615 
616     /*
617      * The encodings in env->sps need to be carefully chosen so that
618      * this gives an unambiguous result.
619      */
620     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
621         const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
622         unsigned shift;
623 
624         if (!sps->page_shift) {
625             break;
626         }
627 
628         shift = hpte_page_shift(sps, pte0, pte1);
629         if (shift) {
630             return shift;
631         }
632     }
633 
634     return 0;
635 }
636 
637 static void ppc_hash64_set_isi(CPUState *cs, uint64_t error_code)
638 {
639     CPUPPCState *env = &POWERPC_CPU(cs)->env;
640     bool vpm;
641 
642     if (msr_ir) {
643         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
644     } else {
645         switch (env->mmu_model) {
646         case POWERPC_MMU_3_00:
647             /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
648             vpm = true;
649             break;
650         default:
651             vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
652             break;
653         }
654     }
655     if (vpm && !msr_hv) {
656         cs->exception_index = POWERPC_EXCP_HISI;
657     } else {
658         cs->exception_index = POWERPC_EXCP_ISI;
659     }
660     env->error_code = error_code;
661 }
662 
663 static void ppc_hash64_set_dsi(CPUState *cs, uint64_t dar, uint64_t dsisr)
664 {
665     CPUPPCState *env = &POWERPC_CPU(cs)->env;
666     bool vpm;
667 
668     if (msr_dr) {
669         vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
670     } else {
671         switch (env->mmu_model) {
672         case POWERPC_MMU_3_00:
673             /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
674             vpm = true;
675             break;
676         default:
677             vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
678             break;
679         }
680     }
681     if (vpm && !msr_hv) {
682         cs->exception_index = POWERPC_EXCP_HDSI;
683         env->spr[SPR_HDAR] = dar;
684         env->spr[SPR_HDSISR] = dsisr;
685     } else {
686         cs->exception_index = POWERPC_EXCP_DSI;
687         env->spr[SPR_DAR] = dar;
688         env->spr[SPR_DSISR] = dsisr;
689    }
690     env->error_code = 0;
691 }
692 
693 
694 int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
695                                 int rwx, int mmu_idx)
696 {
697     CPUState *cs = CPU(cpu);
698     CPUPPCState *env = &cpu->env;
699     ppc_slb_t *slb;
700     unsigned apshift;
701     hwaddr ptex;
702     ppc_hash_pte64_t pte;
703     int exec_prot, pp_prot, amr_prot, prot;
704     uint64_t new_pte1;
705     const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
706     hwaddr raddr;
707 
708     assert((rwx == 0) || (rwx == 1) || (rwx == 2));
709 
710     /* Note on LPCR usage: 970 uses HID4, but our special variant
711      * of store_spr copies relevant fields into env->spr[SPR_LPCR].
712      * Similarily we filter unimplemented bits when storing into
713      * LPCR depending on the MMU version. This code can thus just
714      * use the LPCR "as-is".
715      */
716 
717     /* 1. Handle real mode accesses */
718     if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
719         /* Translation is supposedly "off"  */
720         /* In real mode the top 4 effective address bits are (mostly) ignored */
721         raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
722 
723         /* In HV mode, add HRMOR if top EA bit is clear */
724         if (msr_hv || !env->has_hv_mode) {
725             if (!(eaddr >> 63)) {
726                 raddr |= env->spr[SPR_HRMOR];
727             }
728         } else {
729             /* Otherwise, check VPM for RMA vs VRMA */
730             if (env->spr[SPR_LPCR] & LPCR_VPM0) {
731                 slb = &env->vrma_slb;
732                 if (slb->sps) {
733                     goto skip_slb_search;
734                 }
735                 /* Not much else to do here */
736                 cs->exception_index = POWERPC_EXCP_MCHECK;
737                 env->error_code = 0;
738                 return 1;
739             } else if (raddr < env->rmls) {
740                 /* RMA. Check bounds in RMLS */
741                 raddr |= env->spr[SPR_RMOR];
742             } else {
743                 /* The access failed, generate the approriate interrupt */
744                 if (rwx == 2) {
745                     ppc_hash64_set_isi(cs, SRR1_PROTFAULT);
746                 } else {
747                     int dsisr = DSISR_PROTFAULT;
748                     if (rwx == 1) {
749                         dsisr |= DSISR_ISSTORE;
750                     }
751                     ppc_hash64_set_dsi(cs, eaddr, dsisr);
752                 }
753                 return 1;
754             }
755         }
756         tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
757                      PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
758                      TARGET_PAGE_SIZE);
759         return 0;
760     }
761 
762     /* 2. Translation is on, so look up the SLB */
763     slb = slb_lookup(cpu, eaddr);
764     if (!slb) {
765         /* No entry found, check if in-memory segment tables are in use */
766         if (ppc64_use_proc_tbl(cpu)) {
767             /* TODO - Unsupported */
768             error_report("Segment Table Support Unimplemented");
769             exit(1);
770         }
771         /* Segment still not found, generate the appropriate interrupt */
772         if (rwx == 2) {
773             cs->exception_index = POWERPC_EXCP_ISEG;
774             env->error_code = 0;
775         } else {
776             cs->exception_index = POWERPC_EXCP_DSEG;
777             env->error_code = 0;
778             env->spr[SPR_DAR] = eaddr;
779         }
780         return 1;
781     }
782 
783 skip_slb_search:
784 
785     /* 3. Check for segment level no-execute violation */
786     if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
787         ppc_hash64_set_isi(cs, SRR1_NOEXEC_GUARD);
788         return 1;
789     }
790 
791     /* 4. Locate the PTE in the hash table */
792     ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
793     if (ptex == -1) {
794         if (rwx == 2) {
795             ppc_hash64_set_isi(cs, SRR1_NOPTE);
796         } else {
797             int dsisr = DSISR_NOPTE;
798             if (rwx == 1) {
799                 dsisr |= DSISR_ISSTORE;
800             }
801             ppc_hash64_set_dsi(cs, eaddr, dsisr);
802         }
803         return 1;
804     }
805     qemu_log_mask(CPU_LOG_MMU,
806                   "found PTE at index %08" HWADDR_PRIx "\n", ptex);
807 
808     /* 5. Check access permissions */
809 
810     exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
811     pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
812     amr_prot = ppc_hash64_amr_prot(cpu, pte);
813     prot = exec_prot & pp_prot & amr_prot;
814 
815     if ((need_prot[rwx] & ~prot) != 0) {
816         /* Access right violation */
817         qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
818         if (rwx == 2) {
819             int srr1 = 0;
820             if (PAGE_EXEC & ~exec_prot) {
821                 srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */
822             } else if (PAGE_EXEC & ~pp_prot) {
823                 srr1 |= SRR1_PROTFAULT; /* Access violates access authority */
824             }
825             if (PAGE_EXEC & ~amr_prot) {
826                 srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
827             }
828             ppc_hash64_set_isi(cs, srr1);
829         } else {
830             int dsisr = 0;
831             if (need_prot[rwx] & ~pp_prot) {
832                 dsisr |= DSISR_PROTFAULT;
833             }
834             if (rwx == 1) {
835                 dsisr |= DSISR_ISSTORE;
836             }
837             if (need_prot[rwx] & ~amr_prot) {
838                 dsisr |= DSISR_AMR;
839             }
840             ppc_hash64_set_dsi(cs, eaddr, dsisr);
841         }
842         return 1;
843     }
844 
845     qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
846 
847     /* 6. Update PTE referenced and changed bits if necessary */
848 
849     new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
850     if (rwx == 1) {
851         new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
852     } else {
853         /* Treat the page as read-only for now, so that a later write
854          * will pass through this function again to set the C bit */
855         prot &= ~PAGE_WRITE;
856     }
857 
858     if (new_pte1 != pte.pte1) {
859         ppc_hash64_store_hpte(cpu, ptex, pte.pte0, new_pte1);
860     }
861 
862     /* 7. Determine the real address from the PTE */
863 
864     raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
865 
866     tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
867                  prot, mmu_idx, 1ULL << apshift);
868 
869     return 0;
870 }
871 
872 hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
873 {
874     CPUPPCState *env = &cpu->env;
875     ppc_slb_t *slb;
876     hwaddr ptex, raddr;
877     ppc_hash_pte64_t pte;
878     unsigned apshift;
879 
880     /* Handle real mode */
881     if (msr_dr == 0) {
882         /* In real mode the top 4 effective address bits are ignored */
883         raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
884 
885         /* In HV mode, add HRMOR if top EA bit is clear */
886         if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
887             return raddr | env->spr[SPR_HRMOR];
888         }
889 
890         /* Otherwise, check VPM for RMA vs VRMA */
891         if (env->spr[SPR_LPCR] & LPCR_VPM0) {
892             slb = &env->vrma_slb;
893             if (!slb->sps) {
894                 return -1;
895             }
896         } else if (raddr < env->rmls) {
897             /* RMA. Check bounds in RMLS */
898             return raddr | env->spr[SPR_RMOR];
899         } else {
900             return -1;
901         }
902     } else {
903         slb = slb_lookup(cpu, addr);
904         if (!slb) {
905             return -1;
906         }
907     }
908 
909     ptex = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
910     if (ptex == -1) {
911         return -1;
912     }
913 
914     return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
915         & TARGET_PAGE_MASK;
916 }
917 
918 void ppc_hash64_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
919                            uint64_t pte0, uint64_t pte1)
920 {
921     hwaddr base = ppc_hash64_hpt_base(cpu);
922     hwaddr offset = ptex * HASH_PTE_SIZE_64;
923 
924     if (cpu->vhyp) {
925         PPCVirtualHypervisorClass *vhc =
926             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
927         vhc->store_hpte(cpu->vhyp, ptex, pte0, pte1);
928         return;
929     }
930 
931     stq_phys(CPU(cpu)->as, base + offset, pte0);
932     stq_phys(CPU(cpu)->as, base + offset + HASH_PTE_SIZE_64 / 2, pte1);
933 }
934 
935 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
936                                target_ulong pte0, target_ulong pte1)
937 {
938     /*
939      * XXX: given the fact that there are too many segments to
940      * invalidate, and we still don't have a tlb_flush_mask(env, n,
941      * mask) in QEMU, we just invalidate all TLBs
942      */
943     cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
944 }
945 
946 static void ppc_hash64_update_rmls(PowerPCCPU *cpu)
947 {
948     CPUPPCState *env = &cpu->env;
949     uint64_t lpcr = env->spr[SPR_LPCR];
950 
951     /*
952      * This is the full 4 bits encoding of POWER8. Previous
953      * CPUs only support a subset of these but the filtering
954      * is done when writing LPCR
955      */
956     switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
957     case 0x8: /* 32MB */
958         env->rmls = 0x2000000ull;
959         break;
960     case 0x3: /* 64MB */
961         env->rmls = 0x4000000ull;
962         break;
963     case 0x7: /* 128MB */
964         env->rmls = 0x8000000ull;
965         break;
966     case 0x4: /* 256MB */
967         env->rmls = 0x10000000ull;
968         break;
969     case 0x2: /* 1GB */
970         env->rmls = 0x40000000ull;
971         break;
972     case 0x1: /* 16GB */
973         env->rmls = 0x400000000ull;
974         break;
975     default:
976         /* What to do here ??? */
977         env->rmls = 0;
978     }
979 }
980 
981 static void ppc_hash64_update_vrma(PowerPCCPU *cpu)
982 {
983     CPUPPCState *env = &cpu->env;
984     const PPCHash64SegmentPageSizes *sps = NULL;
985     target_ulong esid, vsid, lpcr;
986     ppc_slb_t *slb = &env->vrma_slb;
987     uint32_t vrmasd;
988     int i;
989 
990     /* First clear it */
991     slb->esid = slb->vsid = 0;
992     slb->sps = NULL;
993 
994     /* Is VRMA enabled ? */
995     lpcr = env->spr[SPR_LPCR];
996     if (!(lpcr & LPCR_VPM0)) {
997         return;
998     }
999 
1000     /* Make one up. Mostly ignore the ESID which will not be
1001      * needed for translation
1002      */
1003     vsid = SLB_VSID_VRMA;
1004     vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
1005     vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
1006     esid = SLB_ESID_V;
1007 
1008     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
1009         const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];
1010 
1011         if (!sps1->page_shift) {
1012             break;
1013         }
1014 
1015         if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
1016             sps = sps1;
1017             break;
1018         }
1019     }
1020 
1021     if (!sps) {
1022         error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
1023                      " vsid 0x"TARGET_FMT_lx, esid, vsid);
1024         return;
1025     }
1026 
1027     slb->vsid = vsid;
1028     slb->esid = esid;
1029     slb->sps = sps;
1030 }
1031 
1032 void ppc_store_lpcr(PowerPCCPU *cpu, target_ulong val)
1033 {
1034     CPUPPCState *env = &cpu->env;
1035     uint64_t lpcr = 0;
1036 
1037     /* Filter out bits */
1038     switch (env->mmu_model) {
1039     case POWERPC_MMU_64B: /* 970 */
1040         if (val & 0x40) {
1041             lpcr |= LPCR_LPES0;
1042         }
1043         if (val & 0x8000000000000000ull) {
1044             lpcr |= LPCR_LPES1;
1045         }
1046         if (val & 0x20) {
1047             lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
1048         }
1049         if (val & 0x4000000000000000ull) {
1050             lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
1051         }
1052         if (val & 0x2000000000000000ull) {
1053             lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
1054         }
1055         env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
1056 
1057         /* XXX We could also write LPID from HID4 here
1058          * but since we don't tag any translation on it
1059          * it doesn't actually matter
1060          */
1061         /* XXX For proper emulation of 970 we also need
1062          * to dig HRMOR out of HID5
1063          */
1064         break;
1065     case POWERPC_MMU_2_03: /* P5p */
1066         lpcr = val & (LPCR_RMLS | LPCR_ILE |
1067                       LPCR_LPES0 | LPCR_LPES1 |
1068                       LPCR_RMI | LPCR_HDICE);
1069         break;
1070     case POWERPC_MMU_2_06: /* P7 */
1071         lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
1072                       LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1073                       LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
1074                       LPCR_MER | LPCR_TC |
1075                       LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
1076         break;
1077     case POWERPC_MMU_2_07: /* P8 */
1078         lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
1079                       LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1080                       LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
1081                       LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
1082                       LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
1083         break;
1084     case POWERPC_MMU_3_00: /* P9 */
1085         lpcr = val & (LPCR_VPM1 | LPCR_ISL | LPCR_KBV | LPCR_DPFD |
1086                       (LPCR_PECE_U_MASK & LPCR_HVEE) | LPCR_ILE | LPCR_AIL |
1087                       LPCR_UPRT | LPCR_EVIRT | LPCR_ONL |
1088                       (LPCR_PECE_L_MASK & (LPCR_PDEE | LPCR_HDEE | LPCR_EEE |
1089                       LPCR_DEE | LPCR_OEE)) | LPCR_MER | LPCR_GTSE | LPCR_TC |
1090                       LPCR_HEIC | LPCR_LPES0 | LPCR_HVICE | LPCR_HDICE);
1091         break;
1092     default:
1093         ;
1094     }
1095     env->spr[SPR_LPCR] = lpcr;
1096     ppc_hash64_update_rmls(cpu);
1097     ppc_hash64_update_vrma(cpu);
1098 }
1099 
1100 void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1101 {
1102     PowerPCCPU *cpu = ppc_env_get_cpu(env);
1103 
1104     ppc_store_lpcr(cpu, val);
1105 }
1106 
1107 void ppc_hash64_init(PowerPCCPU *cpu)
1108 {
1109     CPUPPCState *env = &cpu->env;
1110     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1111 
1112     if (!pcc->hash64_opts) {
1113         assert(!(env->mmu_model & POWERPC_MMU_64));
1114         return;
1115     }
1116 
1117     cpu->hash64_opts = g_memdup(pcc->hash64_opts, sizeof(*cpu->hash64_opts));
1118 }
1119 
1120 void ppc_hash64_finalize(PowerPCCPU *cpu)
1121 {
1122     g_free(cpu->hash64_opts);
1123 }
1124 
1125 const PPCHash64Options ppc_hash64_opts_basic = {
1126     .flags = 0,
1127     .slb_size = 64,
1128     .sps = {
1129         { .page_shift = 12, /* 4K */
1130           .slb_enc = 0,
1131           .enc = { { .page_shift = 12, .pte_enc = 0 } }
1132         },
1133         { .page_shift = 24, /* 16M */
1134           .slb_enc = 0x100,
1135           .enc = { { .page_shift = 24, .pte_enc = 0 } }
1136         },
1137     },
1138 };
1139 
1140 const PPCHash64Options ppc_hash64_opts_POWER7 = {
1141     .flags = PPC_HASH64_1TSEG | PPC_HASH64_AMR | PPC_HASH64_CI_LARGEPAGE,
1142     .slb_size = 32,
1143     .sps = {
1144         {
1145             .page_shift = 12, /* 4K */
1146             .slb_enc = 0,
1147             .enc = { { .page_shift = 12, .pte_enc = 0 },
1148                      { .page_shift = 16, .pte_enc = 0x7 },
1149                      { .page_shift = 24, .pte_enc = 0x38 }, },
1150         },
1151         {
1152             .page_shift = 16, /* 64K */
1153             .slb_enc = SLB_VSID_64K,
1154             .enc = { { .page_shift = 16, .pte_enc = 0x1 },
1155                      { .page_shift = 24, .pte_enc = 0x8 }, },
1156         },
1157         {
1158             .page_shift = 24, /* 16M */
1159             .slb_enc = SLB_VSID_16M,
1160             .enc = { { .page_shift = 24, .pte_enc = 0 }, },
1161         },
1162         {
1163             .page_shift = 34, /* 16G */
1164             .slb_enc = SLB_VSID_16G,
1165             .enc = { { .page_shift = 34, .pte_enc = 0x3 }, },
1166         },
1167     }
1168 };
1169 
1170 void ppc_hash64_filter_pagesizes(PowerPCCPU *cpu,
1171                                  bool (*cb)(void *, uint32_t, uint32_t),
1172                                  void *opaque)
1173 {
1174     PPCHash64Options *opts = cpu->hash64_opts;
1175     int i;
1176     int n = 0;
1177     bool ci_largepage = false;
1178 
1179     assert(opts);
1180 
1181     n = 0;
1182     for (i = 0; i < ARRAY_SIZE(opts->sps); i++) {
1183         PPCHash64SegmentPageSizes *sps = &opts->sps[i];
1184         int j;
1185         int m = 0;
1186 
1187         assert(n <= i);
1188 
1189         if (!sps->page_shift) {
1190             break;
1191         }
1192 
1193         for (j = 0; j < ARRAY_SIZE(sps->enc); j++) {
1194             PPCHash64PageSize *ps = &sps->enc[j];
1195 
1196             assert(m <= j);
1197             if (!ps->page_shift) {
1198                 break;
1199             }
1200 
1201             if (cb(opaque, sps->page_shift, ps->page_shift)) {
1202                 if (ps->page_shift >= 16) {
1203                     ci_largepage = true;
1204                 }
1205                 sps->enc[m++] = *ps;
1206             }
1207         }
1208 
1209         /* Clear rest of the row */
1210         for (j = m; j < ARRAY_SIZE(sps->enc); j++) {
1211             memset(&sps->enc[j], 0, sizeof(sps->enc[j]));
1212         }
1213 
1214         if (m) {
1215             n++;
1216         }
1217     }
1218 
1219     /* Clear the rest of the table */
1220     for (i = n; i < ARRAY_SIZE(opts->sps); i++) {
1221         memset(&opts->sps[i], 0, sizeof(opts->sps[i]));
1222     }
1223 
1224     if (!ci_largepage) {
1225         opts->flags &= ~PPC_HASH64_CI_LARGEPAGE;
1226     }
1227 }
1228