xref: /openbmc/qemu/target/ppc/mmu-hash32.c (revision f101c9fe)
1 /*
2  *  PowerPC MMU, TLB and BAT emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *  Copyright (c) 2013 David Gibson, IBM Corporation
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * This library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "sysemu/kvm.h"
25 #include "kvm_ppc.h"
26 #include "internal.h"
27 #include "mmu-hash32.h"
28 #include "exec/log.h"
29 
30 /* #define DEBUG_BAT */
31 
32 #ifdef DEBUG_BATS
33 #  define LOG_BATS(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
34 #else
35 #  define LOG_BATS(...) do { } while (0)
36 #endif
37 
38 struct mmu_ctx_hash32 {
39     hwaddr raddr;      /* Real address              */
40     int prot;                      /* Protection bits           */
41     int key;                       /* Access key                */
42 };
43 
44 static int ppc_hash32_pp_prot(int key, int pp, int nx)
45 {
46     int prot;
47 
48     if (key == 0) {
49         switch (pp) {
50         case 0x0:
51         case 0x1:
52         case 0x2:
53             prot = PAGE_READ | PAGE_WRITE;
54             break;
55 
56         case 0x3:
57             prot = PAGE_READ;
58             break;
59 
60         default:
61             abort();
62         }
63     } else {
64         switch (pp) {
65         case 0x0:
66             prot = 0;
67             break;
68 
69         case 0x1:
70         case 0x3:
71             prot = PAGE_READ;
72             break;
73 
74         case 0x2:
75             prot = PAGE_READ | PAGE_WRITE;
76             break;
77 
78         default:
79             abort();
80         }
81     }
82     if (nx == 0) {
83         prot |= PAGE_EXEC;
84     }
85 
86     return prot;
87 }
88 
89 static int ppc_hash32_pte_prot(PowerPCCPU *cpu,
90                                target_ulong sr, ppc_hash_pte32_t pte)
91 {
92     CPUPPCState *env = &cpu->env;
93     unsigned pp, key;
94 
95     key = !!(msr_pr ? (sr & SR32_KP) : (sr & SR32_KS));
96     pp = pte.pte1 & HPTE32_R_PP;
97 
98     return ppc_hash32_pp_prot(key, pp, !!(sr & SR32_NX));
99 }
100 
101 static target_ulong hash32_bat_size(PowerPCCPU *cpu,
102                                     target_ulong batu, target_ulong batl)
103 {
104     CPUPPCState *env = &cpu->env;
105 
106     if ((msr_pr && !(batu & BATU32_VP))
107         || (!msr_pr && !(batu & BATU32_VS))) {
108         return 0;
109     }
110 
111     return BATU32_BEPI & ~((batu & BATU32_BL) << 15);
112 }
113 
114 static int hash32_bat_prot(PowerPCCPU *cpu,
115                            target_ulong batu, target_ulong batl)
116 {
117     int pp, prot;
118 
119     prot = 0;
120     pp = batl & BATL32_PP;
121     if (pp != 0) {
122         prot = PAGE_READ | PAGE_EXEC;
123         if (pp == 0x2) {
124             prot |= PAGE_WRITE;
125         }
126     }
127     return prot;
128 }
129 
130 static target_ulong hash32_bat_601_size(PowerPCCPU *cpu,
131                                 target_ulong batu, target_ulong batl)
132 {
133     if (!(batl & BATL32_601_V)) {
134         return 0;
135     }
136 
137     return BATU32_BEPI & ~((batl & BATL32_601_BL) << 17);
138 }
139 
140 static int hash32_bat_601_prot(PowerPCCPU *cpu,
141                                target_ulong batu, target_ulong batl)
142 {
143     CPUPPCState *env = &cpu->env;
144     int key, pp;
145 
146     pp = batu & BATU32_601_PP;
147     if (msr_pr == 0) {
148         key = !!(batu & BATU32_601_KS);
149     } else {
150         key = !!(batu & BATU32_601_KP);
151     }
152     return ppc_hash32_pp_prot(key, pp, 0);
153 }
154 
155 static hwaddr ppc_hash32_bat_lookup(PowerPCCPU *cpu, target_ulong ea,
156                                     MMUAccessType access_type, int *prot)
157 {
158     CPUPPCState *env = &cpu->env;
159     target_ulong *BATlt, *BATut;
160     bool ifetch = access_type == MMU_INST_FETCH;
161     int i;
162 
163     LOG_BATS("%s: %cBAT v " TARGET_FMT_lx "\n", __func__,
164              ifetch ? 'I' : 'D', ea);
165     if (ifetch) {
166         BATlt = env->IBAT[1];
167         BATut = env->IBAT[0];
168     } else {
169         BATlt = env->DBAT[1];
170         BATut = env->DBAT[0];
171     }
172     for (i = 0; i < env->nb_BATs; i++) {
173         target_ulong batu = BATut[i];
174         target_ulong batl = BATlt[i];
175         target_ulong mask;
176 
177         if (unlikely(env->mmu_model == POWERPC_MMU_601)) {
178             mask = hash32_bat_601_size(cpu, batu, batl);
179         } else {
180             mask = hash32_bat_size(cpu, batu, batl);
181         }
182         LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx
183                  " BATl " TARGET_FMT_lx "\n", __func__,
184                  ifetch ? 'I' : 'D', i, ea, batu, batl);
185 
186         if (mask && ((ea & mask) == (batu & BATU32_BEPI))) {
187             hwaddr raddr = (batl & mask) | (ea & ~mask);
188 
189             if (unlikely(env->mmu_model == POWERPC_MMU_601)) {
190                 *prot = hash32_bat_601_prot(cpu, batu, batl);
191             } else {
192                 *prot = hash32_bat_prot(cpu, batu, batl);
193             }
194 
195             return raddr & TARGET_PAGE_MASK;
196         }
197     }
198 
199     /* No hit */
200 #if defined(DEBUG_BATS)
201     if (qemu_log_enabled()) {
202         LOG_BATS("no BAT match for " TARGET_FMT_lx ":\n", ea);
203         for (i = 0; i < 4; i++) {
204             BATu = &BATut[i];
205             BATl = &BATlt[i];
206             BEPIu = *BATu & BATU32_BEPIU;
207             BEPIl = *BATu & BATU32_BEPIL;
208             bl = (*BATu & 0x00001FFC) << 15;
209             LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx
210                      " BATl " TARGET_FMT_lx "\n\t" TARGET_FMT_lx " "
211                      TARGET_FMT_lx " " TARGET_FMT_lx "\n",
212                      __func__, ifetch ? 'I' : 'D', i, ea,
213                      *BATu, *BATl, BEPIu, BEPIl, bl);
214         }
215     }
216 #endif
217 
218     return -1;
219 }
220 
221 static int ppc_hash32_direct_store(PowerPCCPU *cpu, target_ulong sr,
222                                    target_ulong eaddr,
223                                    MMUAccessType access_type,
224                                    hwaddr *raddr, int *prot)
225 {
226     CPUState *cs = CPU(cpu);
227     CPUPPCState *env = &cpu->env;
228     int key = !!(msr_pr ? (sr & SR32_KP) : (sr & SR32_KS));
229 
230     qemu_log_mask(CPU_LOG_MMU, "direct store...\n");
231 
232     if ((sr & 0x1FF00000) >> 20 == 0x07f) {
233         /*
234          * Memory-forced I/O controller interface access
235          *
236          * If T=1 and BUID=x'07F', the 601 performs a memory access
237          * to SR[28-31] LA[4-31], bypassing all protection mechanisms.
238          */
239         *raddr = ((sr & 0xF) << 28) | (eaddr & 0x0FFFFFFF);
240         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
241         return 0;
242     }
243 
244     if (access_type == MMU_INST_FETCH) {
245         /* No code fetch is allowed in direct-store areas */
246         cs->exception_index = POWERPC_EXCP_ISI;
247         env->error_code = 0x10000000;
248         return 1;
249     }
250 
251     switch (env->access_type) {
252     case ACCESS_INT:
253         /* Integer load/store : only access allowed */
254         break;
255     case ACCESS_FLOAT:
256         /* Floating point load/store */
257         cs->exception_index = POWERPC_EXCP_ALIGN;
258         env->error_code = POWERPC_EXCP_ALIGN_FP;
259         env->spr[SPR_DAR] = eaddr;
260         return 1;
261     case ACCESS_RES:
262         /* lwarx, ldarx or srwcx. */
263         env->error_code = 0;
264         env->spr[SPR_DAR] = eaddr;
265         if (access_type == MMU_DATA_STORE) {
266             env->spr[SPR_DSISR] = 0x06000000;
267         } else {
268             env->spr[SPR_DSISR] = 0x04000000;
269         }
270         return 1;
271     case ACCESS_CACHE:
272         /*
273          * dcba, dcbt, dcbtst, dcbf, dcbi, dcbst, dcbz, or icbi
274          *
275          * Should make the instruction do no-op.  As it already do
276          * no-op, it's quite easy :-)
277          */
278         *raddr = eaddr;
279         return 0;
280     case ACCESS_EXT:
281         /* eciwx or ecowx */
282         cs->exception_index = POWERPC_EXCP_DSI;
283         env->error_code = 0;
284         env->spr[SPR_DAR] = eaddr;
285         if (access_type == MMU_DATA_STORE) {
286             env->spr[SPR_DSISR] = 0x06100000;
287         } else {
288             env->spr[SPR_DSISR] = 0x04100000;
289         }
290         return 1;
291     default:
292         cpu_abort(cs, "ERROR: instruction should not need "
293                  "address translation\n");
294     }
295     if ((access_type == MMU_DATA_STORE || key != 1) &&
296         (access_type == MMU_DATA_LOAD || key != 0)) {
297         *raddr = eaddr;
298         return 0;
299     } else {
300         cs->exception_index = POWERPC_EXCP_DSI;
301         env->error_code = 0;
302         env->spr[SPR_DAR] = eaddr;
303         if (access_type == MMU_DATA_STORE) {
304             env->spr[SPR_DSISR] = 0x0a000000;
305         } else {
306             env->spr[SPR_DSISR] = 0x08000000;
307         }
308         return 1;
309     }
310 }
311 
312 hwaddr get_pteg_offset32(PowerPCCPU *cpu, hwaddr hash)
313 {
314     target_ulong mask = ppc_hash32_hpt_mask(cpu);
315 
316     return (hash * HASH_PTEG_SIZE_32) & mask;
317 }
318 
319 static hwaddr ppc_hash32_pteg_search(PowerPCCPU *cpu, hwaddr pteg_off,
320                                      bool secondary, target_ulong ptem,
321                                      ppc_hash_pte32_t *pte)
322 {
323     hwaddr pte_offset = pteg_off;
324     target_ulong pte0, pte1;
325     int i;
326 
327     for (i = 0; i < HPTES_PER_GROUP; i++) {
328         pte0 = ppc_hash32_load_hpte0(cpu, pte_offset);
329         /*
330          * pte0 contains the valid bit and must be read before pte1,
331          * otherwise we might see an old pte1 with a new valid bit and
332          * thus an inconsistent hpte value
333          */
334         smp_rmb();
335         pte1 = ppc_hash32_load_hpte1(cpu, pte_offset);
336 
337         if ((pte0 & HPTE32_V_VALID)
338             && (secondary == !!(pte0 & HPTE32_V_SECONDARY))
339             && HPTE32_V_COMPARE(pte0, ptem)) {
340             pte->pte0 = pte0;
341             pte->pte1 = pte1;
342             return pte_offset;
343         }
344 
345         pte_offset += HASH_PTE_SIZE_32;
346     }
347 
348     return -1;
349 }
350 
351 static void ppc_hash32_set_r(PowerPCCPU *cpu, hwaddr pte_offset, uint32_t pte1)
352 {
353     target_ulong base = ppc_hash32_hpt_base(cpu);
354     hwaddr offset = pte_offset + 6;
355 
356     /* The HW performs a non-atomic byte update */
357     stb_phys(CPU(cpu)->as, base + offset, ((pte1 >> 8) & 0xff) | 0x01);
358 }
359 
360 static void ppc_hash32_set_c(PowerPCCPU *cpu, hwaddr pte_offset, uint64_t pte1)
361 {
362     target_ulong base = ppc_hash32_hpt_base(cpu);
363     hwaddr offset = pte_offset + 7;
364 
365     /* The HW performs a non-atomic byte update */
366     stb_phys(CPU(cpu)->as, base + offset, (pte1 & 0xff) | 0x80);
367 }
368 
369 static hwaddr ppc_hash32_htab_lookup(PowerPCCPU *cpu,
370                                      target_ulong sr, target_ulong eaddr,
371                                      ppc_hash_pte32_t *pte)
372 {
373     hwaddr pteg_off, pte_offset;
374     hwaddr hash;
375     uint32_t vsid, pgidx, ptem;
376 
377     vsid = sr & SR32_VSID;
378     pgidx = (eaddr & ~SEGMENT_MASK_256M) >> TARGET_PAGE_BITS;
379     hash = vsid ^ pgidx;
380     ptem = (vsid << 7) | (pgidx >> 10);
381 
382     /* Page address translation */
383     qemu_log_mask(CPU_LOG_MMU, "htab_base " TARGET_FMT_plx
384             " htab_mask " TARGET_FMT_plx
385             " hash " TARGET_FMT_plx "\n",
386             ppc_hash32_hpt_base(cpu), ppc_hash32_hpt_mask(cpu), hash);
387 
388     /* Primary PTEG lookup */
389     qemu_log_mask(CPU_LOG_MMU, "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
390             " vsid=%" PRIx32 " ptem=%" PRIx32
391             " hash=" TARGET_FMT_plx "\n",
392             ppc_hash32_hpt_base(cpu), ppc_hash32_hpt_mask(cpu),
393             vsid, ptem, hash);
394     pteg_off = get_pteg_offset32(cpu, hash);
395     pte_offset = ppc_hash32_pteg_search(cpu, pteg_off, 0, ptem, pte);
396     if (pte_offset == -1) {
397         /* Secondary PTEG lookup */
398         qemu_log_mask(CPU_LOG_MMU, "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
399                 " vsid=%" PRIx32 " api=%" PRIx32
400                 " hash=" TARGET_FMT_plx "\n", ppc_hash32_hpt_base(cpu),
401                 ppc_hash32_hpt_mask(cpu), vsid, ptem, ~hash);
402         pteg_off = get_pteg_offset32(cpu, ~hash);
403         pte_offset = ppc_hash32_pteg_search(cpu, pteg_off, 1, ptem, pte);
404     }
405 
406     return pte_offset;
407 }
408 
409 static hwaddr ppc_hash32_pte_raddr(target_ulong sr, ppc_hash_pte32_t pte,
410                                    target_ulong eaddr)
411 {
412     hwaddr rpn = pte.pte1 & HPTE32_R_RPN;
413     hwaddr mask = ~TARGET_PAGE_MASK;
414 
415     return (rpn & ~mask) | (eaddr & mask);
416 }
417 
418 int ppc_hash32_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr, int rwx,
419                                 int mmu_idx)
420 {
421     CPUState *cs = CPU(cpu);
422     CPUPPCState *env = &cpu->env;
423     target_ulong sr;
424     hwaddr pte_offset;
425     ppc_hash_pte32_t pte;
426     int prot;
427     int need_prot;
428     MMUAccessType access_type;
429     hwaddr raddr;
430 
431     assert((rwx == 0) || (rwx == 1) || (rwx == 2));
432     access_type = rwx;
433     need_prot = prot_for_access_type(access_type);
434 
435     /* 1. Handle real mode accesses */
436     if (access_type == MMU_INST_FETCH ? !msr_ir : !msr_dr) {
437         /* Translation is off */
438         raddr = eaddr;
439         tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
440                      PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
441                      TARGET_PAGE_SIZE);
442         return 0;
443     }
444 
445     /* 2. Check Block Address Translation entries (BATs) */
446     if (env->nb_BATs != 0) {
447         raddr = ppc_hash32_bat_lookup(cpu, eaddr, access_type, &prot);
448         if (raddr != -1) {
449             if (need_prot & ~prot) {
450                 if (access_type == MMU_INST_FETCH) {
451                     cs->exception_index = POWERPC_EXCP_ISI;
452                     env->error_code = 0x08000000;
453                 } else {
454                     cs->exception_index = POWERPC_EXCP_DSI;
455                     env->error_code = 0;
456                     env->spr[SPR_DAR] = eaddr;
457                     if (access_type == MMU_DATA_STORE) {
458                         env->spr[SPR_DSISR] = 0x0a000000;
459                     } else {
460                         env->spr[SPR_DSISR] = 0x08000000;
461                     }
462                 }
463                 return 1;
464             }
465 
466             tlb_set_page(cs, eaddr & TARGET_PAGE_MASK,
467                          raddr & TARGET_PAGE_MASK, prot, mmu_idx,
468                          TARGET_PAGE_SIZE);
469             return 0;
470         }
471     }
472 
473     /* 3. Look up the Segment Register */
474     sr = env->sr[eaddr >> 28];
475 
476     /* 4. Handle direct store segments */
477     if (sr & SR32_T) {
478         if (ppc_hash32_direct_store(cpu, sr, eaddr, access_type,
479                                     &raddr, &prot) == 0) {
480             tlb_set_page(cs, eaddr & TARGET_PAGE_MASK,
481                          raddr & TARGET_PAGE_MASK, prot, mmu_idx,
482                          TARGET_PAGE_SIZE);
483             return 0;
484         } else {
485             return 1;
486         }
487     }
488 
489     /* 5. Check for segment level no-execute violation */
490     if (access_type == MMU_INST_FETCH && (sr & SR32_NX)) {
491         cs->exception_index = POWERPC_EXCP_ISI;
492         env->error_code = 0x10000000;
493         return 1;
494     }
495 
496     /* 6. Locate the PTE in the hash table */
497     pte_offset = ppc_hash32_htab_lookup(cpu, sr, eaddr, &pte);
498     if (pte_offset == -1) {
499         if (access_type == MMU_INST_FETCH) {
500             cs->exception_index = POWERPC_EXCP_ISI;
501             env->error_code = 0x40000000;
502         } else {
503             cs->exception_index = POWERPC_EXCP_DSI;
504             env->error_code = 0;
505             env->spr[SPR_DAR] = eaddr;
506             if (access_type == MMU_DATA_STORE) {
507                 env->spr[SPR_DSISR] = 0x42000000;
508             } else {
509                 env->spr[SPR_DSISR] = 0x40000000;
510             }
511         }
512 
513         return 1;
514     }
515     qemu_log_mask(CPU_LOG_MMU,
516                 "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
517 
518     /* 7. Check access permissions */
519 
520     prot = ppc_hash32_pte_prot(cpu, sr, pte);
521 
522     if (need_prot & ~prot) {
523         /* Access right violation */
524         qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
525         if (access_type == MMU_INST_FETCH) {
526             cs->exception_index = POWERPC_EXCP_ISI;
527             env->error_code = 0x08000000;
528         } else {
529             cs->exception_index = POWERPC_EXCP_DSI;
530             env->error_code = 0;
531             env->spr[SPR_DAR] = eaddr;
532             if (access_type == MMU_DATA_STORE) {
533                 env->spr[SPR_DSISR] = 0x0a000000;
534             } else {
535                 env->spr[SPR_DSISR] = 0x08000000;
536             }
537         }
538         return 1;
539     }
540 
541     qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
542 
543     /* 8. Update PTE referenced and changed bits if necessary */
544 
545     if (!(pte.pte1 & HPTE32_R_R)) {
546         ppc_hash32_set_r(cpu, pte_offset, pte.pte1);
547     }
548     if (!(pte.pte1 & HPTE32_R_C)) {
549         if (access_type == MMU_DATA_STORE) {
550             ppc_hash32_set_c(cpu, pte_offset, pte.pte1);
551         } else {
552             /*
553              * Treat the page as read-only for now, so that a later write
554              * will pass through this function again to set the C bit
555              */
556             prot &= ~PAGE_WRITE;
557         }
558      }
559 
560     /* 9. Determine the real address from the PTE */
561 
562     raddr = ppc_hash32_pte_raddr(sr, pte, eaddr);
563 
564     tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
565                  prot, mmu_idx, TARGET_PAGE_SIZE);
566 
567     return 0;
568 }
569 
570 hwaddr ppc_hash32_get_phys_page_debug(PowerPCCPU *cpu, target_ulong eaddr)
571 {
572     CPUPPCState *env = &cpu->env;
573     target_ulong sr;
574     hwaddr pte_offset;
575     ppc_hash_pte32_t pte;
576     int prot;
577 
578     if (msr_dr == 0) {
579         /* Translation is off */
580         return eaddr;
581     }
582 
583     if (env->nb_BATs != 0) {
584         hwaddr raddr = ppc_hash32_bat_lookup(cpu, eaddr, 0, &prot);
585         if (raddr != -1) {
586             return raddr;
587         }
588     }
589 
590     sr = env->sr[eaddr >> 28];
591 
592     if (sr & SR32_T) {
593         /* FIXME: Add suitable debug support for Direct Store segments */
594         return -1;
595     }
596 
597     pte_offset = ppc_hash32_htab_lookup(cpu, sr, eaddr, &pte);
598     if (pte_offset == -1) {
599         return -1;
600     }
601 
602     return ppc_hash32_pte_raddr(sr, pte, eaddr) & TARGET_PAGE_MASK;
603 }
604