xref: /openbmc/qemu/target/ppc/mem_helper.c (revision dcb32f1d)
1 /*
2  *  PowerPC memory access emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/helper-proto.h"
26 #include "helper_regs.h"
27 #include "exec/cpu_ldst.h"
28 #include "tcg/tcg.h"
29 #include "internal.h"
30 #include "qemu/atomic128.h"
31 
32 /* #define DEBUG_OP */
33 
34 static inline bool needs_byteswap(const CPUPPCState *env)
35 {
36 #if defined(TARGET_WORDS_BIGENDIAN)
37   return msr_le;
38 #else
39   return !msr_le;
40 #endif
41 }
42 
43 /*****************************************************************************/
44 /* Memory load and stores */
45 
46 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
47                                     target_long arg)
48 {
49 #if defined(TARGET_PPC64)
50     if (!msr_is_64bit(env, env->msr)) {
51         return (uint32_t)(addr + arg);
52     } else
53 #endif
54     {
55         return addr + arg;
56     }
57 }
58 
59 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
60 {
61     for (; reg < 32; reg++) {
62         if (needs_byteswap(env)) {
63             env->gpr[reg] = bswap32(cpu_ldl_data_ra(env, addr, GETPC()));
64         } else {
65             env->gpr[reg] = cpu_ldl_data_ra(env, addr, GETPC());
66         }
67         addr = addr_add(env, addr, 4);
68     }
69 }
70 
71 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
72 {
73     for (; reg < 32; reg++) {
74         if (needs_byteswap(env)) {
75             cpu_stl_data_ra(env, addr, bswap32((uint32_t)env->gpr[reg]),
76                                                    GETPC());
77         } else {
78             cpu_stl_data_ra(env, addr, (uint32_t)env->gpr[reg], GETPC());
79         }
80         addr = addr_add(env, addr, 4);
81     }
82 }
83 
84 static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
85                    uint32_t reg, uintptr_t raddr)
86 {
87     int sh;
88 
89     for (; nb > 3; nb -= 4) {
90         env->gpr[reg] = cpu_ldl_data_ra(env, addr, raddr);
91         reg = (reg + 1) % 32;
92         addr = addr_add(env, addr, 4);
93     }
94     if (unlikely(nb > 0)) {
95         env->gpr[reg] = 0;
96         for (sh = 24; nb > 0; nb--, sh -= 8) {
97             env->gpr[reg] |= cpu_ldub_data_ra(env, addr, raddr) << sh;
98             addr = addr_add(env, addr, 1);
99         }
100     }
101 }
102 
103 void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
104 {
105     do_lsw(env, addr, nb, reg, GETPC());
106 }
107 
108 /*
109  * PPC32 specification says we must generate an exception if rA is in
110  * the range of registers to be loaded.  In an other hand, IBM says
111  * this is valid, but rA won't be loaded.  For now, I'll follow the
112  * spec...
113  */
114 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
115                  uint32_t ra, uint32_t rb)
116 {
117     if (likely(xer_bc != 0)) {
118         int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
119         if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
120                      lsw_reg_in_range(reg, num_used_regs, rb))) {
121             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
122                                    POWERPC_EXCP_INVAL |
123                                    POWERPC_EXCP_INVAL_LSWX, GETPC());
124         } else {
125             do_lsw(env, addr, xer_bc, reg, GETPC());
126         }
127     }
128 }
129 
130 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
131                  uint32_t reg)
132 {
133     int sh;
134 
135     for (; nb > 3; nb -= 4) {
136         cpu_stl_data_ra(env, addr, env->gpr[reg], GETPC());
137         reg = (reg + 1) % 32;
138         addr = addr_add(env, addr, 4);
139     }
140     if (unlikely(nb > 0)) {
141         for (sh = 24; nb > 0; nb--, sh -= 8) {
142             cpu_stb_data_ra(env, addr, (env->gpr[reg] >> sh) & 0xFF, GETPC());
143             addr = addr_add(env, addr, 1);
144         }
145     }
146 }
147 
148 static void dcbz_common(CPUPPCState *env, target_ulong addr,
149                         uint32_t opcode, bool epid, uintptr_t retaddr)
150 {
151     target_ulong mask, dcbz_size = env->dcache_line_size;
152     uint32_t i;
153     void *haddr;
154     int mmu_idx = epid ? PPC_TLB_EPID_STORE : env->dmmu_idx;
155 
156 #if defined(TARGET_PPC64)
157     /* Check for dcbz vs dcbzl on 970 */
158     if (env->excp_model == POWERPC_EXCP_970 &&
159         !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
160         dcbz_size = 32;
161     }
162 #endif
163 
164     /* Align address */
165     mask = ~(dcbz_size - 1);
166     addr &= mask;
167 
168     /* Check reservation */
169     if ((env->reserve_addr & mask) == (addr & mask))  {
170         env->reserve_addr = (target_ulong)-1ULL;
171     }
172 
173     /* Try fast path translate */
174     haddr = tlb_vaddr_to_host(env, addr, MMU_DATA_STORE, mmu_idx);
175     if (haddr) {
176         memset(haddr, 0, dcbz_size);
177     } else {
178         /* Slow path */
179         for (i = 0; i < dcbz_size; i += 8) {
180             cpu_stq_mmuidx_ra(env, addr + i, 0, mmu_idx, retaddr);
181         }
182     }
183 }
184 
185 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
186 {
187     dcbz_common(env, addr, opcode, false, GETPC());
188 }
189 
190 void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode)
191 {
192     dcbz_common(env, addr, opcode, true, GETPC());
193 }
194 
195 void helper_icbi(CPUPPCState *env, target_ulong addr)
196 {
197     addr &= ~(env->dcache_line_size - 1);
198     /*
199      * Invalidate one cache line :
200      * PowerPC specification says this is to be treated like a load
201      * (not a fetch) by the MMU. To be sure it will be so,
202      * do the load "by hand".
203      */
204     cpu_ldl_data_ra(env, addr, GETPC());
205 }
206 
207 void helper_icbiep(CPUPPCState *env, target_ulong addr)
208 {
209 #if !defined(CONFIG_USER_ONLY)
210     /* See comments above */
211     addr &= ~(env->dcache_line_size - 1);
212     cpu_ldl_mmuidx_ra(env, addr, PPC_TLB_EPID_LOAD, GETPC());
213 #endif
214 }
215 
216 /* XXX: to be tested */
217 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
218                           uint32_t ra, uint32_t rb)
219 {
220     int i, c, d;
221 
222     d = 24;
223     for (i = 0; i < xer_bc; i++) {
224         c = cpu_ldub_data_ra(env, addr, GETPC());
225         addr = addr_add(env, addr, 1);
226         /* ra (if not 0) and rb are never modified */
227         if (likely(reg != rb && (ra == 0 || reg != ra))) {
228             env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
229         }
230         if (unlikely(c == xer_cmp)) {
231             break;
232         }
233         if (likely(d != 0)) {
234             d -= 8;
235         } else {
236             d = 24;
237             reg++;
238             reg = reg & 0x1F;
239         }
240     }
241     return i;
242 }
243 
244 #ifdef TARGET_PPC64
245 uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr,
246                                uint32_t opidx)
247 {
248     Int128 ret;
249 
250     /* We will have raised EXCP_ATOMIC from the translator.  */
251     assert(HAVE_ATOMIC128);
252     ret = helper_atomic_ldo_le_mmu(env, addr, opidx, GETPC());
253     env->retxh = int128_gethi(ret);
254     return int128_getlo(ret);
255 }
256 
257 uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr,
258                                uint32_t opidx)
259 {
260     Int128 ret;
261 
262     /* We will have raised EXCP_ATOMIC from the translator.  */
263     assert(HAVE_ATOMIC128);
264     ret = helper_atomic_ldo_be_mmu(env, addr, opidx, GETPC());
265     env->retxh = int128_gethi(ret);
266     return int128_getlo(ret);
267 }
268 
269 void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr,
270                             uint64_t lo, uint64_t hi, uint32_t opidx)
271 {
272     Int128 val;
273 
274     /* We will have raised EXCP_ATOMIC from the translator.  */
275     assert(HAVE_ATOMIC128);
276     val = int128_make128(lo, hi);
277     helper_atomic_sto_le_mmu(env, addr, val, opidx, GETPC());
278 }
279 
280 void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr,
281                             uint64_t lo, uint64_t hi, uint32_t opidx)
282 {
283     Int128 val;
284 
285     /* We will have raised EXCP_ATOMIC from the translator.  */
286     assert(HAVE_ATOMIC128);
287     val = int128_make128(lo, hi);
288     helper_atomic_sto_be_mmu(env, addr, val, opidx, GETPC());
289 }
290 
291 uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr,
292                                   uint64_t new_lo, uint64_t new_hi,
293                                   uint32_t opidx)
294 {
295     bool success = false;
296 
297     /* We will have raised EXCP_ATOMIC from the translator.  */
298     assert(HAVE_CMPXCHG128);
299 
300     if (likely(addr == env->reserve_addr)) {
301         Int128 oldv, cmpv, newv;
302 
303         cmpv = int128_make128(env->reserve_val2, env->reserve_val);
304         newv = int128_make128(new_lo, new_hi);
305         oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv,
306                                              opidx, GETPC());
307         success = int128_eq(oldv, cmpv);
308     }
309     env->reserve_addr = -1;
310     return env->so + success * CRF_EQ_BIT;
311 }
312 
313 uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr,
314                                   uint64_t new_lo, uint64_t new_hi,
315                                   uint32_t opidx)
316 {
317     bool success = false;
318 
319     /* We will have raised EXCP_ATOMIC from the translator.  */
320     assert(HAVE_CMPXCHG128);
321 
322     if (likely(addr == env->reserve_addr)) {
323         Int128 oldv, cmpv, newv;
324 
325         cmpv = int128_make128(env->reserve_val2, env->reserve_val);
326         newv = int128_make128(new_lo, new_hi);
327         oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv,
328                                              opidx, GETPC());
329         success = int128_eq(oldv, cmpv);
330     }
331     env->reserve_addr = -1;
332     return env->so + success * CRF_EQ_BIT;
333 }
334 #endif
335 
336 /*****************************************************************************/
337 /* Altivec extension helpers */
338 #if defined(HOST_WORDS_BIGENDIAN)
339 #define HI_IDX 0
340 #define LO_IDX 1
341 #else
342 #define HI_IDX 1
343 #define LO_IDX 0
344 #endif
345 
346 /*
347  * We use msr_le to determine index ordering in a vector.  However,
348  * byteswapping is not simply controlled by msr_le.  We also need to
349  * take into account endianness of the target.  This is done for the
350  * little-endian PPC64 user-mode target.
351  */
352 
353 #define LVE(name, access, swap, element)                        \
354     void helper_##name(CPUPPCState *env, ppc_avr_t *r,          \
355                        target_ulong addr)                       \
356     {                                                           \
357         size_t n_elems = ARRAY_SIZE(r->element);                \
358         int adjust = HI_IDX * (n_elems - 1);                    \
359         int sh = sizeof(r->element[0]) >> 1;                    \
360         int index = (addr & 0xf) >> sh;                         \
361         if (msr_le) {                                           \
362             index = n_elems - index - 1;                        \
363         }                                                       \
364                                                                 \
365         if (needs_byteswap(env)) {                              \
366             r->element[LO_IDX ? index : (adjust - index)] =     \
367                 swap(access(env, addr, GETPC()));               \
368         } else {                                                \
369             r->element[LO_IDX ? index : (adjust - index)] =     \
370                 access(env, addr, GETPC());                     \
371         }                                                       \
372     }
373 #define I(x) (x)
374 LVE(lvebx, cpu_ldub_data_ra, I, u8)
375 LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
376 LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
377 #undef I
378 #undef LVE
379 
380 #define STVE(name, access, swap, element)                               \
381     void helper_##name(CPUPPCState *env, ppc_avr_t *r,                  \
382                        target_ulong addr)                               \
383     {                                                                   \
384         size_t n_elems = ARRAY_SIZE(r->element);                        \
385         int adjust = HI_IDX * (n_elems - 1);                            \
386         int sh = sizeof(r->element[0]) >> 1;                            \
387         int index = (addr & 0xf) >> sh;                                 \
388         if (msr_le) {                                                   \
389             index = n_elems - index - 1;                                \
390         }                                                               \
391                                                                         \
392         if (needs_byteswap(env)) {                                      \
393             access(env, addr, swap(r->element[LO_IDX ? index :          \
394                                               (adjust - index)]),       \
395                         GETPC());                                       \
396         } else {                                                        \
397             access(env, addr, r->element[LO_IDX ? index :               \
398                                          (adjust - index)], GETPC());   \
399         }                                                               \
400     }
401 #define I(x) (x)
402 STVE(stvebx, cpu_stb_data_ra, I, u8)
403 STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
404 STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
405 #undef I
406 #undef LVE
407 
408 #ifdef TARGET_PPC64
409 #define GET_NB(rb) ((rb >> 56) & 0xFF)
410 
411 #define VSX_LXVL(name, lj)                                              \
412 void helper_##name(CPUPPCState *env, target_ulong addr,                 \
413                    ppc_vsr_t *xt, target_ulong rb)                      \
414 {                                                                       \
415     ppc_vsr_t t;                                                        \
416     uint64_t nb = GET_NB(rb);                                           \
417     int i;                                                              \
418                                                                         \
419     t.s128 = int128_zero();                                             \
420     if (nb) {                                                           \
421         nb = (nb >= 16) ? 16 : nb;                                      \
422         if (msr_le && !lj) {                                            \
423             for (i = 16; i > 16 - nb; i--) {                            \
424                 t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC());   \
425                 addr = addr_add(env, addr, 1);                          \
426             }                                                           \
427         } else {                                                        \
428             for (i = 0; i < nb; i++) {                                  \
429                 t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC());       \
430                 addr = addr_add(env, addr, 1);                          \
431             }                                                           \
432         }                                                               \
433     }                                                                   \
434     *xt = t;                                                            \
435 }
436 
437 VSX_LXVL(lxvl, 0)
438 VSX_LXVL(lxvll, 1)
439 #undef VSX_LXVL
440 
441 #define VSX_STXVL(name, lj)                                       \
442 void helper_##name(CPUPPCState *env, target_ulong addr,           \
443                    ppc_vsr_t *xt, target_ulong rb)                \
444 {                                                                 \
445     target_ulong nb = GET_NB(rb);                                 \
446     int i;                                                        \
447                                                                   \
448     if (!nb) {                                                    \
449         return;                                                   \
450     }                                                             \
451                                                                   \
452     nb = (nb >= 16) ? 16 : nb;                                    \
453     if (msr_le && !lj) {                                          \
454         for (i = 16; i > 16 - nb; i--) {                          \
455             cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \
456             addr = addr_add(env, addr, 1);                        \
457         }                                                         \
458     } else {                                                      \
459         for (i = 0; i < nb; i++) {                                \
460             cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC());     \
461             addr = addr_add(env, addr, 1);                        \
462         }                                                         \
463     }                                                             \
464 }
465 
466 VSX_STXVL(stxvl, 0)
467 VSX_STXVL(stxvll, 1)
468 #undef VSX_STXVL
469 #undef GET_NB
470 #endif /* TARGET_PPC64 */
471 
472 #undef HI_IDX
473 #undef LO_IDX
474 
475 void helper_tbegin(CPUPPCState *env)
476 {
477     /*
478      * As a degenerate implementation, always fail tbegin.  The reason
479      * given is "Nesting overflow".  The "persistent" bit is set,
480      * providing a hint to the error handler to not retry.  The TFIAR
481      * captures the address of the failure, which is this tbegin
482      * instruction.  Instruction execution will continue with the next
483      * instruction in memory, which is precisely what we want.
484      */
485 
486     env->spr[SPR_TEXASR] =
487         (1ULL << TEXASR_FAILURE_PERSISTENT) |
488         (1ULL << TEXASR_NESTING_OVERFLOW) |
489         (msr_hv << TEXASR_PRIVILEGE_HV) |
490         (msr_pr << TEXASR_PRIVILEGE_PR) |
491         (1ULL << TEXASR_FAILURE_SUMMARY) |
492         (1ULL << TEXASR_TFIAR_EXACT);
493     env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
494     env->spr[SPR_TFHAR] = env->nip + 4;
495     env->crf[0] = 0xB; /* 0b1010 = transaction failure */
496 }
497