xref: /openbmc/qemu/target/ppc/mem_helper.c (revision db817b8c500a60873eba80cbf047900ae5b32766)
1 /*
2  *  PowerPC memory access emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/exec-all.h"
22 #include "qemu/host-utils.h"
23 #include "exec/helper-proto.h"
24 #include "helper_regs.h"
25 #include "exec/cpu_ldst.h"
26 #include "tcg.h"
27 #include "internal.h"
28 
29 //#define DEBUG_OP
30 
31 static inline bool needs_byteswap(const CPUPPCState *env)
32 {
33 #if defined(TARGET_WORDS_BIGENDIAN)
34   return msr_le;
35 #else
36   return !msr_le;
37 #endif
38 }
39 
40 /*****************************************************************************/
41 /* Memory load and stores */
42 
43 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
44                                     target_long arg)
45 {
46 #if defined(TARGET_PPC64)
47     if (!msr_is_64bit(env, env->msr)) {
48         return (uint32_t)(addr + arg);
49     } else
50 #endif
51     {
52         return addr + arg;
53     }
54 }
55 
56 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
57 {
58     for (; reg < 32; reg++) {
59         if (needs_byteswap(env)) {
60             env->gpr[reg] = bswap32(cpu_ldl_data_ra(env, addr, GETPC()));
61         } else {
62             env->gpr[reg] = cpu_ldl_data_ra(env, addr, GETPC());
63         }
64         addr = addr_add(env, addr, 4);
65     }
66 }
67 
68 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
69 {
70     for (; reg < 32; reg++) {
71         if (needs_byteswap(env)) {
72             cpu_stl_data_ra(env, addr, bswap32((uint32_t)env->gpr[reg]),
73                                                    GETPC());
74         } else {
75             cpu_stl_data_ra(env, addr, (uint32_t)env->gpr[reg], GETPC());
76         }
77         addr = addr_add(env, addr, 4);
78     }
79 }
80 
81 static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
82                    uint32_t reg, uintptr_t raddr)
83 {
84     int sh;
85 
86     for (; nb > 3; nb -= 4) {
87         env->gpr[reg] = cpu_ldl_data_ra(env, addr, raddr);
88         reg = (reg + 1) % 32;
89         addr = addr_add(env, addr, 4);
90     }
91     if (unlikely(nb > 0)) {
92         env->gpr[reg] = 0;
93         for (sh = 24; nb > 0; nb--, sh -= 8) {
94             env->gpr[reg] |= cpu_ldub_data_ra(env, addr, raddr) << sh;
95             addr = addr_add(env, addr, 1);
96         }
97     }
98 }
99 
100 void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
101 {
102     do_lsw(env, addr, nb, reg, GETPC());
103 }
104 
105 /* PPC32 specification says we must generate an exception if
106  * rA is in the range of registers to be loaded.
107  * In an other hand, IBM says this is valid, but rA won't be loaded.
108  * For now, I'll follow the spec...
109  */
110 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
111                  uint32_t ra, uint32_t rb)
112 {
113     if (likely(xer_bc != 0)) {
114         int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
115         if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
116                      lsw_reg_in_range(reg, num_used_regs, rb))) {
117             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
118                                    POWERPC_EXCP_INVAL |
119                                    POWERPC_EXCP_INVAL_LSWX, GETPC());
120         } else {
121             do_lsw(env, addr, xer_bc, reg, GETPC());
122         }
123     }
124 }
125 
126 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
127                  uint32_t reg)
128 {
129     int sh;
130 
131     for (; nb > 3; nb -= 4) {
132         cpu_stl_data_ra(env, addr, env->gpr[reg], GETPC());
133         reg = (reg + 1) % 32;
134         addr = addr_add(env, addr, 4);
135     }
136     if (unlikely(nb > 0)) {
137         for (sh = 24; nb > 0; nb--, sh -= 8) {
138             cpu_stb_data_ra(env, addr, (env->gpr[reg] >> sh) & 0xFF, GETPC());
139             addr = addr_add(env, addr, 1);
140         }
141     }
142 }
143 
144 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
145 {
146     target_ulong mask, dcbz_size = env->dcache_line_size;
147     uint32_t i;
148     void *haddr;
149 
150 #if defined(TARGET_PPC64)
151     /* Check for dcbz vs dcbzl on 970 */
152     if (env->excp_model == POWERPC_EXCP_970 &&
153         !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
154         dcbz_size = 32;
155     }
156 #endif
157 
158     /* Align address */
159     mask = ~(dcbz_size - 1);
160     addr &= mask;
161 
162     /* Check reservation */
163     if ((env->reserve_addr & mask) == (addr & mask))  {
164         env->reserve_addr = (target_ulong)-1ULL;
165     }
166 
167     /* Try fast path translate */
168     haddr = tlb_vaddr_to_host(env, addr, MMU_DATA_STORE, env->dmmu_idx);
169     if (haddr) {
170         memset(haddr, 0, dcbz_size);
171     } else {
172         /* Slow path */
173         for (i = 0; i < dcbz_size; i += 8) {
174             cpu_stq_data_ra(env, addr + i, 0, GETPC());
175         }
176     }
177 }
178 
179 void helper_icbi(CPUPPCState *env, target_ulong addr)
180 {
181     addr &= ~(env->dcache_line_size - 1);
182     /* Invalidate one cache line :
183      * PowerPC specification says this is to be treated like a load
184      * (not a fetch) by the MMU. To be sure it will be so,
185      * do the load "by hand".
186      */
187     cpu_ldl_data_ra(env, addr, GETPC());
188 }
189 
190 /* XXX: to be tested */
191 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
192                           uint32_t ra, uint32_t rb)
193 {
194     int i, c, d;
195 
196     d = 24;
197     for (i = 0; i < xer_bc; i++) {
198         c = cpu_ldub_data_ra(env, addr, GETPC());
199         addr = addr_add(env, addr, 1);
200         /* ra (if not 0) and rb are never modified */
201         if (likely(reg != rb && (ra == 0 || reg != ra))) {
202             env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
203         }
204         if (unlikely(c == xer_cmp)) {
205             break;
206         }
207         if (likely(d != 0)) {
208             d -= 8;
209         } else {
210             d = 24;
211             reg++;
212             reg = reg & 0x1F;
213         }
214     }
215     return i;
216 }
217 
218 #if defined(TARGET_PPC64) && defined(CONFIG_ATOMIC128)
219 uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr,
220                                uint32_t opidx)
221 {
222     Int128 ret = helper_atomic_ldo_le_mmu(env, addr, opidx, GETPC());
223     env->retxh = int128_gethi(ret);
224     return int128_getlo(ret);
225 }
226 
227 uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr,
228                                uint32_t opidx)
229 {
230     Int128 ret = helper_atomic_ldo_be_mmu(env, addr, opidx, GETPC());
231     env->retxh = int128_gethi(ret);
232     return int128_getlo(ret);
233 }
234 
235 void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr,
236                             uint64_t lo, uint64_t hi, uint32_t opidx)
237 {
238     Int128 val = int128_make128(lo, hi);
239     helper_atomic_sto_le_mmu(env, addr, val, opidx, GETPC());
240 }
241 
242 void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr,
243                             uint64_t lo, uint64_t hi, uint32_t opidx)
244 {
245     Int128 val = int128_make128(lo, hi);
246     helper_atomic_sto_be_mmu(env, addr, val, opidx, GETPC());
247 }
248 
249 uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr,
250                                   uint64_t new_lo, uint64_t new_hi,
251                                   uint32_t opidx)
252 {
253     bool success = false;
254 
255     if (likely(addr == env->reserve_addr)) {
256         Int128 oldv, cmpv, newv;
257 
258         cmpv = int128_make128(env->reserve_val2, env->reserve_val);
259         newv = int128_make128(new_lo, new_hi);
260         oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv,
261                                              opidx, GETPC());
262         success = int128_eq(oldv, cmpv);
263     }
264     env->reserve_addr = -1;
265     return env->so + success * CRF_EQ_BIT;
266 }
267 
268 uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr,
269                                   uint64_t new_lo, uint64_t new_hi,
270                                   uint32_t opidx)
271 {
272     bool success = false;
273 
274     if (likely(addr == env->reserve_addr)) {
275         Int128 oldv, cmpv, newv;
276 
277         cmpv = int128_make128(env->reserve_val2, env->reserve_val);
278         newv = int128_make128(new_lo, new_hi);
279         oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv,
280                                              opidx, GETPC());
281         success = int128_eq(oldv, cmpv);
282     }
283     env->reserve_addr = -1;
284     return env->so + success * CRF_EQ_BIT;
285 }
286 #endif
287 
288 /*****************************************************************************/
289 /* Altivec extension helpers */
290 #if defined(HOST_WORDS_BIGENDIAN)
291 #define HI_IDX 0
292 #define LO_IDX 1
293 #else
294 #define HI_IDX 1
295 #define LO_IDX 0
296 #endif
297 
298 /* We use msr_le to determine index ordering in a vector.  However,
299    byteswapping is not simply controlled by msr_le.  We also need to take
300    into account endianness of the target.  This is done for the little-endian
301    PPC64 user-mode target. */
302 
303 #define LVE(name, access, swap, element)                        \
304     void helper_##name(CPUPPCState *env, ppc_avr_t *r,          \
305                        target_ulong addr)                       \
306     {                                                           \
307         size_t n_elems = ARRAY_SIZE(r->element);                \
308         int adjust = HI_IDX*(n_elems - 1);                      \
309         int sh = sizeof(r->element[0]) >> 1;                    \
310         int index = (addr & 0xf) >> sh;                         \
311         if (msr_le) {                                           \
312             index = n_elems - index - 1;                        \
313         }                                                       \
314                                                                 \
315         if (needs_byteswap(env)) {                              \
316             r->element[LO_IDX ? index : (adjust - index)] =     \
317                 swap(access(env, addr, GETPC()));               \
318         } else {                                                \
319             r->element[LO_IDX ? index : (adjust - index)] =     \
320                 access(env, addr, GETPC());                     \
321         }                                                       \
322     }
323 #define I(x) (x)
324 LVE(lvebx, cpu_ldub_data_ra, I, u8)
325 LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
326 LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
327 #undef I
328 #undef LVE
329 
330 #define STVE(name, access, swap, element)                               \
331     void helper_##name(CPUPPCState *env, ppc_avr_t *r,                  \
332                        target_ulong addr)                               \
333     {                                                                   \
334         size_t n_elems = ARRAY_SIZE(r->element);                        \
335         int adjust = HI_IDX * (n_elems - 1);                            \
336         int sh = sizeof(r->element[0]) >> 1;                            \
337         int index = (addr & 0xf) >> sh;                                 \
338         if (msr_le) {                                                   \
339             index = n_elems - index - 1;                                \
340         }                                                               \
341                                                                         \
342         if (needs_byteswap(env)) {                                      \
343             access(env, addr, swap(r->element[LO_IDX ? index :          \
344                                               (adjust - index)]),       \
345                         GETPC());                                       \
346         } else {                                                        \
347             access(env, addr, r->element[LO_IDX ? index :               \
348                                          (adjust - index)], GETPC());   \
349         }                                                               \
350     }
351 #define I(x) (x)
352 STVE(stvebx, cpu_stb_data_ra, I, u8)
353 STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
354 STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
355 #undef I
356 #undef LVE
357 
358 #ifdef TARGET_PPC64
359 #define GET_NB(rb) ((rb >> 56) & 0xFF)
360 
361 #define VSX_LXVL(name, lj)                                              \
362 void helper_##name(CPUPPCState *env, target_ulong addr,                 \
363                    target_ulong xt_num, target_ulong rb)                \
364 {                                                                       \
365     int i;                                                              \
366     ppc_vsr_t xt;                                                       \
367     uint64_t nb = GET_NB(rb);                                           \
368                                                                         \
369     xt.s128 = int128_zero();                                            \
370     if (nb) {                                                           \
371         nb = (nb >= 16) ? 16 : nb;                                      \
372         if (msr_le && !lj) {                                            \
373             for (i = 16; i > 16 - nb; i--) {                            \
374                 xt.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC());  \
375                 addr = addr_add(env, addr, 1);                          \
376             }                                                           \
377         } else {                                                        \
378             for (i = 0; i < nb; i++) {                                  \
379                 xt.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC());      \
380                 addr = addr_add(env, addr, 1);                          \
381             }                                                           \
382         }                                                               \
383     }                                                                   \
384     putVSR(xt_num, &xt, env);                                           \
385 }
386 
387 VSX_LXVL(lxvl, 0)
388 VSX_LXVL(lxvll, 1)
389 #undef VSX_LXVL
390 
391 #define VSX_STXVL(name, lj)                                       \
392 void helper_##name(CPUPPCState *env, target_ulong addr,           \
393                    target_ulong xt_num, target_ulong rb)          \
394 {                                                                 \
395     int i;                                                        \
396     ppc_vsr_t xt;                                                 \
397     target_ulong nb = GET_NB(rb);                                 \
398                                                                   \
399     if (!nb) {                                                    \
400         return;                                                   \
401     }                                                             \
402     getVSR(xt_num, &xt, env);                                     \
403     nb = (nb >= 16) ? 16 : nb;                                    \
404     if (msr_le && !lj) {                                          \
405         for (i = 16; i > 16 - nb; i--) {                          \
406             cpu_stb_data_ra(env, addr, xt.VsrB(i - 1), GETPC());  \
407             addr = addr_add(env, addr, 1);                        \
408         }                                                         \
409     } else {                                                      \
410         for (i = 0; i < nb; i++) {                                \
411             cpu_stb_data_ra(env, addr, xt.VsrB(i), GETPC());      \
412             addr = addr_add(env, addr, 1);                        \
413         }                                                         \
414     }                                                             \
415 }
416 
417 VSX_STXVL(stxvl, 0)
418 VSX_STXVL(stxvll, 1)
419 #undef VSX_STXVL
420 #undef GET_NB
421 #endif /* TARGET_PPC64 */
422 
423 #undef HI_IDX
424 #undef LO_IDX
425 
426 void helper_tbegin(CPUPPCState *env)
427 {
428     /* As a degenerate implementation, always fail tbegin.  The reason
429      * given is "Nesting overflow".  The "persistent" bit is set,
430      * providing a hint to the error handler to not retry.  The TFIAR
431      * captures the address of the failure, which is this tbegin
432      * instruction.  Instruction execution will continue with the
433      * next instruction in memory, which is precisely what we want.
434      */
435 
436     env->spr[SPR_TEXASR] =
437         (1ULL << TEXASR_FAILURE_PERSISTENT) |
438         (1ULL << TEXASR_NESTING_OVERFLOW) |
439         (msr_hv << TEXASR_PRIVILEGE_HV) |
440         (msr_pr << TEXASR_PRIVILEGE_PR) |
441         (1ULL << TEXASR_FAILURE_SUMMARY) |
442         (1ULL << TEXASR_TFIAR_EXACT);
443     env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
444     env->spr[SPR_TFHAR] = env->nip + 4;
445     env->crf[0] = 0xB; /* 0b1010 = transaction failure */
446 }
447