1 /* 2 * PowerPC memory access emulation helpers for QEMU. 3 * 4 * Copyright (c) 2003-2007 Jocelyn Mayer 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "exec/exec-all.h" 23 #include "qemu/host-utils.h" 24 #include "exec/helper-proto.h" 25 #include "helper_regs.h" 26 #include "exec/cpu_ldst.h" 27 #include "internal.h" 28 #include "qemu/atomic128.h" 29 30 /* #define DEBUG_OP */ 31 32 static inline bool needs_byteswap(const CPUPPCState *env) 33 { 34 #if TARGET_BIG_ENDIAN 35 return FIELD_EX64(env->msr, MSR, LE); 36 #else 37 return !FIELD_EX64(env->msr, MSR, LE); 38 #endif 39 } 40 41 /*****************************************************************************/ 42 /* Memory load and stores */ 43 44 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr, 45 target_long arg) 46 { 47 #if defined(TARGET_PPC64) 48 if (!msr_is_64bit(env, env->msr)) { 49 return (uint32_t)(addr + arg); 50 } else 51 #endif 52 { 53 return addr + arg; 54 } 55 } 56 57 static void *probe_contiguous(CPUPPCState *env, target_ulong addr, uint32_t nb, 58 MMUAccessType access_type, int mmu_idx, 59 uintptr_t raddr) 60 { 61 void *host1, *host2; 62 uint32_t nb_pg1, nb_pg2; 63 64 nb_pg1 = -(addr | TARGET_PAGE_MASK); 65 if (likely(nb <= nb_pg1)) { 66 /* The entire operation is on a single page. */ 67 return probe_access(env, addr, nb, access_type, mmu_idx, raddr); 68 } 69 70 /* The operation spans two pages. */ 71 nb_pg2 = nb - nb_pg1; 72 host1 = probe_access(env, addr, nb_pg1, access_type, mmu_idx, raddr); 73 addr = addr_add(env, addr, nb_pg1); 74 host2 = probe_access(env, addr, nb_pg2, access_type, mmu_idx, raddr); 75 76 /* If the two host pages are contiguous, optimize. */ 77 if (host2 == host1 + nb_pg1) { 78 return host1; 79 } 80 return NULL; 81 } 82 83 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg) 84 { 85 uintptr_t raddr = GETPC(); 86 int mmu_idx = ppc_env_mmu_index(env, false); 87 void *host = probe_contiguous(env, addr, (32 - reg) * 4, 88 MMU_DATA_LOAD, mmu_idx, raddr); 89 90 if (likely(host)) { 91 /* Fast path -- the entire operation is in RAM at host. */ 92 for (; reg < 32; reg++) { 93 env->gpr[reg] = (uint32_t)ldl_be_p(host); 94 host += 4; 95 } 96 } else { 97 /* Slow path -- at least some of the operation requires i/o. */ 98 for (; reg < 32; reg++) { 99 env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr); 100 addr = addr_add(env, addr, 4); 101 } 102 } 103 } 104 105 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg) 106 { 107 uintptr_t raddr = GETPC(); 108 int mmu_idx = ppc_env_mmu_index(env, false); 109 void *host = probe_contiguous(env, addr, (32 - reg) * 4, 110 MMU_DATA_STORE, mmu_idx, raddr); 111 112 if (likely(host)) { 113 /* Fast path -- the entire operation is in RAM at host. */ 114 for (; reg < 32; reg++) { 115 stl_be_p(host, env->gpr[reg]); 116 host += 4; 117 } 118 } else { 119 /* Slow path -- at least some of the operation requires i/o. */ 120 for (; reg < 32; reg++) { 121 cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr); 122 addr = addr_add(env, addr, 4); 123 } 124 } 125 } 126 127 static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, 128 uint32_t reg, uintptr_t raddr) 129 { 130 int mmu_idx; 131 void *host; 132 uint32_t val; 133 134 if (unlikely(nb == 0)) { 135 return; 136 } 137 138 mmu_idx = ppc_env_mmu_index(env, false); 139 host = probe_contiguous(env, addr, nb, MMU_DATA_LOAD, mmu_idx, raddr); 140 141 if (likely(host)) { 142 /* Fast path -- the entire operation is in RAM at host. */ 143 for (; nb > 3; nb -= 4) { 144 env->gpr[reg] = (uint32_t)ldl_be_p(host); 145 reg = (reg + 1) % 32; 146 host += 4; 147 } 148 switch (nb) { 149 default: 150 return; 151 case 1: 152 val = ldub_p(host) << 24; 153 break; 154 case 2: 155 val = lduw_be_p(host) << 16; 156 break; 157 case 3: 158 val = (lduw_be_p(host) << 16) | (ldub_p(host + 2) << 8); 159 break; 160 } 161 } else { 162 /* Slow path -- at least some of the operation requires i/o. */ 163 for (; nb > 3; nb -= 4) { 164 env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr); 165 reg = (reg + 1) % 32; 166 addr = addr_add(env, addr, 4); 167 } 168 switch (nb) { 169 default: 170 return; 171 case 1: 172 val = cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 24; 173 break; 174 case 2: 175 val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16; 176 break; 177 case 3: 178 val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16; 179 addr = addr_add(env, addr, 2); 180 val |= cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 8; 181 break; 182 } 183 } 184 env->gpr[reg] = val; 185 } 186 187 void helper_lsw(CPUPPCState *env, target_ulong addr, 188 uint32_t nb, uint32_t reg) 189 { 190 do_lsw(env, addr, nb, reg, GETPC()); 191 } 192 193 /* 194 * PPC32 specification says we must generate an exception if rA is in 195 * the range of registers to be loaded. In an other hand, IBM says 196 * this is valid, but rA won't be loaded. For now, I'll follow the 197 * spec... 198 */ 199 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg, 200 uint32_t ra, uint32_t rb) 201 { 202 if (likely(xer_bc != 0)) { 203 int num_used_regs = DIV_ROUND_UP(xer_bc, 4); 204 if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) || 205 lsw_reg_in_range(reg, num_used_regs, rb))) { 206 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, 207 POWERPC_EXCP_INVAL | 208 POWERPC_EXCP_INVAL_LSWX, GETPC()); 209 } else { 210 do_lsw(env, addr, xer_bc, reg, GETPC()); 211 } 212 } 213 } 214 215 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb, 216 uint32_t reg) 217 { 218 uintptr_t raddr = GETPC(); 219 int mmu_idx; 220 void *host; 221 uint32_t val; 222 223 if (unlikely(nb == 0)) { 224 return; 225 } 226 227 mmu_idx = ppc_env_mmu_index(env, false); 228 host = probe_contiguous(env, addr, nb, MMU_DATA_STORE, mmu_idx, raddr); 229 230 if (likely(host)) { 231 /* Fast path -- the entire operation is in RAM at host. */ 232 for (; nb > 3; nb -= 4) { 233 stl_be_p(host, env->gpr[reg]); 234 reg = (reg + 1) % 32; 235 host += 4; 236 } 237 val = env->gpr[reg]; 238 switch (nb) { 239 case 1: 240 stb_p(host, val >> 24); 241 break; 242 case 2: 243 stw_be_p(host, val >> 16); 244 break; 245 case 3: 246 stw_be_p(host, val >> 16); 247 stb_p(host + 2, val >> 8); 248 break; 249 } 250 } else { 251 for (; nb > 3; nb -= 4) { 252 cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr); 253 reg = (reg + 1) % 32; 254 addr = addr_add(env, addr, 4); 255 } 256 val = env->gpr[reg]; 257 switch (nb) { 258 case 1: 259 cpu_stb_mmuidx_ra(env, addr, val >> 24, mmu_idx, raddr); 260 break; 261 case 2: 262 cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr); 263 break; 264 case 3: 265 cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr); 266 addr = addr_add(env, addr, 2); 267 cpu_stb_mmuidx_ra(env, addr, val >> 8, mmu_idx, raddr); 268 break; 269 } 270 } 271 } 272 273 static void dcbz_common(CPUPPCState *env, target_ulong addr, 274 int mmu_idx, int dcbz_size, uintptr_t retaddr) 275 { 276 target_ulong mask = ~(target_ulong)(dcbz_size - 1); 277 void *haddr; 278 279 /* Align address */ 280 addr &= mask; 281 282 /* Check reservation */ 283 if (unlikely((env->reserve_addr & mask) == addr)) { 284 env->reserve_addr = (target_ulong)-1ULL; 285 } 286 287 /* Try fast path translate */ 288 #ifdef CONFIG_USER_ONLY 289 haddr = tlb_vaddr_to_host(env, addr, MMU_DATA_STORE, mmu_idx); 290 #else 291 haddr = probe_write(env, addr, dcbz_size, mmu_idx, retaddr); 292 if (unlikely(!haddr)) { 293 /* Slow path */ 294 for (int i = 0; i < dcbz_size; i += 8) { 295 cpu_stq_mmuidx_ra(env, addr + i, 0, mmu_idx, retaddr); 296 } 297 return; 298 } 299 #endif 300 301 set_helper_retaddr(retaddr); 302 memset(haddr, 0, dcbz_size); 303 clear_helper_retaddr(); 304 } 305 306 void helper_dcbz(CPUPPCState *env, target_ulong addr, int mmu_idx) 307 { 308 dcbz_common(env, addr, mmu_idx, env->dcache_line_size, GETPC()); 309 } 310 311 #ifdef TARGET_PPC64 312 void helper_dcbzl(CPUPPCState *env, target_ulong addr) 313 { 314 int dcbz_size = env->dcache_line_size; 315 316 /* 317 * The translator checked for POWERPC_EXCP_970. 318 * All that's left is to check HID5. 319 */ 320 if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) { 321 dcbz_size = 32; 322 } 323 324 dcbz_common(env, addr, ppc_env_mmu_index(env, false), dcbz_size, GETPC()); 325 } 326 #endif 327 328 void helper_icbi(CPUPPCState *env, target_ulong addr) 329 { 330 addr &= ~(env->dcache_line_size - 1); 331 /* 332 * Invalidate one cache line : 333 * PowerPC specification says this is to be treated like a load 334 * (not a fetch) by the MMU. To be sure it will be so, 335 * do the load "by hand". 336 */ 337 cpu_ldl_data_ra(env, addr, GETPC()); 338 } 339 340 void helper_icbiep(CPUPPCState *env, target_ulong addr) 341 { 342 #if !defined(CONFIG_USER_ONLY) 343 /* See comments above */ 344 addr &= ~(env->dcache_line_size - 1); 345 cpu_ldl_mmuidx_ra(env, addr, PPC_TLB_EPID_LOAD, GETPC()); 346 #endif 347 } 348 349 /* XXX: to be tested */ 350 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg, 351 uint32_t ra, uint32_t rb) 352 { 353 int i, c, d; 354 355 d = 24; 356 for (i = 0; i < xer_bc; i++) { 357 c = cpu_ldub_data_ra(env, addr, GETPC()); 358 addr = addr_add(env, addr, 1); 359 /* ra (if not 0) and rb are never modified */ 360 if (likely(reg != rb && (ra == 0 || reg != ra))) { 361 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d); 362 } 363 if (unlikely(c == xer_cmp)) { 364 break; 365 } 366 if (likely(d != 0)) { 367 d -= 8; 368 } else { 369 d = 24; 370 reg++; 371 reg = reg & 0x1F; 372 } 373 } 374 return i; 375 } 376 377 /*****************************************************************************/ 378 /* Altivec extension helpers */ 379 #if HOST_BIG_ENDIAN 380 #define HI_IDX 0 381 #define LO_IDX 1 382 #else 383 #define HI_IDX 1 384 #define LO_IDX 0 385 #endif 386 387 /* 388 * We use MSR_LE to determine index ordering in a vector. However, 389 * byteswapping is not simply controlled by MSR_LE. We also need to 390 * take into account endianness of the target. This is done for the 391 * little-endian PPC64 user-mode target. 392 */ 393 394 #define LVE(name, access, swap, element) \ 395 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \ 396 target_ulong addr) \ 397 { \ 398 size_t n_elems = ARRAY_SIZE(r->element); \ 399 int adjust = HI_IDX * (n_elems - 1); \ 400 int sh = sizeof(r->element[0]) >> 1; \ 401 int index = (addr & 0xf) >> sh; \ 402 if (FIELD_EX64(env->msr, MSR, LE)) { \ 403 index = n_elems - index - 1; \ 404 } \ 405 \ 406 if (needs_byteswap(env)) { \ 407 r->element[LO_IDX ? index : (adjust - index)] = \ 408 swap(access(env, addr, GETPC())); \ 409 } else { \ 410 r->element[LO_IDX ? index : (adjust - index)] = \ 411 access(env, addr, GETPC()); \ 412 } \ 413 } 414 #define I(x) (x) 415 LVE(LVEBX, cpu_ldub_data_ra, I, u8) 416 LVE(LVEHX, cpu_lduw_data_ra, bswap16, u16) 417 LVE(LVEWX, cpu_ldl_data_ra, bswap32, u32) 418 #undef I 419 #undef LVE 420 421 #define STVE(name, access, swap, element) \ 422 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \ 423 target_ulong addr) \ 424 { \ 425 size_t n_elems = ARRAY_SIZE(r->element); \ 426 int adjust = HI_IDX * (n_elems - 1); \ 427 int sh = sizeof(r->element[0]) >> 1; \ 428 int index = (addr & 0xf) >> sh; \ 429 if (FIELD_EX64(env->msr, MSR, LE)) { \ 430 index = n_elems - index - 1; \ 431 } \ 432 \ 433 if (needs_byteswap(env)) { \ 434 access(env, addr, swap(r->element[LO_IDX ? index : \ 435 (adjust - index)]), \ 436 GETPC()); \ 437 } else { \ 438 access(env, addr, r->element[LO_IDX ? index : \ 439 (adjust - index)], GETPC()); \ 440 } \ 441 } 442 #define I(x) (x) 443 STVE(STVEBX, cpu_stb_data_ra, I, u8) 444 STVE(STVEHX, cpu_stw_data_ra, bswap16, u16) 445 STVE(STVEWX, cpu_stl_data_ra, bswap32, u32) 446 #undef I 447 #undef LVE 448 449 #ifdef TARGET_PPC64 450 #define GET_NB(rb) ((rb >> 56) & 0xFF) 451 452 #define VSX_LXVL(name, lj) \ 453 void helper_##name(CPUPPCState *env, target_ulong addr, \ 454 ppc_vsr_t *xt, target_ulong rb) \ 455 { \ 456 ppc_vsr_t t; \ 457 uint64_t nb = GET_NB(rb); \ 458 int i; \ 459 \ 460 t.s128 = int128_zero(); \ 461 if (nb) { \ 462 nb = (nb >= 16) ? 16 : nb; \ 463 if (FIELD_EX64(env->msr, MSR, LE) && !lj) { \ 464 for (i = 16; i > 16 - nb; i--) { \ 465 t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC()); \ 466 addr = addr_add(env, addr, 1); \ 467 } \ 468 } else { \ 469 for (i = 0; i < nb; i++) { \ 470 t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC()); \ 471 addr = addr_add(env, addr, 1); \ 472 } \ 473 } \ 474 } \ 475 *xt = t; \ 476 } 477 478 VSX_LXVL(lxvl, 0) 479 VSX_LXVL(lxvll, 1) 480 #undef VSX_LXVL 481 482 #define VSX_STXVL(name, lj) \ 483 void helper_##name(CPUPPCState *env, target_ulong addr, \ 484 ppc_vsr_t *xt, target_ulong rb) \ 485 { \ 486 target_ulong nb = GET_NB(rb); \ 487 int i; \ 488 \ 489 if (!nb) { \ 490 return; \ 491 } \ 492 \ 493 nb = (nb >= 16) ? 16 : nb; \ 494 if (FIELD_EX64(env->msr, MSR, LE) && !lj) { \ 495 for (i = 16; i > 16 - nb; i--) { \ 496 cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \ 497 addr = addr_add(env, addr, 1); \ 498 } \ 499 } else { \ 500 for (i = 0; i < nb; i++) { \ 501 cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC()); \ 502 addr = addr_add(env, addr, 1); \ 503 } \ 504 } \ 505 } 506 507 VSX_STXVL(stxvl, 0) 508 VSX_STXVL(stxvll, 1) 509 #undef VSX_STXVL 510 #undef GET_NB 511 #endif /* TARGET_PPC64 */ 512 513 #undef HI_IDX 514 #undef LO_IDX 515 516 void helper_tbegin(CPUPPCState *env) 517 { 518 /* 519 * As a degenerate implementation, always fail tbegin. The reason 520 * given is "Nesting overflow". The "persistent" bit is set, 521 * providing a hint to the error handler to not retry. The TFIAR 522 * captures the address of the failure, which is this tbegin 523 * instruction. Instruction execution will continue with the next 524 * instruction in memory, which is precisely what we want. 525 */ 526 527 env->spr[SPR_TEXASR] = 528 (1ULL << TEXASR_FAILURE_PERSISTENT) | 529 (1ULL << TEXASR_NESTING_OVERFLOW) | 530 (FIELD_EX64_HV(env->msr) << TEXASR_PRIVILEGE_HV) | 531 (FIELD_EX64(env->msr, MSR, PR) << TEXASR_PRIVILEGE_PR) | 532 (1ULL << TEXASR_FAILURE_SUMMARY) | 533 (1ULL << TEXASR_TFIAR_EXACT); 534 env->spr[SPR_TFIAR] = env->nip | (FIELD_EX64_HV(env->msr) << 1) | 535 FIELD_EX64(env->msr, MSR, PR); 536 env->spr[SPR_TFHAR] = env->nip + 4; 537 env->crf[0] = 0xB; /* 0b1010 = transaction failure */ 538 } 539