1 /* 2 * PowerPC memory access emulation helpers for QEMU. 3 * 4 * Copyright (c) 2003-2007 Jocelyn Mayer 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "exec/exec-all.h" 23 #include "qemu/host-utils.h" 24 #include "qemu/main-loop.h" 25 #include "exec/helper-proto.h" 26 #include "helper_regs.h" 27 #include "exec/cpu_ldst.h" 28 #include "tcg/tcg.h" 29 #include "internal.h" 30 #include "qemu/atomic128.h" 31 32 /* #define DEBUG_OP */ 33 34 static inline bool needs_byteswap(const CPUPPCState *env) 35 { 36 #if defined(TARGET_WORDS_BIGENDIAN) 37 return msr_le; 38 #else 39 return !msr_le; 40 #endif 41 } 42 43 /*****************************************************************************/ 44 /* Memory load and stores */ 45 46 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr, 47 target_long arg) 48 { 49 #if defined(TARGET_PPC64) 50 if (!msr_is_64bit(env, env->msr)) { 51 return (uint32_t)(addr + arg); 52 } else 53 #endif 54 { 55 return addr + arg; 56 } 57 } 58 59 static void *probe_contiguous(CPUPPCState *env, target_ulong addr, uint32_t nb, 60 MMUAccessType access_type, int mmu_idx, 61 uintptr_t raddr) 62 { 63 void *host1, *host2; 64 uint32_t nb_pg1, nb_pg2; 65 66 nb_pg1 = -(addr | TARGET_PAGE_MASK); 67 if (likely(nb <= nb_pg1)) { 68 /* The entire operation is on a single page. */ 69 return probe_access(env, addr, nb, access_type, mmu_idx, raddr); 70 } 71 72 /* The operation spans two pages. */ 73 nb_pg2 = nb - nb_pg1; 74 host1 = probe_access(env, addr, nb_pg1, access_type, mmu_idx, raddr); 75 addr = addr_add(env, addr, nb_pg1); 76 host2 = probe_access(env, addr, nb_pg2, access_type, mmu_idx, raddr); 77 78 /* If the two host pages are contiguous, optimize. */ 79 if (host2 == host1 + nb_pg1) { 80 return host1; 81 } 82 return NULL; 83 } 84 85 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg) 86 { 87 uintptr_t raddr = GETPC(); 88 int mmu_idx = cpu_mmu_index(env, false); 89 void *host = probe_contiguous(env, addr, (32 - reg) * 4, 90 MMU_DATA_LOAD, mmu_idx, raddr); 91 92 if (likely(host)) { 93 /* Fast path -- the entire operation is in RAM at host. */ 94 for (; reg < 32; reg++) { 95 env->gpr[reg] = (uint32_t)ldl_be_p(host); 96 host += 4; 97 } 98 } else { 99 /* Slow path -- at least some of the operation requires i/o. */ 100 for (; reg < 32; reg++) { 101 env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr); 102 addr = addr_add(env, addr, 4); 103 } 104 } 105 } 106 107 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg) 108 { 109 uintptr_t raddr = GETPC(); 110 int mmu_idx = cpu_mmu_index(env, false); 111 void *host = probe_contiguous(env, addr, (32 - reg) * 4, 112 MMU_DATA_STORE, mmu_idx, raddr); 113 114 if (likely(host)) { 115 /* Fast path -- the entire operation is in RAM at host. */ 116 for (; reg < 32; reg++) { 117 stl_be_p(host, env->gpr[reg]); 118 host += 4; 119 } 120 } else { 121 /* Slow path -- at least some of the operation requires i/o. */ 122 for (; reg < 32; reg++) { 123 cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr); 124 addr = addr_add(env, addr, 4); 125 } 126 } 127 } 128 129 static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, 130 uint32_t reg, uintptr_t raddr) 131 { 132 int mmu_idx; 133 void *host; 134 uint32_t val; 135 136 if (unlikely(nb == 0)) { 137 return; 138 } 139 140 mmu_idx = cpu_mmu_index(env, false); 141 host = probe_contiguous(env, addr, nb, MMU_DATA_LOAD, mmu_idx, raddr); 142 143 if (likely(host)) { 144 /* Fast path -- the entire operation is in RAM at host. */ 145 for (; nb > 3; nb -= 4) { 146 env->gpr[reg] = (uint32_t)ldl_be_p(host); 147 reg = (reg + 1) % 32; 148 host += 4; 149 } 150 switch (nb) { 151 default: 152 return; 153 case 1: 154 val = ldub_p(host) << 24; 155 break; 156 case 2: 157 val = lduw_be_p(host) << 16; 158 break; 159 case 3: 160 val = (lduw_be_p(host) << 16) | (ldub_p(host + 2) << 8); 161 break; 162 } 163 } else { 164 /* Slow path -- at least some of the operation requires i/o. */ 165 for (; nb > 3; nb -= 4) { 166 env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr); 167 reg = (reg + 1) % 32; 168 addr = addr_add(env, addr, 4); 169 } 170 switch (nb) { 171 default: 172 return; 173 case 1: 174 val = cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 24; 175 break; 176 case 2: 177 val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16; 178 break; 179 case 3: 180 val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16; 181 addr = addr_add(env, addr, 2); 182 val |= cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 8; 183 break; 184 } 185 } 186 env->gpr[reg] = val; 187 } 188 189 void helper_lsw(CPUPPCState *env, target_ulong addr, 190 uint32_t nb, uint32_t reg) 191 { 192 do_lsw(env, addr, nb, reg, GETPC()); 193 } 194 195 /* 196 * PPC32 specification says we must generate an exception if rA is in 197 * the range of registers to be loaded. In an other hand, IBM says 198 * this is valid, but rA won't be loaded. For now, I'll follow the 199 * spec... 200 */ 201 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg, 202 uint32_t ra, uint32_t rb) 203 { 204 if (likely(xer_bc != 0)) { 205 int num_used_regs = DIV_ROUND_UP(xer_bc, 4); 206 if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) || 207 lsw_reg_in_range(reg, num_used_regs, rb))) { 208 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, 209 POWERPC_EXCP_INVAL | 210 POWERPC_EXCP_INVAL_LSWX, GETPC()); 211 } else { 212 do_lsw(env, addr, xer_bc, reg, GETPC()); 213 } 214 } 215 } 216 217 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb, 218 uint32_t reg) 219 { 220 uintptr_t raddr = GETPC(); 221 int mmu_idx; 222 void *host; 223 uint32_t val; 224 225 if (unlikely(nb == 0)) { 226 return; 227 } 228 229 mmu_idx = cpu_mmu_index(env, false); 230 host = probe_contiguous(env, addr, nb, MMU_DATA_STORE, mmu_idx, raddr); 231 232 if (likely(host)) { 233 /* Fast path -- the entire operation is in RAM at host. */ 234 for (; nb > 3; nb -= 4) { 235 stl_be_p(host, env->gpr[reg]); 236 reg = (reg + 1) % 32; 237 host += 4; 238 } 239 val = env->gpr[reg]; 240 switch (nb) { 241 case 1: 242 stb_p(host, val >> 24); 243 break; 244 case 2: 245 stw_be_p(host, val >> 16); 246 break; 247 case 3: 248 stw_be_p(host, val >> 16); 249 stb_p(host + 2, val >> 8); 250 break; 251 } 252 } else { 253 for (; nb > 3; nb -= 4) { 254 cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr); 255 reg = (reg + 1) % 32; 256 addr = addr_add(env, addr, 4); 257 } 258 val = env->gpr[reg]; 259 switch (nb) { 260 case 1: 261 cpu_stb_mmuidx_ra(env, addr, val >> 24, mmu_idx, raddr); 262 break; 263 case 2: 264 cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr); 265 break; 266 case 3: 267 cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr); 268 addr = addr_add(env, addr, 2); 269 cpu_stb_mmuidx_ra(env, addr, val >> 8, mmu_idx, raddr); 270 break; 271 } 272 } 273 } 274 275 static void dcbz_common(CPUPPCState *env, target_ulong addr, 276 uint32_t opcode, bool epid, uintptr_t retaddr) 277 { 278 target_ulong mask, dcbz_size = env->dcache_line_size; 279 uint32_t i; 280 void *haddr; 281 int mmu_idx = epid ? PPC_TLB_EPID_STORE : env->dmmu_idx; 282 283 #if defined(TARGET_PPC64) 284 /* Check for dcbz vs dcbzl on 970 */ 285 if (env->excp_model == POWERPC_EXCP_970 && 286 !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) { 287 dcbz_size = 32; 288 } 289 #endif 290 291 /* Align address */ 292 mask = ~(dcbz_size - 1); 293 addr &= mask; 294 295 /* Check reservation */ 296 if ((env->reserve_addr & mask) == addr) { 297 env->reserve_addr = (target_ulong)-1ULL; 298 } 299 300 /* Try fast path translate */ 301 haddr = probe_write(env, addr, dcbz_size, mmu_idx, retaddr); 302 if (haddr) { 303 memset(haddr, 0, dcbz_size); 304 } else { 305 /* Slow path */ 306 for (i = 0; i < dcbz_size; i += 8) { 307 cpu_stq_mmuidx_ra(env, addr + i, 0, mmu_idx, retaddr); 308 } 309 } 310 } 311 312 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode) 313 { 314 dcbz_common(env, addr, opcode, false, GETPC()); 315 } 316 317 void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode) 318 { 319 dcbz_common(env, addr, opcode, true, GETPC()); 320 } 321 322 void helper_icbi(CPUPPCState *env, target_ulong addr) 323 { 324 addr &= ~(env->dcache_line_size - 1); 325 /* 326 * Invalidate one cache line : 327 * PowerPC specification says this is to be treated like a load 328 * (not a fetch) by the MMU. To be sure it will be so, 329 * do the load "by hand". 330 */ 331 cpu_ldl_data_ra(env, addr, GETPC()); 332 } 333 334 void helper_icbiep(CPUPPCState *env, target_ulong addr) 335 { 336 #if !defined(CONFIG_USER_ONLY) 337 /* See comments above */ 338 addr &= ~(env->dcache_line_size - 1); 339 cpu_ldl_mmuidx_ra(env, addr, PPC_TLB_EPID_LOAD, GETPC()); 340 #endif 341 } 342 343 /* XXX: to be tested */ 344 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg, 345 uint32_t ra, uint32_t rb) 346 { 347 int i, c, d; 348 349 d = 24; 350 for (i = 0; i < xer_bc; i++) { 351 c = cpu_ldub_data_ra(env, addr, GETPC()); 352 addr = addr_add(env, addr, 1); 353 /* ra (if not 0) and rb are never modified */ 354 if (likely(reg != rb && (ra == 0 || reg != ra))) { 355 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d); 356 } 357 if (unlikely(c == xer_cmp)) { 358 break; 359 } 360 if (likely(d != 0)) { 361 d -= 8; 362 } else { 363 d = 24; 364 reg++; 365 reg = reg & 0x1F; 366 } 367 } 368 return i; 369 } 370 371 #ifdef TARGET_PPC64 372 uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr, 373 uint32_t opidx) 374 { 375 Int128 ret; 376 377 /* We will have raised EXCP_ATOMIC from the translator. */ 378 assert(HAVE_ATOMIC128); 379 ret = helper_atomic_ldo_le_mmu(env, addr, opidx, GETPC()); 380 env->retxh = int128_gethi(ret); 381 return int128_getlo(ret); 382 } 383 384 uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr, 385 uint32_t opidx) 386 { 387 Int128 ret; 388 389 /* We will have raised EXCP_ATOMIC from the translator. */ 390 assert(HAVE_ATOMIC128); 391 ret = helper_atomic_ldo_be_mmu(env, addr, opidx, GETPC()); 392 env->retxh = int128_gethi(ret); 393 return int128_getlo(ret); 394 } 395 396 void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr, 397 uint64_t lo, uint64_t hi, uint32_t opidx) 398 { 399 Int128 val; 400 401 /* We will have raised EXCP_ATOMIC from the translator. */ 402 assert(HAVE_ATOMIC128); 403 val = int128_make128(lo, hi); 404 helper_atomic_sto_le_mmu(env, addr, val, opidx, GETPC()); 405 } 406 407 void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr, 408 uint64_t lo, uint64_t hi, uint32_t opidx) 409 { 410 Int128 val; 411 412 /* We will have raised EXCP_ATOMIC from the translator. */ 413 assert(HAVE_ATOMIC128); 414 val = int128_make128(lo, hi); 415 helper_atomic_sto_be_mmu(env, addr, val, opidx, GETPC()); 416 } 417 418 uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr, 419 uint64_t new_lo, uint64_t new_hi, 420 uint32_t opidx) 421 { 422 bool success = false; 423 424 /* We will have raised EXCP_ATOMIC from the translator. */ 425 assert(HAVE_CMPXCHG128); 426 427 if (likely(addr == env->reserve_addr)) { 428 Int128 oldv, cmpv, newv; 429 430 cmpv = int128_make128(env->reserve_val2, env->reserve_val); 431 newv = int128_make128(new_lo, new_hi); 432 oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, 433 opidx, GETPC()); 434 success = int128_eq(oldv, cmpv); 435 } 436 env->reserve_addr = -1; 437 return env->so + success * CRF_EQ_BIT; 438 } 439 440 uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr, 441 uint64_t new_lo, uint64_t new_hi, 442 uint32_t opidx) 443 { 444 bool success = false; 445 446 /* We will have raised EXCP_ATOMIC from the translator. */ 447 assert(HAVE_CMPXCHG128); 448 449 if (likely(addr == env->reserve_addr)) { 450 Int128 oldv, cmpv, newv; 451 452 cmpv = int128_make128(env->reserve_val2, env->reserve_val); 453 newv = int128_make128(new_lo, new_hi); 454 oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, 455 opidx, GETPC()); 456 success = int128_eq(oldv, cmpv); 457 } 458 env->reserve_addr = -1; 459 return env->so + success * CRF_EQ_BIT; 460 } 461 #endif 462 463 /*****************************************************************************/ 464 /* Altivec extension helpers */ 465 #if defined(HOST_WORDS_BIGENDIAN) 466 #define HI_IDX 0 467 #define LO_IDX 1 468 #else 469 #define HI_IDX 1 470 #define LO_IDX 0 471 #endif 472 473 /* 474 * We use msr_le to determine index ordering in a vector. However, 475 * byteswapping is not simply controlled by msr_le. We also need to 476 * take into account endianness of the target. This is done for the 477 * little-endian PPC64 user-mode target. 478 */ 479 480 #define LVE(name, access, swap, element) \ 481 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \ 482 target_ulong addr) \ 483 { \ 484 size_t n_elems = ARRAY_SIZE(r->element); \ 485 int adjust = HI_IDX * (n_elems - 1); \ 486 int sh = sizeof(r->element[0]) >> 1; \ 487 int index = (addr & 0xf) >> sh; \ 488 if (msr_le) { \ 489 index = n_elems - index - 1; \ 490 } \ 491 \ 492 if (needs_byteswap(env)) { \ 493 r->element[LO_IDX ? index : (adjust - index)] = \ 494 swap(access(env, addr, GETPC())); \ 495 } else { \ 496 r->element[LO_IDX ? index : (adjust - index)] = \ 497 access(env, addr, GETPC()); \ 498 } \ 499 } 500 #define I(x) (x) 501 LVE(lvebx, cpu_ldub_data_ra, I, u8) 502 LVE(lvehx, cpu_lduw_data_ra, bswap16, u16) 503 LVE(lvewx, cpu_ldl_data_ra, bswap32, u32) 504 #undef I 505 #undef LVE 506 507 #define STVE(name, access, swap, element) \ 508 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \ 509 target_ulong addr) \ 510 { \ 511 size_t n_elems = ARRAY_SIZE(r->element); \ 512 int adjust = HI_IDX * (n_elems - 1); \ 513 int sh = sizeof(r->element[0]) >> 1; \ 514 int index = (addr & 0xf) >> sh; \ 515 if (msr_le) { \ 516 index = n_elems - index - 1; \ 517 } \ 518 \ 519 if (needs_byteswap(env)) { \ 520 access(env, addr, swap(r->element[LO_IDX ? index : \ 521 (adjust - index)]), \ 522 GETPC()); \ 523 } else { \ 524 access(env, addr, r->element[LO_IDX ? index : \ 525 (adjust - index)], GETPC()); \ 526 } \ 527 } 528 #define I(x) (x) 529 STVE(stvebx, cpu_stb_data_ra, I, u8) 530 STVE(stvehx, cpu_stw_data_ra, bswap16, u16) 531 STVE(stvewx, cpu_stl_data_ra, bswap32, u32) 532 #undef I 533 #undef LVE 534 535 #ifdef TARGET_PPC64 536 #define GET_NB(rb) ((rb >> 56) & 0xFF) 537 538 #define VSX_LXVL(name, lj) \ 539 void helper_##name(CPUPPCState *env, target_ulong addr, \ 540 ppc_vsr_t *xt, target_ulong rb) \ 541 { \ 542 ppc_vsr_t t; \ 543 uint64_t nb = GET_NB(rb); \ 544 int i; \ 545 \ 546 t.s128 = int128_zero(); \ 547 if (nb) { \ 548 nb = (nb >= 16) ? 16 : nb; \ 549 if (msr_le && !lj) { \ 550 for (i = 16; i > 16 - nb; i--) { \ 551 t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC()); \ 552 addr = addr_add(env, addr, 1); \ 553 } \ 554 } else { \ 555 for (i = 0; i < nb; i++) { \ 556 t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC()); \ 557 addr = addr_add(env, addr, 1); \ 558 } \ 559 } \ 560 } \ 561 *xt = t; \ 562 } 563 564 VSX_LXVL(lxvl, 0) 565 VSX_LXVL(lxvll, 1) 566 #undef VSX_LXVL 567 568 #define VSX_STXVL(name, lj) \ 569 void helper_##name(CPUPPCState *env, target_ulong addr, \ 570 ppc_vsr_t *xt, target_ulong rb) \ 571 { \ 572 target_ulong nb = GET_NB(rb); \ 573 int i; \ 574 \ 575 if (!nb) { \ 576 return; \ 577 } \ 578 \ 579 nb = (nb >= 16) ? 16 : nb; \ 580 if (msr_le && !lj) { \ 581 for (i = 16; i > 16 - nb; i--) { \ 582 cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \ 583 addr = addr_add(env, addr, 1); \ 584 } \ 585 } else { \ 586 for (i = 0; i < nb; i++) { \ 587 cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC()); \ 588 addr = addr_add(env, addr, 1); \ 589 } \ 590 } \ 591 } 592 593 VSX_STXVL(stxvl, 0) 594 VSX_STXVL(stxvll, 1) 595 #undef VSX_STXVL 596 #undef GET_NB 597 #endif /* TARGET_PPC64 */ 598 599 #undef HI_IDX 600 #undef LO_IDX 601 602 void helper_tbegin(CPUPPCState *env) 603 { 604 /* 605 * As a degenerate implementation, always fail tbegin. The reason 606 * given is "Nesting overflow". The "persistent" bit is set, 607 * providing a hint to the error handler to not retry. The TFIAR 608 * captures the address of the failure, which is this tbegin 609 * instruction. Instruction execution will continue with the next 610 * instruction in memory, which is precisely what we want. 611 */ 612 613 env->spr[SPR_TEXASR] = 614 (1ULL << TEXASR_FAILURE_PERSISTENT) | 615 (1ULL << TEXASR_NESTING_OVERFLOW) | 616 (msr_hv << TEXASR_PRIVILEGE_HV) | 617 (msr_pr << TEXASR_PRIVILEGE_PR) | 618 (1ULL << TEXASR_FAILURE_SUMMARY) | 619 (1ULL << TEXASR_TFIAR_EXACT); 620 env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr; 621 env->spr[SPR_TFHAR] = env->nip + 4; 622 env->crf[0] = 0xB; /* 0b1010 = transaction failure */ 623 } 624