1 /* 2 * PowerPC memory access emulation helpers for QEMU. 3 * 4 * Copyright (c) 2003-2007 Jocelyn Mayer 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "exec/exec-all.h" 23 #include "qemu/host-utils.h" 24 #include "qemu/main-loop.h" 25 #include "exec/helper-proto.h" 26 #include "helper_regs.h" 27 #include "exec/cpu_ldst.h" 28 #include "internal.h" 29 #include "qemu/atomic128.h" 30 31 /* #define DEBUG_OP */ 32 33 static inline bool needs_byteswap(const CPUPPCState *env) 34 { 35 #if TARGET_BIG_ENDIAN 36 return msr_le; 37 #else 38 return !msr_le; 39 #endif 40 } 41 42 /*****************************************************************************/ 43 /* Memory load and stores */ 44 45 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr, 46 target_long arg) 47 { 48 #if defined(TARGET_PPC64) 49 if (!msr_is_64bit(env, env->msr)) { 50 return (uint32_t)(addr + arg); 51 } else 52 #endif 53 { 54 return addr + arg; 55 } 56 } 57 58 static void *probe_contiguous(CPUPPCState *env, target_ulong addr, uint32_t nb, 59 MMUAccessType access_type, int mmu_idx, 60 uintptr_t raddr) 61 { 62 void *host1, *host2; 63 uint32_t nb_pg1, nb_pg2; 64 65 nb_pg1 = -(addr | TARGET_PAGE_MASK); 66 if (likely(nb <= nb_pg1)) { 67 /* The entire operation is on a single page. */ 68 return probe_access(env, addr, nb, access_type, mmu_idx, raddr); 69 } 70 71 /* The operation spans two pages. */ 72 nb_pg2 = nb - nb_pg1; 73 host1 = probe_access(env, addr, nb_pg1, access_type, mmu_idx, raddr); 74 addr = addr_add(env, addr, nb_pg1); 75 host2 = probe_access(env, addr, nb_pg2, access_type, mmu_idx, raddr); 76 77 /* If the two host pages are contiguous, optimize. */ 78 if (host2 == host1 + nb_pg1) { 79 return host1; 80 } 81 return NULL; 82 } 83 84 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg) 85 { 86 uintptr_t raddr = GETPC(); 87 int mmu_idx = cpu_mmu_index(env, false); 88 void *host = probe_contiguous(env, addr, (32 - reg) * 4, 89 MMU_DATA_LOAD, mmu_idx, raddr); 90 91 if (likely(host)) { 92 /* Fast path -- the entire operation is in RAM at host. */ 93 for (; reg < 32; reg++) { 94 env->gpr[reg] = (uint32_t)ldl_be_p(host); 95 host += 4; 96 } 97 } else { 98 /* Slow path -- at least some of the operation requires i/o. */ 99 for (; reg < 32; reg++) { 100 env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr); 101 addr = addr_add(env, addr, 4); 102 } 103 } 104 } 105 106 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg) 107 { 108 uintptr_t raddr = GETPC(); 109 int mmu_idx = cpu_mmu_index(env, false); 110 void *host = probe_contiguous(env, addr, (32 - reg) * 4, 111 MMU_DATA_STORE, mmu_idx, raddr); 112 113 if (likely(host)) { 114 /* Fast path -- the entire operation is in RAM at host. */ 115 for (; reg < 32; reg++) { 116 stl_be_p(host, env->gpr[reg]); 117 host += 4; 118 } 119 } else { 120 /* Slow path -- at least some of the operation requires i/o. */ 121 for (; reg < 32; reg++) { 122 cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr); 123 addr = addr_add(env, addr, 4); 124 } 125 } 126 } 127 128 static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, 129 uint32_t reg, uintptr_t raddr) 130 { 131 int mmu_idx; 132 void *host; 133 uint32_t val; 134 135 if (unlikely(nb == 0)) { 136 return; 137 } 138 139 mmu_idx = cpu_mmu_index(env, false); 140 host = probe_contiguous(env, addr, nb, MMU_DATA_LOAD, mmu_idx, raddr); 141 142 if (likely(host)) { 143 /* Fast path -- the entire operation is in RAM at host. */ 144 for (; nb > 3; nb -= 4) { 145 env->gpr[reg] = (uint32_t)ldl_be_p(host); 146 reg = (reg + 1) % 32; 147 host += 4; 148 } 149 switch (nb) { 150 default: 151 return; 152 case 1: 153 val = ldub_p(host) << 24; 154 break; 155 case 2: 156 val = lduw_be_p(host) << 16; 157 break; 158 case 3: 159 val = (lduw_be_p(host) << 16) | (ldub_p(host + 2) << 8); 160 break; 161 } 162 } else { 163 /* Slow path -- at least some of the operation requires i/o. */ 164 for (; nb > 3; nb -= 4) { 165 env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr); 166 reg = (reg + 1) % 32; 167 addr = addr_add(env, addr, 4); 168 } 169 switch (nb) { 170 default: 171 return; 172 case 1: 173 val = cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 24; 174 break; 175 case 2: 176 val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16; 177 break; 178 case 3: 179 val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16; 180 addr = addr_add(env, addr, 2); 181 val |= cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 8; 182 break; 183 } 184 } 185 env->gpr[reg] = val; 186 } 187 188 void helper_lsw(CPUPPCState *env, target_ulong addr, 189 uint32_t nb, uint32_t reg) 190 { 191 do_lsw(env, addr, nb, reg, GETPC()); 192 } 193 194 /* 195 * PPC32 specification says we must generate an exception if rA is in 196 * the range of registers to be loaded. In an other hand, IBM says 197 * this is valid, but rA won't be loaded. For now, I'll follow the 198 * spec... 199 */ 200 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg, 201 uint32_t ra, uint32_t rb) 202 { 203 if (likely(xer_bc != 0)) { 204 int num_used_regs = DIV_ROUND_UP(xer_bc, 4); 205 if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) || 206 lsw_reg_in_range(reg, num_used_regs, rb))) { 207 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, 208 POWERPC_EXCP_INVAL | 209 POWERPC_EXCP_INVAL_LSWX, GETPC()); 210 } else { 211 do_lsw(env, addr, xer_bc, reg, GETPC()); 212 } 213 } 214 } 215 216 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb, 217 uint32_t reg) 218 { 219 uintptr_t raddr = GETPC(); 220 int mmu_idx; 221 void *host; 222 uint32_t val; 223 224 if (unlikely(nb == 0)) { 225 return; 226 } 227 228 mmu_idx = cpu_mmu_index(env, false); 229 host = probe_contiguous(env, addr, nb, MMU_DATA_STORE, mmu_idx, raddr); 230 231 if (likely(host)) { 232 /* Fast path -- the entire operation is in RAM at host. */ 233 for (; nb > 3; nb -= 4) { 234 stl_be_p(host, env->gpr[reg]); 235 reg = (reg + 1) % 32; 236 host += 4; 237 } 238 val = env->gpr[reg]; 239 switch (nb) { 240 case 1: 241 stb_p(host, val >> 24); 242 break; 243 case 2: 244 stw_be_p(host, val >> 16); 245 break; 246 case 3: 247 stw_be_p(host, val >> 16); 248 stb_p(host + 2, val >> 8); 249 break; 250 } 251 } else { 252 for (; nb > 3; nb -= 4) { 253 cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr); 254 reg = (reg + 1) % 32; 255 addr = addr_add(env, addr, 4); 256 } 257 val = env->gpr[reg]; 258 switch (nb) { 259 case 1: 260 cpu_stb_mmuidx_ra(env, addr, val >> 24, mmu_idx, raddr); 261 break; 262 case 2: 263 cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr); 264 break; 265 case 3: 266 cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr); 267 addr = addr_add(env, addr, 2); 268 cpu_stb_mmuidx_ra(env, addr, val >> 8, mmu_idx, raddr); 269 break; 270 } 271 } 272 } 273 274 static void dcbz_common(CPUPPCState *env, target_ulong addr, 275 uint32_t opcode, bool epid, uintptr_t retaddr) 276 { 277 target_ulong mask, dcbz_size = env->dcache_line_size; 278 uint32_t i; 279 void *haddr; 280 int mmu_idx = epid ? PPC_TLB_EPID_STORE : cpu_mmu_index(env, false); 281 282 #if defined(TARGET_PPC64) 283 /* Check for dcbz vs dcbzl on 970 */ 284 if (env->excp_model == POWERPC_EXCP_970 && 285 !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) { 286 dcbz_size = 32; 287 } 288 #endif 289 290 /* Align address */ 291 mask = ~(dcbz_size - 1); 292 addr &= mask; 293 294 /* Check reservation */ 295 if ((env->reserve_addr & mask) == addr) { 296 env->reserve_addr = (target_ulong)-1ULL; 297 } 298 299 /* Try fast path translate */ 300 haddr = probe_write(env, addr, dcbz_size, mmu_idx, retaddr); 301 if (haddr) { 302 memset(haddr, 0, dcbz_size); 303 } else { 304 /* Slow path */ 305 for (i = 0; i < dcbz_size; i += 8) { 306 cpu_stq_mmuidx_ra(env, addr + i, 0, mmu_idx, retaddr); 307 } 308 } 309 } 310 311 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode) 312 { 313 dcbz_common(env, addr, opcode, false, GETPC()); 314 } 315 316 void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode) 317 { 318 dcbz_common(env, addr, opcode, true, GETPC()); 319 } 320 321 void helper_icbi(CPUPPCState *env, target_ulong addr) 322 { 323 addr &= ~(env->dcache_line_size - 1); 324 /* 325 * Invalidate one cache line : 326 * PowerPC specification says this is to be treated like a load 327 * (not a fetch) by the MMU. To be sure it will be so, 328 * do the load "by hand". 329 */ 330 cpu_ldl_data_ra(env, addr, GETPC()); 331 } 332 333 void helper_icbiep(CPUPPCState *env, target_ulong addr) 334 { 335 #if !defined(CONFIG_USER_ONLY) 336 /* See comments above */ 337 addr &= ~(env->dcache_line_size - 1); 338 cpu_ldl_mmuidx_ra(env, addr, PPC_TLB_EPID_LOAD, GETPC()); 339 #endif 340 } 341 342 /* XXX: to be tested */ 343 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg, 344 uint32_t ra, uint32_t rb) 345 { 346 int i, c, d; 347 348 d = 24; 349 for (i = 0; i < xer_bc; i++) { 350 c = cpu_ldub_data_ra(env, addr, GETPC()); 351 addr = addr_add(env, addr, 1); 352 /* ra (if not 0) and rb are never modified */ 353 if (likely(reg != rb && (ra == 0 || reg != ra))) { 354 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d); 355 } 356 if (unlikely(c == xer_cmp)) { 357 break; 358 } 359 if (likely(d != 0)) { 360 d -= 8; 361 } else { 362 d = 24; 363 reg++; 364 reg = reg & 0x1F; 365 } 366 } 367 return i; 368 } 369 370 #ifdef TARGET_PPC64 371 uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr, 372 uint32_t opidx) 373 { 374 Int128 ret; 375 376 /* We will have raised EXCP_ATOMIC from the translator. */ 377 assert(HAVE_ATOMIC128); 378 ret = cpu_atomic_ldo_le_mmu(env, addr, opidx, GETPC()); 379 env->retxh = int128_gethi(ret); 380 return int128_getlo(ret); 381 } 382 383 uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr, 384 uint32_t opidx) 385 { 386 Int128 ret; 387 388 /* We will have raised EXCP_ATOMIC from the translator. */ 389 assert(HAVE_ATOMIC128); 390 ret = cpu_atomic_ldo_be_mmu(env, addr, opidx, GETPC()); 391 env->retxh = int128_gethi(ret); 392 return int128_getlo(ret); 393 } 394 395 void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr, 396 uint64_t lo, uint64_t hi, uint32_t opidx) 397 { 398 Int128 val; 399 400 /* We will have raised EXCP_ATOMIC from the translator. */ 401 assert(HAVE_ATOMIC128); 402 val = int128_make128(lo, hi); 403 cpu_atomic_sto_le_mmu(env, addr, val, opidx, GETPC()); 404 } 405 406 void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr, 407 uint64_t lo, uint64_t hi, uint32_t opidx) 408 { 409 Int128 val; 410 411 /* We will have raised EXCP_ATOMIC from the translator. */ 412 assert(HAVE_ATOMIC128); 413 val = int128_make128(lo, hi); 414 cpu_atomic_sto_be_mmu(env, addr, val, opidx, GETPC()); 415 } 416 417 uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr, 418 uint64_t new_lo, uint64_t new_hi, 419 uint32_t opidx) 420 { 421 bool success = false; 422 423 /* We will have raised EXCP_ATOMIC from the translator. */ 424 assert(HAVE_CMPXCHG128); 425 426 if (likely(addr == env->reserve_addr)) { 427 Int128 oldv, cmpv, newv; 428 429 cmpv = int128_make128(env->reserve_val2, env->reserve_val); 430 newv = int128_make128(new_lo, new_hi); 431 oldv = cpu_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, 432 opidx, GETPC()); 433 success = int128_eq(oldv, cmpv); 434 } 435 env->reserve_addr = -1; 436 return env->so + success * CRF_EQ_BIT; 437 } 438 439 uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr, 440 uint64_t new_lo, uint64_t new_hi, 441 uint32_t opidx) 442 { 443 bool success = false; 444 445 /* We will have raised EXCP_ATOMIC from the translator. */ 446 assert(HAVE_CMPXCHG128); 447 448 if (likely(addr == env->reserve_addr)) { 449 Int128 oldv, cmpv, newv; 450 451 cmpv = int128_make128(env->reserve_val2, env->reserve_val); 452 newv = int128_make128(new_lo, new_hi); 453 oldv = cpu_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, 454 opidx, GETPC()); 455 success = int128_eq(oldv, cmpv); 456 } 457 env->reserve_addr = -1; 458 return env->so + success * CRF_EQ_BIT; 459 } 460 #endif 461 462 /*****************************************************************************/ 463 /* Altivec extension helpers */ 464 #if HOST_BIG_ENDIAN 465 #define HI_IDX 0 466 #define LO_IDX 1 467 #else 468 #define HI_IDX 1 469 #define LO_IDX 0 470 #endif 471 472 /* 473 * We use msr_le to determine index ordering in a vector. However, 474 * byteswapping is not simply controlled by msr_le. We also need to 475 * take into account endianness of the target. This is done for the 476 * little-endian PPC64 user-mode target. 477 */ 478 479 #define LVE(name, access, swap, element) \ 480 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \ 481 target_ulong addr) \ 482 { \ 483 size_t n_elems = ARRAY_SIZE(r->element); \ 484 int adjust = HI_IDX * (n_elems - 1); \ 485 int sh = sizeof(r->element[0]) >> 1; \ 486 int index = (addr & 0xf) >> sh; \ 487 if (msr_le) { \ 488 index = n_elems - index - 1; \ 489 } \ 490 \ 491 if (needs_byteswap(env)) { \ 492 r->element[LO_IDX ? index : (adjust - index)] = \ 493 swap(access(env, addr, GETPC())); \ 494 } else { \ 495 r->element[LO_IDX ? index : (adjust - index)] = \ 496 access(env, addr, GETPC()); \ 497 } \ 498 } 499 #define I(x) (x) 500 LVE(lvebx, cpu_ldub_data_ra, I, u8) 501 LVE(lvehx, cpu_lduw_data_ra, bswap16, u16) 502 LVE(lvewx, cpu_ldl_data_ra, bswap32, u32) 503 #undef I 504 #undef LVE 505 506 #define STVE(name, access, swap, element) \ 507 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \ 508 target_ulong addr) \ 509 { \ 510 size_t n_elems = ARRAY_SIZE(r->element); \ 511 int adjust = HI_IDX * (n_elems - 1); \ 512 int sh = sizeof(r->element[0]) >> 1; \ 513 int index = (addr & 0xf) >> sh; \ 514 if (msr_le) { \ 515 index = n_elems - index - 1; \ 516 } \ 517 \ 518 if (needs_byteswap(env)) { \ 519 access(env, addr, swap(r->element[LO_IDX ? index : \ 520 (adjust - index)]), \ 521 GETPC()); \ 522 } else { \ 523 access(env, addr, r->element[LO_IDX ? index : \ 524 (adjust - index)], GETPC()); \ 525 } \ 526 } 527 #define I(x) (x) 528 STVE(stvebx, cpu_stb_data_ra, I, u8) 529 STVE(stvehx, cpu_stw_data_ra, bswap16, u16) 530 STVE(stvewx, cpu_stl_data_ra, bswap32, u32) 531 #undef I 532 #undef LVE 533 534 #ifdef TARGET_PPC64 535 #define GET_NB(rb) ((rb >> 56) & 0xFF) 536 537 #define VSX_LXVL(name, lj) \ 538 void helper_##name(CPUPPCState *env, target_ulong addr, \ 539 ppc_vsr_t *xt, target_ulong rb) \ 540 { \ 541 ppc_vsr_t t; \ 542 uint64_t nb = GET_NB(rb); \ 543 int i; \ 544 \ 545 t.s128 = int128_zero(); \ 546 if (nb) { \ 547 nb = (nb >= 16) ? 16 : nb; \ 548 if (msr_le && !lj) { \ 549 for (i = 16; i > 16 - nb; i--) { \ 550 t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC()); \ 551 addr = addr_add(env, addr, 1); \ 552 } \ 553 } else { \ 554 for (i = 0; i < nb; i++) { \ 555 t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC()); \ 556 addr = addr_add(env, addr, 1); \ 557 } \ 558 } \ 559 } \ 560 *xt = t; \ 561 } 562 563 VSX_LXVL(lxvl, 0) 564 VSX_LXVL(lxvll, 1) 565 #undef VSX_LXVL 566 567 #define VSX_STXVL(name, lj) \ 568 void helper_##name(CPUPPCState *env, target_ulong addr, \ 569 ppc_vsr_t *xt, target_ulong rb) \ 570 { \ 571 target_ulong nb = GET_NB(rb); \ 572 int i; \ 573 \ 574 if (!nb) { \ 575 return; \ 576 } \ 577 \ 578 nb = (nb >= 16) ? 16 : nb; \ 579 if (msr_le && !lj) { \ 580 for (i = 16; i > 16 - nb; i--) { \ 581 cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \ 582 addr = addr_add(env, addr, 1); \ 583 } \ 584 } else { \ 585 for (i = 0; i < nb; i++) { \ 586 cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC()); \ 587 addr = addr_add(env, addr, 1); \ 588 } \ 589 } \ 590 } 591 592 VSX_STXVL(stxvl, 0) 593 VSX_STXVL(stxvll, 1) 594 #undef VSX_STXVL 595 #undef GET_NB 596 #endif /* TARGET_PPC64 */ 597 598 #undef HI_IDX 599 #undef LO_IDX 600 601 void helper_tbegin(CPUPPCState *env) 602 { 603 /* 604 * As a degenerate implementation, always fail tbegin. The reason 605 * given is "Nesting overflow". The "persistent" bit is set, 606 * providing a hint to the error handler to not retry. The TFIAR 607 * captures the address of the failure, which is this tbegin 608 * instruction. Instruction execution will continue with the next 609 * instruction in memory, which is precisely what we want. 610 */ 611 612 env->spr[SPR_TEXASR] = 613 (1ULL << TEXASR_FAILURE_PERSISTENT) | 614 (1ULL << TEXASR_NESTING_OVERFLOW) | 615 (msr_hv << TEXASR_PRIVILEGE_HV) | 616 (msr_pr << TEXASR_PRIVILEGE_PR) | 617 (1ULL << TEXASR_FAILURE_SUMMARY) | 618 (1ULL << TEXASR_TFIAR_EXACT); 619 env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr; 620 env->spr[SPR_TFHAR] = env->nip + 4; 621 env->crf[0] = 0xB; /* 0b1010 = transaction failure */ 622 } 623