xref: /openbmc/qemu/target/ppc/mem_helper.c (revision 62a4db55)
1 /*
2  *  PowerPC memory access emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/helper-proto.h"
26 #include "helper_regs.h"
27 #include "exec/cpu_ldst.h"
28 #include "tcg/tcg.h"
29 #include "internal.h"
30 #include "qemu/atomic128.h"
31 
32 /* #define DEBUG_OP */
33 
34 static inline bool needs_byteswap(const CPUPPCState *env)
35 {
36 #if defined(TARGET_WORDS_BIGENDIAN)
37   return msr_le;
38 #else
39   return !msr_le;
40 #endif
41 }
42 
43 /*****************************************************************************/
44 /* Memory load and stores */
45 
46 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
47                                     target_long arg)
48 {
49 #if defined(TARGET_PPC64)
50     if (!msr_is_64bit(env, env->msr)) {
51         return (uint32_t)(addr + arg);
52     } else
53 #endif
54     {
55         return addr + arg;
56     }
57 }
58 
59 static void *probe_contiguous(CPUPPCState *env, target_ulong addr, uint32_t nb,
60                               MMUAccessType access_type, int mmu_idx,
61                               uintptr_t raddr)
62 {
63     void *host1, *host2;
64     uint32_t nb_pg1, nb_pg2;
65 
66     nb_pg1 = -(addr | TARGET_PAGE_MASK);
67     if (likely(nb <= nb_pg1)) {
68         /* The entire operation is on a single page.  */
69         return probe_access(env, addr, nb, access_type, mmu_idx, raddr);
70     }
71 
72     /* The operation spans two pages.  */
73     nb_pg2 = nb - nb_pg1;
74     host1 = probe_access(env, addr, nb_pg1, access_type, mmu_idx, raddr);
75     addr = addr_add(env, addr, nb_pg1);
76     host2 = probe_access(env, addr, nb_pg2, access_type, mmu_idx, raddr);
77 
78     /* If the two host pages are contiguous, optimize.  */
79     if (host2 == host1 + nb_pg1) {
80         return host1;
81     }
82     return NULL;
83 }
84 
85 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
86 {
87     uintptr_t raddr = GETPC();
88     int mmu_idx = cpu_mmu_index(env, false);
89     void *host = probe_contiguous(env, addr, (32 - reg) * 4,
90                                   MMU_DATA_LOAD, mmu_idx, raddr);
91 
92     if (likely(host)) {
93         /* Fast path -- the entire operation is in RAM at host.  */
94         for (; reg < 32; reg++) {
95             env->gpr[reg] = (uint32_t)ldl_be_p(host);
96             host += 4;
97         }
98     } else {
99         /* Slow path -- at least some of the operation requires i/o.  */
100         for (; reg < 32; reg++) {
101             env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr);
102             addr = addr_add(env, addr, 4);
103         }
104     }
105 }
106 
107 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
108 {
109     uintptr_t raddr = GETPC();
110     int mmu_idx = cpu_mmu_index(env, false);
111     void *host = probe_contiguous(env, addr, (32 - reg) * 4,
112                                   MMU_DATA_STORE, mmu_idx, raddr);
113 
114     if (likely(host)) {
115         /* Fast path -- the entire operation is in RAM at host.  */
116         for (; reg < 32; reg++) {
117             stl_be_p(host, env->gpr[reg]);
118             host += 4;
119         }
120     } else {
121         /* Slow path -- at least some of the operation requires i/o.  */
122         for (; reg < 32; reg++) {
123             cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr);
124             addr = addr_add(env, addr, 4);
125         }
126     }
127 }
128 
129 static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
130                    uint32_t reg, uintptr_t raddr)
131 {
132     int mmu_idx;
133     void *host;
134     uint32_t val;
135 
136     if (unlikely(nb == 0)) {
137         return;
138     }
139 
140     mmu_idx = cpu_mmu_index(env, false);
141     host = probe_contiguous(env, addr, nb, MMU_DATA_LOAD, mmu_idx, raddr);
142 
143     if (likely(host)) {
144         /* Fast path -- the entire operation is in RAM at host.  */
145         for (; nb > 3; nb -= 4) {
146             env->gpr[reg] = (uint32_t)ldl_be_p(host);
147             reg = (reg + 1) % 32;
148             host += 4;
149         }
150         switch (nb) {
151         default:
152             return;
153         case 1:
154             val = ldub_p(host) << 24;
155             break;
156         case 2:
157             val = lduw_be_p(host) << 16;
158             break;
159         case 3:
160             val = (lduw_be_p(host) << 16) | (ldub_p(host + 2) << 8);
161             break;
162         }
163     } else {
164         /* Slow path -- at least some of the operation requires i/o.  */
165         for (; nb > 3; nb -= 4) {
166             env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr);
167             reg = (reg + 1) % 32;
168             addr = addr_add(env, addr, 4);
169         }
170         switch (nb) {
171         default:
172             return;
173         case 1:
174             val = cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 24;
175             break;
176         case 2:
177             val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16;
178             break;
179         case 3:
180             val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16;
181             addr = addr_add(env, addr, 2);
182             val |= cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 8;
183             break;
184         }
185     }
186     env->gpr[reg] = val;
187 }
188 
189 void helper_lsw(CPUPPCState *env, target_ulong addr,
190                 uint32_t nb, uint32_t reg)
191 {
192     do_lsw(env, addr, nb, reg, GETPC());
193 }
194 
195 /*
196  * PPC32 specification says we must generate an exception if rA is in
197  * the range of registers to be loaded.  In an other hand, IBM says
198  * this is valid, but rA won't be loaded.  For now, I'll follow the
199  * spec...
200  */
201 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
202                  uint32_t ra, uint32_t rb)
203 {
204     if (likely(xer_bc != 0)) {
205         int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
206         if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
207                      lsw_reg_in_range(reg, num_used_regs, rb))) {
208             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
209                                    POWERPC_EXCP_INVAL |
210                                    POWERPC_EXCP_INVAL_LSWX, GETPC());
211         } else {
212             do_lsw(env, addr, xer_bc, reg, GETPC());
213         }
214     }
215 }
216 
217 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
218                  uint32_t reg)
219 {
220     uintptr_t raddr = GETPC();
221     int mmu_idx;
222     void *host;
223     uint32_t val;
224 
225     if (unlikely(nb == 0)) {
226         return;
227     }
228 
229     mmu_idx = cpu_mmu_index(env, false);
230     host = probe_contiguous(env, addr, nb, MMU_DATA_STORE, mmu_idx, raddr);
231 
232     if (likely(host)) {
233         /* Fast path -- the entire operation is in RAM at host.  */
234         for (; nb > 3; nb -= 4) {
235             stl_be_p(host, env->gpr[reg]);
236             reg = (reg + 1) % 32;
237             host += 4;
238         }
239         val = env->gpr[reg];
240         switch (nb) {
241         case 1:
242             stb_p(host, val >> 24);
243             break;
244         case 2:
245             stw_be_p(host, val >> 16);
246             break;
247         case 3:
248             stw_be_p(host, val >> 16);
249             stb_p(host + 2, val >> 8);
250             break;
251         }
252     } else {
253         for (; nb > 3; nb -= 4) {
254             cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr);
255             reg = (reg + 1) % 32;
256             addr = addr_add(env, addr, 4);
257         }
258         val = env->gpr[reg];
259         switch (nb) {
260         case 1:
261             cpu_stb_mmuidx_ra(env, addr, val >> 24, mmu_idx, raddr);
262             break;
263         case 2:
264             cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr);
265             break;
266         case 3:
267             cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr);
268             addr = addr_add(env, addr, 2);
269             cpu_stb_mmuidx_ra(env, addr, val >> 8, mmu_idx, raddr);
270             break;
271         }
272     }
273 }
274 
275 static void dcbz_common(CPUPPCState *env, target_ulong addr,
276                         uint32_t opcode, bool epid, uintptr_t retaddr)
277 {
278     target_ulong mask, dcbz_size = env->dcache_line_size;
279     uint32_t i;
280     void *haddr;
281     int mmu_idx = epid ? PPC_TLB_EPID_STORE : cpu_mmu_index(env, false);
282 
283 #if defined(TARGET_PPC64)
284     /* Check for dcbz vs dcbzl on 970 */
285     if (env->excp_model == POWERPC_EXCP_970 &&
286         !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
287         dcbz_size = 32;
288     }
289 #endif
290 
291     /* Align address */
292     mask = ~(dcbz_size - 1);
293     addr &= mask;
294 
295     /* Check reservation */
296     if ((env->reserve_addr & mask) == addr)  {
297         env->reserve_addr = (target_ulong)-1ULL;
298     }
299 
300     /* Try fast path translate */
301     haddr = probe_write(env, addr, dcbz_size, mmu_idx, retaddr);
302     if (haddr) {
303         memset(haddr, 0, dcbz_size);
304     } else {
305         /* Slow path */
306         for (i = 0; i < dcbz_size; i += 8) {
307             cpu_stq_mmuidx_ra(env, addr + i, 0, mmu_idx, retaddr);
308         }
309     }
310 }
311 
312 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
313 {
314     dcbz_common(env, addr, opcode, false, GETPC());
315 }
316 
317 void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode)
318 {
319     dcbz_common(env, addr, opcode, true, GETPC());
320 }
321 
322 void helper_icbi(CPUPPCState *env, target_ulong addr)
323 {
324     addr &= ~(env->dcache_line_size - 1);
325     /*
326      * Invalidate one cache line :
327      * PowerPC specification says this is to be treated like a load
328      * (not a fetch) by the MMU. To be sure it will be so,
329      * do the load "by hand".
330      */
331     cpu_ldl_data_ra(env, addr, GETPC());
332 }
333 
334 void helper_icbiep(CPUPPCState *env, target_ulong addr)
335 {
336 #if !defined(CONFIG_USER_ONLY)
337     /* See comments above */
338     addr &= ~(env->dcache_line_size - 1);
339     cpu_ldl_mmuidx_ra(env, addr, PPC_TLB_EPID_LOAD, GETPC());
340 #endif
341 }
342 
343 /* XXX: to be tested */
344 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
345                           uint32_t ra, uint32_t rb)
346 {
347     int i, c, d;
348 
349     d = 24;
350     for (i = 0; i < xer_bc; i++) {
351         c = cpu_ldub_data_ra(env, addr, GETPC());
352         addr = addr_add(env, addr, 1);
353         /* ra (if not 0) and rb are never modified */
354         if (likely(reg != rb && (ra == 0 || reg != ra))) {
355             env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
356         }
357         if (unlikely(c == xer_cmp)) {
358             break;
359         }
360         if (likely(d != 0)) {
361             d -= 8;
362         } else {
363             d = 24;
364             reg++;
365             reg = reg & 0x1F;
366         }
367     }
368     return i;
369 }
370 
371 #ifdef TARGET_PPC64
372 uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr,
373                                uint32_t opidx)
374 {
375     Int128 ret;
376 
377     /* We will have raised EXCP_ATOMIC from the translator.  */
378     assert(HAVE_ATOMIC128);
379     ret = cpu_atomic_ldo_le_mmu(env, addr, opidx, GETPC());
380     env->retxh = int128_gethi(ret);
381     return int128_getlo(ret);
382 }
383 
384 uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr,
385                                uint32_t opidx)
386 {
387     Int128 ret;
388 
389     /* We will have raised EXCP_ATOMIC from the translator.  */
390     assert(HAVE_ATOMIC128);
391     ret = cpu_atomic_ldo_be_mmu(env, addr, opidx, GETPC());
392     env->retxh = int128_gethi(ret);
393     return int128_getlo(ret);
394 }
395 
396 void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr,
397                             uint64_t lo, uint64_t hi, uint32_t opidx)
398 {
399     Int128 val;
400 
401     /* We will have raised EXCP_ATOMIC from the translator.  */
402     assert(HAVE_ATOMIC128);
403     val = int128_make128(lo, hi);
404     cpu_atomic_sto_le_mmu(env, addr, val, opidx, GETPC());
405 }
406 
407 void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr,
408                             uint64_t lo, uint64_t hi, uint32_t opidx)
409 {
410     Int128 val;
411 
412     /* We will have raised EXCP_ATOMIC from the translator.  */
413     assert(HAVE_ATOMIC128);
414     val = int128_make128(lo, hi);
415     cpu_atomic_sto_be_mmu(env, addr, val, opidx, GETPC());
416 }
417 
418 uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr,
419                                   uint64_t new_lo, uint64_t new_hi,
420                                   uint32_t opidx)
421 {
422     bool success = false;
423 
424     /* We will have raised EXCP_ATOMIC from the translator.  */
425     assert(HAVE_CMPXCHG128);
426 
427     if (likely(addr == env->reserve_addr)) {
428         Int128 oldv, cmpv, newv;
429 
430         cmpv = int128_make128(env->reserve_val2, env->reserve_val);
431         newv = int128_make128(new_lo, new_hi);
432         oldv = cpu_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv,
433                                           opidx, GETPC());
434         success = int128_eq(oldv, cmpv);
435     }
436     env->reserve_addr = -1;
437     return env->so + success * CRF_EQ_BIT;
438 }
439 
440 uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr,
441                                   uint64_t new_lo, uint64_t new_hi,
442                                   uint32_t opidx)
443 {
444     bool success = false;
445 
446     /* We will have raised EXCP_ATOMIC from the translator.  */
447     assert(HAVE_CMPXCHG128);
448 
449     if (likely(addr == env->reserve_addr)) {
450         Int128 oldv, cmpv, newv;
451 
452         cmpv = int128_make128(env->reserve_val2, env->reserve_val);
453         newv = int128_make128(new_lo, new_hi);
454         oldv = cpu_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv,
455                                           opidx, GETPC());
456         success = int128_eq(oldv, cmpv);
457     }
458     env->reserve_addr = -1;
459     return env->so + success * CRF_EQ_BIT;
460 }
461 #endif
462 
463 /*****************************************************************************/
464 /* Altivec extension helpers */
465 #if defined(HOST_WORDS_BIGENDIAN)
466 #define HI_IDX 0
467 #define LO_IDX 1
468 #else
469 #define HI_IDX 1
470 #define LO_IDX 0
471 #endif
472 
473 /*
474  * We use msr_le to determine index ordering in a vector.  However,
475  * byteswapping is not simply controlled by msr_le.  We also need to
476  * take into account endianness of the target.  This is done for the
477  * little-endian PPC64 user-mode target.
478  */
479 
480 #define LVE(name, access, swap, element)                        \
481     void helper_##name(CPUPPCState *env, ppc_avr_t *r,          \
482                        target_ulong addr)                       \
483     {                                                           \
484         size_t n_elems = ARRAY_SIZE(r->element);                \
485         int adjust = HI_IDX * (n_elems - 1);                    \
486         int sh = sizeof(r->element[0]) >> 1;                    \
487         int index = (addr & 0xf) >> sh;                         \
488         if (msr_le) {                                           \
489             index = n_elems - index - 1;                        \
490         }                                                       \
491                                                                 \
492         if (needs_byteswap(env)) {                              \
493             r->element[LO_IDX ? index : (adjust - index)] =     \
494                 swap(access(env, addr, GETPC()));               \
495         } else {                                                \
496             r->element[LO_IDX ? index : (adjust - index)] =     \
497                 access(env, addr, GETPC());                     \
498         }                                                       \
499     }
500 #define I(x) (x)
501 LVE(lvebx, cpu_ldub_data_ra, I, u8)
502 LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
503 LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
504 #undef I
505 #undef LVE
506 
507 #define STVE(name, access, swap, element)                               \
508     void helper_##name(CPUPPCState *env, ppc_avr_t *r,                  \
509                        target_ulong addr)                               \
510     {                                                                   \
511         size_t n_elems = ARRAY_SIZE(r->element);                        \
512         int adjust = HI_IDX * (n_elems - 1);                            \
513         int sh = sizeof(r->element[0]) >> 1;                            \
514         int index = (addr & 0xf) >> sh;                                 \
515         if (msr_le) {                                                   \
516             index = n_elems - index - 1;                                \
517         }                                                               \
518                                                                         \
519         if (needs_byteswap(env)) {                                      \
520             access(env, addr, swap(r->element[LO_IDX ? index :          \
521                                               (adjust - index)]),       \
522                         GETPC());                                       \
523         } else {                                                        \
524             access(env, addr, r->element[LO_IDX ? index :               \
525                                          (adjust - index)], GETPC());   \
526         }                                                               \
527     }
528 #define I(x) (x)
529 STVE(stvebx, cpu_stb_data_ra, I, u8)
530 STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
531 STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
532 #undef I
533 #undef LVE
534 
535 #ifdef TARGET_PPC64
536 #define GET_NB(rb) ((rb >> 56) & 0xFF)
537 
538 #define VSX_LXVL(name, lj)                                              \
539 void helper_##name(CPUPPCState *env, target_ulong addr,                 \
540                    ppc_vsr_t *xt, target_ulong rb)                      \
541 {                                                                       \
542     ppc_vsr_t t;                                                        \
543     uint64_t nb = GET_NB(rb);                                           \
544     int i;                                                              \
545                                                                         \
546     t.s128 = int128_zero();                                             \
547     if (nb) {                                                           \
548         nb = (nb >= 16) ? 16 : nb;                                      \
549         if (msr_le && !lj) {                                            \
550             for (i = 16; i > 16 - nb; i--) {                            \
551                 t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC());   \
552                 addr = addr_add(env, addr, 1);                          \
553             }                                                           \
554         } else {                                                        \
555             for (i = 0; i < nb; i++) {                                  \
556                 t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC());       \
557                 addr = addr_add(env, addr, 1);                          \
558             }                                                           \
559         }                                                               \
560     }                                                                   \
561     *xt = t;                                                            \
562 }
563 
564 VSX_LXVL(lxvl, 0)
565 VSX_LXVL(lxvll, 1)
566 #undef VSX_LXVL
567 
568 #define VSX_STXVL(name, lj)                                       \
569 void helper_##name(CPUPPCState *env, target_ulong addr,           \
570                    ppc_vsr_t *xt, target_ulong rb)                \
571 {                                                                 \
572     target_ulong nb = GET_NB(rb);                                 \
573     int i;                                                        \
574                                                                   \
575     if (!nb) {                                                    \
576         return;                                                   \
577     }                                                             \
578                                                                   \
579     nb = (nb >= 16) ? 16 : nb;                                    \
580     if (msr_le && !lj) {                                          \
581         for (i = 16; i > 16 - nb; i--) {                          \
582             cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \
583             addr = addr_add(env, addr, 1);                        \
584         }                                                         \
585     } else {                                                      \
586         for (i = 0; i < nb; i++) {                                \
587             cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC());     \
588             addr = addr_add(env, addr, 1);                        \
589         }                                                         \
590     }                                                             \
591 }
592 
593 VSX_STXVL(stxvl, 0)
594 VSX_STXVL(stxvll, 1)
595 #undef VSX_STXVL
596 #undef GET_NB
597 #endif /* TARGET_PPC64 */
598 
599 #undef HI_IDX
600 #undef LO_IDX
601 
602 void helper_tbegin(CPUPPCState *env)
603 {
604     /*
605      * As a degenerate implementation, always fail tbegin.  The reason
606      * given is "Nesting overflow".  The "persistent" bit is set,
607      * providing a hint to the error handler to not retry.  The TFIAR
608      * captures the address of the failure, which is this tbegin
609      * instruction.  Instruction execution will continue with the next
610      * instruction in memory, which is precisely what we want.
611      */
612 
613     env->spr[SPR_TEXASR] =
614         (1ULL << TEXASR_FAILURE_PERSISTENT) |
615         (1ULL << TEXASR_NESTING_OVERFLOW) |
616         (msr_hv << TEXASR_PRIVILEGE_HV) |
617         (msr_pr << TEXASR_PRIVILEGE_PR) |
618         (1ULL << TEXASR_FAILURE_SUMMARY) |
619         (1ULL << TEXASR_TFIAR_EXACT);
620     env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
621     env->spr[SPR_TFHAR] = env->nip + 4;
622     env->crf[0] = 0xB; /* 0b1010 = transaction failure */
623 }
624