xref: /openbmc/qemu/target/ppc/mem_helper.c (revision 59a3a1c0)
1 /*
2  *  PowerPC memory access emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/helper-proto.h"
26 #include "helper_regs.h"
27 #include "exec/cpu_ldst.h"
28 #include "tcg.h"
29 #include "internal.h"
30 #include "qemu/atomic128.h"
31 
32 /* #define DEBUG_OP */
33 
34 static inline bool needs_byteswap(const CPUPPCState *env)
35 {
36 #if defined(TARGET_WORDS_BIGENDIAN)
37   return msr_le;
38 #else
39   return !msr_le;
40 #endif
41 }
42 
43 /*****************************************************************************/
44 /* Memory load and stores */
45 
46 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
47                                     target_long arg)
48 {
49 #if defined(TARGET_PPC64)
50     if (!msr_is_64bit(env, env->msr)) {
51         return (uint32_t)(addr + arg);
52     } else
53 #endif
54     {
55         return addr + arg;
56     }
57 }
58 
59 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
60 {
61     for (; reg < 32; reg++) {
62         if (needs_byteswap(env)) {
63             env->gpr[reg] = bswap32(cpu_ldl_data_ra(env, addr, GETPC()));
64         } else {
65             env->gpr[reg] = cpu_ldl_data_ra(env, addr, GETPC());
66         }
67         addr = addr_add(env, addr, 4);
68     }
69 }
70 
71 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
72 {
73     for (; reg < 32; reg++) {
74         if (needs_byteswap(env)) {
75             cpu_stl_data_ra(env, addr, bswap32((uint32_t)env->gpr[reg]),
76                                                    GETPC());
77         } else {
78             cpu_stl_data_ra(env, addr, (uint32_t)env->gpr[reg], GETPC());
79         }
80         addr = addr_add(env, addr, 4);
81     }
82 }
83 
84 static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
85                    uint32_t reg, uintptr_t raddr)
86 {
87     int sh;
88 
89     for (; nb > 3; nb -= 4) {
90         env->gpr[reg] = cpu_ldl_data_ra(env, addr, raddr);
91         reg = (reg + 1) % 32;
92         addr = addr_add(env, addr, 4);
93     }
94     if (unlikely(nb > 0)) {
95         env->gpr[reg] = 0;
96         for (sh = 24; nb > 0; nb--, sh -= 8) {
97             env->gpr[reg] |= cpu_ldub_data_ra(env, addr, raddr) << sh;
98             addr = addr_add(env, addr, 1);
99         }
100     }
101 }
102 
103 void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
104 {
105     do_lsw(env, addr, nb, reg, GETPC());
106 }
107 
108 /*
109  * PPC32 specification says we must generate an exception if rA is in
110  * the range of registers to be loaded.  In an other hand, IBM says
111  * this is valid, but rA won't be loaded.  For now, I'll follow the
112  * spec...
113  */
114 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
115                  uint32_t ra, uint32_t rb)
116 {
117     if (likely(xer_bc != 0)) {
118         int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
119         if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
120                      lsw_reg_in_range(reg, num_used_regs, rb))) {
121             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
122                                    POWERPC_EXCP_INVAL |
123                                    POWERPC_EXCP_INVAL_LSWX, GETPC());
124         } else {
125             do_lsw(env, addr, xer_bc, reg, GETPC());
126         }
127     }
128 }
129 
130 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
131                  uint32_t reg)
132 {
133     int sh;
134 
135     for (; nb > 3; nb -= 4) {
136         cpu_stl_data_ra(env, addr, env->gpr[reg], GETPC());
137         reg = (reg + 1) % 32;
138         addr = addr_add(env, addr, 4);
139     }
140     if (unlikely(nb > 0)) {
141         for (sh = 24; nb > 0; nb--, sh -= 8) {
142             cpu_stb_data_ra(env, addr, (env->gpr[reg] >> sh) & 0xFF, GETPC());
143             addr = addr_add(env, addr, 1);
144         }
145     }
146 }
147 
148 static void dcbz_common(CPUPPCState *env, target_ulong addr,
149                         uint32_t opcode, bool epid, uintptr_t retaddr)
150 {
151     target_ulong mask, dcbz_size = env->dcache_line_size;
152     uint32_t i;
153     void *haddr;
154     int mmu_idx = epid ? PPC_TLB_EPID_STORE : env->dmmu_idx;
155 
156 #if defined(TARGET_PPC64)
157     /* Check for dcbz vs dcbzl on 970 */
158     if (env->excp_model == POWERPC_EXCP_970 &&
159         !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
160         dcbz_size = 32;
161     }
162 #endif
163 
164     /* Align address */
165     mask = ~(dcbz_size - 1);
166     addr &= mask;
167 
168     /* Check reservation */
169     if ((env->reserve_addr & mask) == (addr & mask))  {
170         env->reserve_addr = (target_ulong)-1ULL;
171     }
172 
173     /* Try fast path translate */
174     haddr = tlb_vaddr_to_host(env, addr, MMU_DATA_STORE, mmu_idx);
175     if (haddr) {
176         memset(haddr, 0, dcbz_size);
177     } else {
178         /* Slow path */
179         for (i = 0; i < dcbz_size; i += 8) {
180             if (epid) {
181 #if !defined(CONFIG_USER_ONLY)
182                 /* Does not make sense on USER_ONLY config */
183                 cpu_stq_eps_ra(env, addr + i, 0, retaddr);
184 #endif
185             } else {
186                 cpu_stq_data_ra(env, addr + i, 0, retaddr);
187             }
188         }
189     }
190 }
191 
192 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
193 {
194     dcbz_common(env, addr, opcode, false, GETPC());
195 }
196 
197 void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode)
198 {
199     dcbz_common(env, addr, opcode, true, GETPC());
200 }
201 
202 void helper_icbi(CPUPPCState *env, target_ulong addr)
203 {
204     addr &= ~(env->dcache_line_size - 1);
205     /*
206      * Invalidate one cache line :
207      * PowerPC specification says this is to be treated like a load
208      * (not a fetch) by the MMU. To be sure it will be so,
209      * do the load "by hand".
210      */
211     cpu_ldl_data_ra(env, addr, GETPC());
212 }
213 
214 void helper_icbiep(CPUPPCState *env, target_ulong addr)
215 {
216 #if !defined(CONFIG_USER_ONLY)
217     /* See comments above */
218     addr &= ~(env->dcache_line_size - 1);
219     cpu_ldl_epl_ra(env, addr, GETPC());
220 #endif
221 }
222 
223 /* XXX: to be tested */
224 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
225                           uint32_t ra, uint32_t rb)
226 {
227     int i, c, d;
228 
229     d = 24;
230     for (i = 0; i < xer_bc; i++) {
231         c = cpu_ldub_data_ra(env, addr, GETPC());
232         addr = addr_add(env, addr, 1);
233         /* ra (if not 0) and rb are never modified */
234         if (likely(reg != rb && (ra == 0 || reg != ra))) {
235             env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
236         }
237         if (unlikely(c == xer_cmp)) {
238             break;
239         }
240         if (likely(d != 0)) {
241             d -= 8;
242         } else {
243             d = 24;
244             reg++;
245             reg = reg & 0x1F;
246         }
247     }
248     return i;
249 }
250 
251 #ifdef TARGET_PPC64
252 uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr,
253                                uint32_t opidx)
254 {
255     Int128 ret;
256 
257     /* We will have raised EXCP_ATOMIC from the translator.  */
258     assert(HAVE_ATOMIC128);
259     ret = helper_atomic_ldo_le_mmu(env, addr, opidx, GETPC());
260     env->retxh = int128_gethi(ret);
261     return int128_getlo(ret);
262 }
263 
264 uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr,
265                                uint32_t opidx)
266 {
267     Int128 ret;
268 
269     /* We will have raised EXCP_ATOMIC from the translator.  */
270     assert(HAVE_ATOMIC128);
271     ret = helper_atomic_ldo_be_mmu(env, addr, opidx, GETPC());
272     env->retxh = int128_gethi(ret);
273     return int128_getlo(ret);
274 }
275 
276 void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr,
277                             uint64_t lo, uint64_t hi, uint32_t opidx)
278 {
279     Int128 val;
280 
281     /* We will have raised EXCP_ATOMIC from the translator.  */
282     assert(HAVE_ATOMIC128);
283     val = int128_make128(lo, hi);
284     helper_atomic_sto_le_mmu(env, addr, val, opidx, GETPC());
285 }
286 
287 void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr,
288                             uint64_t lo, uint64_t hi, uint32_t opidx)
289 {
290     Int128 val;
291 
292     /* We will have raised EXCP_ATOMIC from the translator.  */
293     assert(HAVE_ATOMIC128);
294     val = int128_make128(lo, hi);
295     helper_atomic_sto_be_mmu(env, addr, val, opidx, GETPC());
296 }
297 
298 uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr,
299                                   uint64_t new_lo, uint64_t new_hi,
300                                   uint32_t opidx)
301 {
302     bool success = false;
303 
304     /* We will have raised EXCP_ATOMIC from the translator.  */
305     assert(HAVE_CMPXCHG128);
306 
307     if (likely(addr == env->reserve_addr)) {
308         Int128 oldv, cmpv, newv;
309 
310         cmpv = int128_make128(env->reserve_val2, env->reserve_val);
311         newv = int128_make128(new_lo, new_hi);
312         oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv,
313                                              opidx, GETPC());
314         success = int128_eq(oldv, cmpv);
315     }
316     env->reserve_addr = -1;
317     return env->so + success * CRF_EQ_BIT;
318 }
319 
320 uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr,
321                                   uint64_t new_lo, uint64_t new_hi,
322                                   uint32_t opidx)
323 {
324     bool success = false;
325 
326     /* We will have raised EXCP_ATOMIC from the translator.  */
327     assert(HAVE_CMPXCHG128);
328 
329     if (likely(addr == env->reserve_addr)) {
330         Int128 oldv, cmpv, newv;
331 
332         cmpv = int128_make128(env->reserve_val2, env->reserve_val);
333         newv = int128_make128(new_lo, new_hi);
334         oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv,
335                                              opidx, GETPC());
336         success = int128_eq(oldv, cmpv);
337     }
338     env->reserve_addr = -1;
339     return env->so + success * CRF_EQ_BIT;
340 }
341 #endif
342 
343 /*****************************************************************************/
344 /* Altivec extension helpers */
345 #if defined(HOST_WORDS_BIGENDIAN)
346 #define HI_IDX 0
347 #define LO_IDX 1
348 #else
349 #define HI_IDX 1
350 #define LO_IDX 0
351 #endif
352 
353 /*
354  * We use msr_le to determine index ordering in a vector.  However,
355  * byteswapping is not simply controlled by msr_le.  We also need to
356  * take into account endianness of the target.  This is done for the
357  * little-endian PPC64 user-mode target.
358  */
359 
360 #define LVE(name, access, swap, element)                        \
361     void helper_##name(CPUPPCState *env, ppc_avr_t *r,          \
362                        target_ulong addr)                       \
363     {                                                           \
364         size_t n_elems = ARRAY_SIZE(r->element);                \
365         int adjust = HI_IDX * (n_elems - 1);                    \
366         int sh = sizeof(r->element[0]) >> 1;                    \
367         int index = (addr & 0xf) >> sh;                         \
368         if (msr_le) {                                           \
369             index = n_elems - index - 1;                        \
370         }                                                       \
371                                                                 \
372         if (needs_byteswap(env)) {                              \
373             r->element[LO_IDX ? index : (adjust - index)] =     \
374                 swap(access(env, addr, GETPC()));               \
375         } else {                                                \
376             r->element[LO_IDX ? index : (adjust - index)] =     \
377                 access(env, addr, GETPC());                     \
378         }                                                       \
379     }
380 #define I(x) (x)
381 LVE(lvebx, cpu_ldub_data_ra, I, u8)
382 LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
383 LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
384 #undef I
385 #undef LVE
386 
387 #define STVE(name, access, swap, element)                               \
388     void helper_##name(CPUPPCState *env, ppc_avr_t *r,                  \
389                        target_ulong addr)                               \
390     {                                                                   \
391         size_t n_elems = ARRAY_SIZE(r->element);                        \
392         int adjust = HI_IDX * (n_elems - 1);                            \
393         int sh = sizeof(r->element[0]) >> 1;                            \
394         int index = (addr & 0xf) >> sh;                                 \
395         if (msr_le) {                                                   \
396             index = n_elems - index - 1;                                \
397         }                                                               \
398                                                                         \
399         if (needs_byteswap(env)) {                                      \
400             access(env, addr, swap(r->element[LO_IDX ? index :          \
401                                               (adjust - index)]),       \
402                         GETPC());                                       \
403         } else {                                                        \
404             access(env, addr, r->element[LO_IDX ? index :               \
405                                          (adjust - index)], GETPC());   \
406         }                                                               \
407     }
408 #define I(x) (x)
409 STVE(stvebx, cpu_stb_data_ra, I, u8)
410 STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
411 STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
412 #undef I
413 #undef LVE
414 
415 #ifdef TARGET_PPC64
416 #define GET_NB(rb) ((rb >> 56) & 0xFF)
417 
418 #define VSX_LXVL(name, lj)                                              \
419 void helper_##name(CPUPPCState *env, target_ulong addr,                 \
420                    ppc_vsr_t *xt, target_ulong rb)                      \
421 {                                                                       \
422     ppc_vsr_t t;                                                        \
423     uint64_t nb = GET_NB(rb);                                           \
424     int i;                                                              \
425                                                                         \
426     t.s128 = int128_zero();                                             \
427     if (nb) {                                                           \
428         nb = (nb >= 16) ? 16 : nb;                                      \
429         if (msr_le && !lj) {                                            \
430             for (i = 16; i > 16 - nb; i--) {                            \
431                 t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC());   \
432                 addr = addr_add(env, addr, 1);                          \
433             }                                                           \
434         } else {                                                        \
435             for (i = 0; i < nb; i++) {                                  \
436                 t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC());       \
437                 addr = addr_add(env, addr, 1);                          \
438             }                                                           \
439         }                                                               \
440     }                                                                   \
441     *xt = t;                                                            \
442 }
443 
444 VSX_LXVL(lxvl, 0)
445 VSX_LXVL(lxvll, 1)
446 #undef VSX_LXVL
447 
448 #define VSX_STXVL(name, lj)                                       \
449 void helper_##name(CPUPPCState *env, target_ulong addr,           \
450                    ppc_vsr_t *xt, target_ulong rb)                \
451 {                                                                 \
452     target_ulong nb = GET_NB(rb);                                 \
453     int i;                                                        \
454                                                                   \
455     if (!nb) {                                                    \
456         return;                                                   \
457     }                                                             \
458                                                                   \
459     nb = (nb >= 16) ? 16 : nb;                                    \
460     if (msr_le && !lj) {                                          \
461         for (i = 16; i > 16 - nb; i--) {                          \
462             cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \
463             addr = addr_add(env, addr, 1);                        \
464         }                                                         \
465     } else {                                                      \
466         for (i = 0; i < nb; i++) {                                \
467             cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC());     \
468             addr = addr_add(env, addr, 1);                        \
469         }                                                         \
470     }                                                             \
471 }
472 
473 VSX_STXVL(stxvl, 0)
474 VSX_STXVL(stxvll, 1)
475 #undef VSX_STXVL
476 #undef GET_NB
477 #endif /* TARGET_PPC64 */
478 
479 #undef HI_IDX
480 #undef LO_IDX
481 
482 void helper_tbegin(CPUPPCState *env)
483 {
484     /*
485      * As a degenerate implementation, always fail tbegin.  The reason
486      * given is "Nesting overflow".  The "persistent" bit is set,
487      * providing a hint to the error handler to not retry.  The TFIAR
488      * captures the address of the failure, which is this tbegin
489      * instruction.  Instruction execution will continue with the next
490      * instruction in memory, which is precisely what we want.
491      */
492 
493     env->spr[SPR_TEXASR] =
494         (1ULL << TEXASR_FAILURE_PERSISTENT) |
495         (1ULL << TEXASR_NESTING_OVERFLOW) |
496         (msr_hv << TEXASR_PRIVILEGE_HV) |
497         (msr_pr << TEXASR_PRIVILEGE_PR) |
498         (1ULL << TEXASR_FAILURE_SUMMARY) |
499         (1ULL << TEXASR_TFIAR_EXACT);
500     env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
501     env->spr[SPR_TFHAR] = env->nip + 4;
502     env->crf[0] = 0xB; /* 0b1010 = transaction failure */
503 }
504