xref: /openbmc/qemu/target/ppc/mem_helper.c (revision 438c78da)
1 /*
2  *  PowerPC memory access emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/exec-all.h"
22 #include "qemu/host-utils.h"
23 #include "exec/helper-proto.h"
24 #include "helper_regs.h"
25 #include "exec/cpu_ldst.h"
26 #include "tcg.h"
27 #include "internal.h"
28 #include "qemu/atomic128.h"
29 
30 //#define DEBUG_OP
31 
32 static inline bool needs_byteswap(const CPUPPCState *env)
33 {
34 #if defined(TARGET_WORDS_BIGENDIAN)
35   return msr_le;
36 #else
37   return !msr_le;
38 #endif
39 }
40 
41 /*****************************************************************************/
42 /* Memory load and stores */
43 
44 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
45                                     target_long arg)
46 {
47 #if defined(TARGET_PPC64)
48     if (!msr_is_64bit(env, env->msr)) {
49         return (uint32_t)(addr + arg);
50     } else
51 #endif
52     {
53         return addr + arg;
54     }
55 }
56 
57 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
58 {
59     for (; reg < 32; reg++) {
60         if (needs_byteswap(env)) {
61             env->gpr[reg] = bswap32(cpu_ldl_data_ra(env, addr, GETPC()));
62         } else {
63             env->gpr[reg] = cpu_ldl_data_ra(env, addr, GETPC());
64         }
65         addr = addr_add(env, addr, 4);
66     }
67 }
68 
69 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
70 {
71     for (; reg < 32; reg++) {
72         if (needs_byteswap(env)) {
73             cpu_stl_data_ra(env, addr, bswap32((uint32_t)env->gpr[reg]),
74                                                    GETPC());
75         } else {
76             cpu_stl_data_ra(env, addr, (uint32_t)env->gpr[reg], GETPC());
77         }
78         addr = addr_add(env, addr, 4);
79     }
80 }
81 
82 static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
83                    uint32_t reg, uintptr_t raddr)
84 {
85     int sh;
86 
87     for (; nb > 3; nb -= 4) {
88         env->gpr[reg] = cpu_ldl_data_ra(env, addr, raddr);
89         reg = (reg + 1) % 32;
90         addr = addr_add(env, addr, 4);
91     }
92     if (unlikely(nb > 0)) {
93         env->gpr[reg] = 0;
94         for (sh = 24; nb > 0; nb--, sh -= 8) {
95             env->gpr[reg] |= cpu_ldub_data_ra(env, addr, raddr) << sh;
96             addr = addr_add(env, addr, 1);
97         }
98     }
99 }
100 
101 void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
102 {
103     do_lsw(env, addr, nb, reg, GETPC());
104 }
105 
106 /* PPC32 specification says we must generate an exception if
107  * rA is in the range of registers to be loaded.
108  * In an other hand, IBM says this is valid, but rA won't be loaded.
109  * For now, I'll follow the spec...
110  */
111 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
112                  uint32_t ra, uint32_t rb)
113 {
114     if (likely(xer_bc != 0)) {
115         int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
116         if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
117                      lsw_reg_in_range(reg, num_used_regs, rb))) {
118             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
119                                    POWERPC_EXCP_INVAL |
120                                    POWERPC_EXCP_INVAL_LSWX, GETPC());
121         } else {
122             do_lsw(env, addr, xer_bc, reg, GETPC());
123         }
124     }
125 }
126 
127 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
128                  uint32_t reg)
129 {
130     int sh;
131 
132     for (; nb > 3; nb -= 4) {
133         cpu_stl_data_ra(env, addr, env->gpr[reg], GETPC());
134         reg = (reg + 1) % 32;
135         addr = addr_add(env, addr, 4);
136     }
137     if (unlikely(nb > 0)) {
138         for (sh = 24; nb > 0; nb--, sh -= 8) {
139             cpu_stb_data_ra(env, addr, (env->gpr[reg] >> sh) & 0xFF, GETPC());
140             addr = addr_add(env, addr, 1);
141         }
142     }
143 }
144 
145 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
146 {
147     target_ulong mask, dcbz_size = env->dcache_line_size;
148     uint32_t i;
149     void *haddr;
150 
151 #if defined(TARGET_PPC64)
152     /* Check for dcbz vs dcbzl on 970 */
153     if (env->excp_model == POWERPC_EXCP_970 &&
154         !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
155         dcbz_size = 32;
156     }
157 #endif
158 
159     /* Align address */
160     mask = ~(dcbz_size - 1);
161     addr &= mask;
162 
163     /* Check reservation */
164     if ((env->reserve_addr & mask) == (addr & mask))  {
165         env->reserve_addr = (target_ulong)-1ULL;
166     }
167 
168     /* Try fast path translate */
169     haddr = tlb_vaddr_to_host(env, addr, MMU_DATA_STORE, env->dmmu_idx);
170     if (haddr) {
171         memset(haddr, 0, dcbz_size);
172     } else {
173         /* Slow path */
174         for (i = 0; i < dcbz_size; i += 8) {
175             cpu_stq_data_ra(env, addr + i, 0, GETPC());
176         }
177     }
178 }
179 
180 void helper_icbi(CPUPPCState *env, target_ulong addr)
181 {
182     addr &= ~(env->dcache_line_size - 1);
183     /* Invalidate one cache line :
184      * PowerPC specification says this is to be treated like a load
185      * (not a fetch) by the MMU. To be sure it will be so,
186      * do the load "by hand".
187      */
188     cpu_ldl_data_ra(env, addr, GETPC());
189 }
190 
191 /* XXX: to be tested */
192 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
193                           uint32_t ra, uint32_t rb)
194 {
195     int i, c, d;
196 
197     d = 24;
198     for (i = 0; i < xer_bc; i++) {
199         c = cpu_ldub_data_ra(env, addr, GETPC());
200         addr = addr_add(env, addr, 1);
201         /* ra (if not 0) and rb are never modified */
202         if (likely(reg != rb && (ra == 0 || reg != ra))) {
203             env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
204         }
205         if (unlikely(c == xer_cmp)) {
206             break;
207         }
208         if (likely(d != 0)) {
209             d -= 8;
210         } else {
211             d = 24;
212             reg++;
213             reg = reg & 0x1F;
214         }
215     }
216     return i;
217 }
218 
219 #ifdef TARGET_PPC64
220 uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr,
221                                uint32_t opidx)
222 {
223     Int128 ret;
224 
225     /* We will have raised EXCP_ATOMIC from the translator.  */
226     assert(HAVE_ATOMIC128);
227     ret = helper_atomic_ldo_le_mmu(env, addr, opidx, GETPC());
228     env->retxh = int128_gethi(ret);
229     return int128_getlo(ret);
230 }
231 
232 uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr,
233                                uint32_t opidx)
234 {
235     Int128 ret;
236 
237     /* We will have raised EXCP_ATOMIC from the translator.  */
238     assert(HAVE_ATOMIC128);
239     ret = helper_atomic_ldo_be_mmu(env, addr, opidx, GETPC());
240     env->retxh = int128_gethi(ret);
241     return int128_getlo(ret);
242 }
243 
244 void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr,
245                             uint64_t lo, uint64_t hi, uint32_t opidx)
246 {
247     Int128 val;
248 
249     /* We will have raised EXCP_ATOMIC from the translator.  */
250     assert(HAVE_ATOMIC128);
251     val = int128_make128(lo, hi);
252     helper_atomic_sto_le_mmu(env, addr, val, opidx, GETPC());
253 }
254 
255 void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr,
256                             uint64_t lo, uint64_t hi, uint32_t opidx)
257 {
258     Int128 val;
259 
260     /* We will have raised EXCP_ATOMIC from the translator.  */
261     assert(HAVE_ATOMIC128);
262     val = int128_make128(lo, hi);
263     helper_atomic_sto_be_mmu(env, addr, val, opidx, GETPC());
264 }
265 
266 uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr,
267                                   uint64_t new_lo, uint64_t new_hi,
268                                   uint32_t opidx)
269 {
270     bool success = false;
271 
272     /* We will have raised EXCP_ATOMIC from the translator.  */
273     assert(HAVE_CMPXCHG128);
274 
275     if (likely(addr == env->reserve_addr)) {
276         Int128 oldv, cmpv, newv;
277 
278         cmpv = int128_make128(env->reserve_val2, env->reserve_val);
279         newv = int128_make128(new_lo, new_hi);
280         oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv,
281                                              opidx, GETPC());
282         success = int128_eq(oldv, cmpv);
283     }
284     env->reserve_addr = -1;
285     return env->so + success * CRF_EQ_BIT;
286 }
287 
288 uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr,
289                                   uint64_t new_lo, uint64_t new_hi,
290                                   uint32_t opidx)
291 {
292     bool success = false;
293 
294     /* We will have raised EXCP_ATOMIC from the translator.  */
295     assert(HAVE_CMPXCHG128);
296 
297     if (likely(addr == env->reserve_addr)) {
298         Int128 oldv, cmpv, newv;
299 
300         cmpv = int128_make128(env->reserve_val2, env->reserve_val);
301         newv = int128_make128(new_lo, new_hi);
302         oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv,
303                                              opidx, GETPC());
304         success = int128_eq(oldv, cmpv);
305     }
306     env->reserve_addr = -1;
307     return env->so + success * CRF_EQ_BIT;
308 }
309 #endif
310 
311 /*****************************************************************************/
312 /* Altivec extension helpers */
313 #if defined(HOST_WORDS_BIGENDIAN)
314 #define HI_IDX 0
315 #define LO_IDX 1
316 #else
317 #define HI_IDX 1
318 #define LO_IDX 0
319 #endif
320 
321 /* We use msr_le to determine index ordering in a vector.  However,
322    byteswapping is not simply controlled by msr_le.  We also need to take
323    into account endianness of the target.  This is done for the little-endian
324    PPC64 user-mode target. */
325 
326 #define LVE(name, access, swap, element)                        \
327     void helper_##name(CPUPPCState *env, ppc_avr_t *r,          \
328                        target_ulong addr)                       \
329     {                                                           \
330         size_t n_elems = ARRAY_SIZE(r->element);                \
331         int adjust = HI_IDX*(n_elems - 1);                      \
332         int sh = sizeof(r->element[0]) >> 1;                    \
333         int index = (addr & 0xf) >> sh;                         \
334         if (msr_le) {                                           \
335             index = n_elems - index - 1;                        \
336         }                                                       \
337                                                                 \
338         if (needs_byteswap(env)) {                              \
339             r->element[LO_IDX ? index : (adjust - index)] =     \
340                 swap(access(env, addr, GETPC()));               \
341         } else {                                                \
342             r->element[LO_IDX ? index : (adjust - index)] =     \
343                 access(env, addr, GETPC());                     \
344         }                                                       \
345     }
346 #define I(x) (x)
347 LVE(lvebx, cpu_ldub_data_ra, I, u8)
348 LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
349 LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
350 #undef I
351 #undef LVE
352 
353 #define STVE(name, access, swap, element)                               \
354     void helper_##name(CPUPPCState *env, ppc_avr_t *r,                  \
355                        target_ulong addr)                               \
356     {                                                                   \
357         size_t n_elems = ARRAY_SIZE(r->element);                        \
358         int adjust = HI_IDX * (n_elems - 1);                            \
359         int sh = sizeof(r->element[0]) >> 1;                            \
360         int index = (addr & 0xf) >> sh;                                 \
361         if (msr_le) {                                                   \
362             index = n_elems - index - 1;                                \
363         }                                                               \
364                                                                         \
365         if (needs_byteswap(env)) {                                      \
366             access(env, addr, swap(r->element[LO_IDX ? index :          \
367                                               (adjust - index)]),       \
368                         GETPC());                                       \
369         } else {                                                        \
370             access(env, addr, r->element[LO_IDX ? index :               \
371                                          (adjust - index)], GETPC());   \
372         }                                                               \
373     }
374 #define I(x) (x)
375 STVE(stvebx, cpu_stb_data_ra, I, u8)
376 STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
377 STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
378 #undef I
379 #undef LVE
380 
381 #ifdef TARGET_PPC64
382 #define GET_NB(rb) ((rb >> 56) & 0xFF)
383 
384 #define VSX_LXVL(name, lj)                                              \
385 void helper_##name(CPUPPCState *env, target_ulong addr,                 \
386                    target_ulong xt_num, target_ulong rb)                \
387 {                                                                       \
388     int i;                                                              \
389     ppc_vsr_t xt;                                                       \
390     uint64_t nb = GET_NB(rb);                                           \
391                                                                         \
392     xt.s128 = int128_zero();                                            \
393     if (nb) {                                                           \
394         nb = (nb >= 16) ? 16 : nb;                                      \
395         if (msr_le && !lj) {                                            \
396             for (i = 16; i > 16 - nb; i--) {                            \
397                 xt.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC());  \
398                 addr = addr_add(env, addr, 1);                          \
399             }                                                           \
400         } else {                                                        \
401             for (i = 0; i < nb; i++) {                                  \
402                 xt.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC());      \
403                 addr = addr_add(env, addr, 1);                          \
404             }                                                           \
405         }                                                               \
406     }                                                                   \
407     putVSR(xt_num, &xt, env);                                           \
408 }
409 
410 VSX_LXVL(lxvl, 0)
411 VSX_LXVL(lxvll, 1)
412 #undef VSX_LXVL
413 
414 #define VSX_STXVL(name, lj)                                       \
415 void helper_##name(CPUPPCState *env, target_ulong addr,           \
416                    target_ulong xt_num, target_ulong rb)          \
417 {                                                                 \
418     int i;                                                        \
419     ppc_vsr_t xt;                                                 \
420     target_ulong nb = GET_NB(rb);                                 \
421                                                                   \
422     if (!nb) {                                                    \
423         return;                                                   \
424     }                                                             \
425     getVSR(xt_num, &xt, env);                                     \
426     nb = (nb >= 16) ? 16 : nb;                                    \
427     if (msr_le && !lj) {                                          \
428         for (i = 16; i > 16 - nb; i--) {                          \
429             cpu_stb_data_ra(env, addr, xt.VsrB(i - 1), GETPC());  \
430             addr = addr_add(env, addr, 1);                        \
431         }                                                         \
432     } else {                                                      \
433         for (i = 0; i < nb; i++) {                                \
434             cpu_stb_data_ra(env, addr, xt.VsrB(i), GETPC());      \
435             addr = addr_add(env, addr, 1);                        \
436         }                                                         \
437     }                                                             \
438 }
439 
440 VSX_STXVL(stxvl, 0)
441 VSX_STXVL(stxvll, 1)
442 #undef VSX_STXVL
443 #undef GET_NB
444 #endif /* TARGET_PPC64 */
445 
446 #undef HI_IDX
447 #undef LO_IDX
448 
449 void helper_tbegin(CPUPPCState *env)
450 {
451     /* As a degenerate implementation, always fail tbegin.  The reason
452      * given is "Nesting overflow".  The "persistent" bit is set,
453      * providing a hint to the error handler to not retry.  The TFIAR
454      * captures the address of the failure, which is this tbegin
455      * instruction.  Instruction execution will continue with the
456      * next instruction in memory, which is precisely what we want.
457      */
458 
459     env->spr[SPR_TEXASR] =
460         (1ULL << TEXASR_FAILURE_PERSISTENT) |
461         (1ULL << TEXASR_NESTING_OVERFLOW) |
462         (msr_hv << TEXASR_PRIVILEGE_HV) |
463         (msr_pr << TEXASR_PRIVILEGE_PR) |
464         (1ULL << TEXASR_FAILURE_SUMMARY) |
465         (1ULL << TEXASR_TFIAR_EXACT);
466     env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
467     env->spr[SPR_TFHAR] = env->nip + 4;
468     env->crf[0] = 0xB; /* 0b1010 = transaction failure */
469 }
470