xref: /openbmc/qemu/target/ppc/machine.c (revision f7160f32)
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "exec/exec-all.h"
4 #include "sysemu/kvm.h"
5 #include "helper_regs.h"
6 #include "mmu-hash64.h"
7 #include "migration/cpu.h"
8 #include "qapi/error.h"
9 #include "qemu/main-loop.h"
10 #include "kvm_ppc.h"
11 #include "exec/helper-proto.h"
12 
13 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
14 {
15     PowerPCCPU *cpu = opaque;
16     CPUPPCState *env = &cpu->env;
17     unsigned int i, j;
18     target_ulong sdr1;
19     uint32_t fpscr, vscr;
20 #if defined(TARGET_PPC64)
21     int32_t slb_nr;
22 #endif
23     target_ulong xer;
24 
25     for (i = 0; i < 32; i++) {
26         qemu_get_betls(f, &env->gpr[i]);
27     }
28 #if !defined(TARGET_PPC64)
29     for (i = 0; i < 32; i++) {
30         qemu_get_betls(f, &env->gprh[i]);
31     }
32 #endif
33     qemu_get_betls(f, &env->lr);
34     qemu_get_betls(f, &env->ctr);
35     for (i = 0; i < 8; i++) {
36         qemu_get_be32s(f, &env->crf[i]);
37     }
38     qemu_get_betls(f, &xer);
39     cpu_write_xer(env, xer);
40     qemu_get_betls(f, &env->reserve_addr);
41     qemu_get_betls(f, &env->msr);
42     for (i = 0; i < 4; i++) {
43         qemu_get_betls(f, &env->tgpr[i]);
44     }
45     for (i = 0; i < 32; i++) {
46         union {
47             float64 d;
48             uint64_t l;
49         } u;
50         u.l = qemu_get_be64(f);
51         *cpu_fpr_ptr(env, i) = u.d;
52     }
53     qemu_get_be32s(f, &fpscr);
54     env->fpscr = fpscr;
55     qemu_get_sbe32s(f, &env->access_type);
56 #if defined(TARGET_PPC64)
57     qemu_get_betls(f, &env->spr[SPR_ASR]);
58     qemu_get_sbe32s(f, &slb_nr);
59 #endif
60     qemu_get_betls(f, &sdr1);
61     for (i = 0; i < 32; i++) {
62         qemu_get_betls(f, &env->sr[i]);
63     }
64     for (i = 0; i < 2; i++) {
65         for (j = 0; j < 8; j++) {
66             qemu_get_betls(f, &env->DBAT[i][j]);
67         }
68     }
69     for (i = 0; i < 2; i++) {
70         for (j = 0; j < 8; j++) {
71             qemu_get_betls(f, &env->IBAT[i][j]);
72         }
73     }
74     qemu_get_sbe32s(f, &env->nb_tlb);
75     qemu_get_sbe32s(f, &env->tlb_per_way);
76     qemu_get_sbe32s(f, &env->nb_ways);
77     qemu_get_sbe32s(f, &env->last_way);
78     qemu_get_sbe32s(f, &env->id_tlbs);
79     qemu_get_sbe32s(f, &env->nb_pids);
80     if (env->tlb.tlb6) {
81         /* XXX assumes 6xx */
82         for (i = 0; i < env->nb_tlb; i++) {
83             qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
84             qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
85             qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
86         }
87     }
88     for (i = 0; i < 4; i++) {
89         qemu_get_betls(f, &env->pb[i]);
90     }
91     for (i = 0; i < 1024; i++) {
92         qemu_get_betls(f, &env->spr[i]);
93     }
94     if (!cpu->vhyp) {
95         ppc_store_sdr1(env, sdr1);
96     }
97     qemu_get_be32s(f, &vscr);
98     helper_mtvscr(env, vscr);
99     qemu_get_be64s(f, &env->spe_acc);
100     qemu_get_be32s(f, &env->spe_fscr);
101     qemu_get_betls(f, &env->msr_mask);
102     qemu_get_be32s(f, &env->flags);
103     qemu_get_sbe32s(f, &env->error_code);
104     qemu_get_be32s(f, &env->pending_interrupts);
105     qemu_get_be32s(f, &env->irq_input_state);
106     for (i = 0; i < POWERPC_EXCP_NB; i++) {
107         qemu_get_betls(f, &env->excp_vectors[i]);
108     }
109     qemu_get_betls(f, &env->excp_prefix);
110     qemu_get_betls(f, &env->ivor_mask);
111     qemu_get_betls(f, &env->ivpr_mask);
112     qemu_get_betls(f, &env->hreset_vector);
113     qemu_get_betls(f, &env->nip);
114     qemu_get_betls(f, &env->hflags);
115     qemu_get_betls(f, &env->hflags_nmsr);
116     qemu_get_sbe32(f); /* Discard unused mmu_idx */
117     qemu_get_sbe32(f); /* Discard unused power_mode */
118 
119     /* Recompute mmu indices */
120     hreg_compute_mem_idx(env);
121 
122     return 0;
123 }
124 
125 static int get_avr(QEMUFile *f, void *pv, size_t size,
126                    const VMStateField *field)
127 {
128     ppc_avr_t *v = pv;
129 
130     v->u64[0] = qemu_get_be64(f);
131     v->u64[1] = qemu_get_be64(f);
132 
133     return 0;
134 }
135 
136 static int put_avr(QEMUFile *f, void *pv, size_t size,
137                    const VMStateField *field, QJSON *vmdesc)
138 {
139     ppc_avr_t *v = pv;
140 
141     qemu_put_be64(f, v->u64[0]);
142     qemu_put_be64(f, v->u64[1]);
143     return 0;
144 }
145 
146 static const VMStateInfo vmstate_info_avr = {
147     .name = "avr",
148     .get  = get_avr,
149     .put  = put_avr,
150 };
151 
152 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
153     VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
154 
155 #define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
156     VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
157 
158 static int get_fpr(QEMUFile *f, void *pv, size_t size,
159                    const VMStateField *field)
160 {
161     ppc_vsr_t *v = pv;
162 
163     v->VsrD(0) = qemu_get_be64(f);
164 
165     return 0;
166 }
167 
168 static int put_fpr(QEMUFile *f, void *pv, size_t size,
169                    const VMStateField *field, QJSON *vmdesc)
170 {
171     ppc_vsr_t *v = pv;
172 
173     qemu_put_be64(f, v->VsrD(0));
174     return 0;
175 }
176 
177 static const VMStateInfo vmstate_info_fpr = {
178     .name = "fpr",
179     .get  = get_fpr,
180     .put  = put_fpr,
181 };
182 
183 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v)                       \
184     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
185 
186 #define VMSTATE_FPR_ARRAY(_f, _s, _n)                             \
187     VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
188 
189 static int get_vsr(QEMUFile *f, void *pv, size_t size,
190                    const VMStateField *field)
191 {
192     ppc_vsr_t *v = pv;
193 
194     v->VsrD(1) = qemu_get_be64(f);
195 
196     return 0;
197 }
198 
199 static int put_vsr(QEMUFile *f, void *pv, size_t size,
200                    const VMStateField *field, QJSON *vmdesc)
201 {
202     ppc_vsr_t *v = pv;
203 
204     qemu_put_be64(f, v->VsrD(1));
205     return 0;
206 }
207 
208 static const VMStateInfo vmstate_info_vsr = {
209     .name = "vsr",
210     .get  = get_vsr,
211     .put  = put_vsr,
212 };
213 
214 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v)                       \
215     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
216 
217 #define VMSTATE_VSR_ARRAY(_f, _s, _n)                             \
218     VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
219 
220 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
221 {
222     PowerPCCPU *cpu = opaque;
223 
224     return cpu->pre_2_8_migration;
225 }
226 
227 #if defined(TARGET_PPC64)
228 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
229 {
230     PowerPCCPU *cpu = opaque;
231 
232     return cpu->pre_3_0_migration;
233 }
234 #endif
235 
236 static int cpu_pre_save(void *opaque)
237 {
238     PowerPCCPU *cpu = opaque;
239     CPUPPCState *env = &cpu->env;
240     int i;
241     uint64_t insns_compat_mask =
242         PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
243         | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
244         | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
245         | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
246         | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
247         | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
248         | PPC_64B | PPC_64BX | PPC_ALTIVEC
249         | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
250     uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
251         | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
252         | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
253         | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
254         | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
255         | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
256 
257     env->spr[SPR_LR] = env->lr;
258     env->spr[SPR_CTR] = env->ctr;
259     env->spr[SPR_XER] = cpu_read_xer(env);
260 #if defined(TARGET_PPC64)
261     env->spr[SPR_CFAR] = env->cfar;
262 #endif
263     env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
264 
265     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
266         env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
267         env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
268         env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
269         env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
270     }
271     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
272         env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
273         env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
274         env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
275         env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
276     }
277 
278     /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
279     if (cpu->pre_2_8_migration) {
280         /*
281          * Mask out bits that got added to msr_mask since the versions
282          * which stupidly included it in the migration stream.
283          */
284         target_ulong metamask = 0
285 #if defined(TARGET_PPC64)
286             | (1ULL << MSR_TS0)
287             | (1ULL << MSR_TS1)
288 #endif
289             ;
290         cpu->mig_msr_mask = env->msr_mask & ~metamask;
291         cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
292         /*
293          * CPU models supported by old machines all have
294          * PPC_MEM_TLBIE, so we set it unconditionally to allow
295          * backward migration from a POWER9 host to a POWER8 host.
296          */
297         cpu->mig_insns_flags |= PPC_MEM_TLBIE;
298         cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
299         cpu->mig_nb_BATs = env->nb_BATs;
300     }
301     if (cpu->pre_3_0_migration) {
302         if (cpu->hash64_opts) {
303             cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
304         }
305     }
306 
307     return 0;
308 }
309 
310 /*
311  * Determine if a given PVR is a "close enough" match to the CPU
312  * object.  For TCG and KVM PR it would probably be sufficient to
313  * require an exact PVR match.  However for KVM HV the user is
314  * restricted to a PVR exactly matching the host CPU.  The correct way
315  * to handle this is to put the guest into an architected
316  * compatibility mode.  However, to allow a more forgiving transition
317  * and migration from before this was widely done, we allow migration
318  * between sufficiently similar PVRs, as determined by the CPU class's
319  * pvr_match() hook.
320  */
321 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
322 {
323     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
324 
325     if (pvr == pcc->pvr) {
326         return true;
327     }
328     return pcc->pvr_match(pcc, pvr);
329 }
330 
331 static int cpu_post_load(void *opaque, int version_id)
332 {
333     PowerPCCPU *cpu = opaque;
334     CPUPPCState *env = &cpu->env;
335     int i;
336     target_ulong msr;
337 
338     /*
339      * If we're operating in compat mode, we should be ok as long as
340      * the destination supports the same compatiblity mode.
341      *
342      * Otherwise, however, we require that the destination has exactly
343      * the same CPU model as the source.
344      */
345 
346 #if defined(TARGET_PPC64)
347     if (cpu->compat_pvr) {
348         uint32_t compat_pvr = cpu->compat_pvr;
349         Error *local_err = NULL;
350 
351         cpu->compat_pvr = 0;
352         ppc_set_compat(cpu, compat_pvr, &local_err);
353         if (local_err) {
354             error_report_err(local_err);
355             return -1;
356         }
357     } else
358 #endif
359     {
360         if (!pvr_match(cpu, env->spr[SPR_PVR])) {
361             return -1;
362         }
363     }
364 
365     /*
366      * If we're running with KVM HV, there is a chance that the guest
367      * is running with KVM HV and its kernel does not have the
368      * capability of dealing with a different PVR other than this
369      * exact host PVR in KVM_SET_SREGS. If that happens, the
370      * guest freezes after migration.
371      *
372      * The function kvmppc_pvr_workaround_required does this verification
373      * by first checking if the kernel has the cap, returning true immediately
374      * if that is the case. Otherwise, it checks if we're running in KVM PR.
375      * If the guest kernel does not have the cap and we're not running KVM-PR
376      * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
377      * receive the PVR it expects as a workaround.
378      *
379      */
380     if (kvmppc_pvr_workaround_required(cpu)) {
381         env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
382     }
383 
384     env->lr = env->spr[SPR_LR];
385     env->ctr = env->spr[SPR_CTR];
386     cpu_write_xer(env, env->spr[SPR_XER]);
387 #if defined(TARGET_PPC64)
388     env->cfar = env->spr[SPR_CFAR];
389 #endif
390     env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
391 
392     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
393         env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
394         env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
395         env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
396         env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
397     }
398     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
399         env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
400         env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
401         env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
402         env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
403     }
404 
405     if (!cpu->vhyp) {
406         ppc_store_sdr1(env, env->spr[SPR_SDR1]);
407     }
408 
409     /*
410      * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
411      * before restoring
412      */
413     msr = env->msr;
414     env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
415     ppc_store_msr(env, msr);
416 
417     hreg_compute_mem_idx(env);
418 
419     return 0;
420 }
421 
422 static bool fpu_needed(void *opaque)
423 {
424     PowerPCCPU *cpu = opaque;
425 
426     return cpu->env.insns_flags & PPC_FLOAT;
427 }
428 
429 static const VMStateDescription vmstate_fpu = {
430     .name = "cpu/fpu",
431     .version_id = 1,
432     .minimum_version_id = 1,
433     .needed = fpu_needed,
434     .fields = (VMStateField[]) {
435         VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
436         VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
437         VMSTATE_END_OF_LIST()
438     },
439 };
440 
441 static bool altivec_needed(void *opaque)
442 {
443     PowerPCCPU *cpu = opaque;
444 
445     return cpu->env.insns_flags & PPC_ALTIVEC;
446 }
447 
448 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
449                     const VMStateField *field)
450 {
451     PowerPCCPU *cpu = opaque;
452     helper_mtvscr(&cpu->env, qemu_get_be32(f));
453     return 0;
454 }
455 
456 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
457                     const VMStateField *field, QJSON *vmdesc)
458 {
459     PowerPCCPU *cpu = opaque;
460     qemu_put_be32(f, helper_mfvscr(&cpu->env));
461     return 0;
462 }
463 
464 static const VMStateInfo vmstate_vscr = {
465     .name = "cpu/altivec/vscr",
466     .get = get_vscr,
467     .put = put_vscr,
468 };
469 
470 static const VMStateDescription vmstate_altivec = {
471     .name = "cpu/altivec",
472     .version_id = 1,
473     .minimum_version_id = 1,
474     .needed = altivec_needed,
475     .fields = (VMStateField[]) {
476         VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
477         /*
478          * Save the architecture value of the vscr, not the internally
479          * expanded version.  Since this architecture value does not
480          * exist in memory to be stored, this requires a but of hoop
481          * jumping.  We want OFFSET=0 so that we effectively pass CPU
482          * to the helper functions.
483          */
484         {
485             .name = "vscr",
486             .version_id = 0,
487             .size = sizeof(uint32_t),
488             .info = &vmstate_vscr,
489             .flags = VMS_SINGLE,
490             .offset = 0
491         },
492         VMSTATE_END_OF_LIST()
493     },
494 };
495 
496 static bool vsx_needed(void *opaque)
497 {
498     PowerPCCPU *cpu = opaque;
499 
500     return cpu->env.insns_flags2 & PPC2_VSX;
501 }
502 
503 static const VMStateDescription vmstate_vsx = {
504     .name = "cpu/vsx",
505     .version_id = 1,
506     .minimum_version_id = 1,
507     .needed = vsx_needed,
508     .fields = (VMStateField[]) {
509         VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
510         VMSTATE_END_OF_LIST()
511     },
512 };
513 
514 #ifdef TARGET_PPC64
515 /* Transactional memory state */
516 static bool tm_needed(void *opaque)
517 {
518     PowerPCCPU *cpu = opaque;
519     CPUPPCState *env = &cpu->env;
520     return msr_ts;
521 }
522 
523 static const VMStateDescription vmstate_tm = {
524     .name = "cpu/tm",
525     .version_id = 1,
526     .minimum_version_id = 1,
527     .minimum_version_id_old = 1,
528     .needed = tm_needed,
529     .fields      = (VMStateField []) {
530         VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
531         VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
532         VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
533         VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
534         VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
535         VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
536         VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
537         VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
538         VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
539         VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
540         VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
541         VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
542         VMSTATE_END_OF_LIST()
543     },
544 };
545 #endif
546 
547 static bool sr_needed(void *opaque)
548 {
549 #ifdef TARGET_PPC64
550     PowerPCCPU *cpu = opaque;
551 
552     return !(cpu->env.mmu_model & POWERPC_MMU_64);
553 #else
554     return true;
555 #endif
556 }
557 
558 static const VMStateDescription vmstate_sr = {
559     .name = "cpu/sr",
560     .version_id = 1,
561     .minimum_version_id = 1,
562     .needed = sr_needed,
563     .fields = (VMStateField[]) {
564         VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
565         VMSTATE_END_OF_LIST()
566     },
567 };
568 
569 #ifdef TARGET_PPC64
570 static int get_slbe(QEMUFile *f, void *pv, size_t size,
571                     const VMStateField *field)
572 {
573     ppc_slb_t *v = pv;
574 
575     v->esid = qemu_get_be64(f);
576     v->vsid = qemu_get_be64(f);
577 
578     return 0;
579 }
580 
581 static int put_slbe(QEMUFile *f, void *pv, size_t size,
582                     const VMStateField *field, QJSON *vmdesc)
583 {
584     ppc_slb_t *v = pv;
585 
586     qemu_put_be64(f, v->esid);
587     qemu_put_be64(f, v->vsid);
588     return 0;
589 }
590 
591 static const VMStateInfo vmstate_info_slbe = {
592     .name = "slbe",
593     .get  = get_slbe,
594     .put  = put_slbe,
595 };
596 
597 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
598     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
599 
600 #define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
601     VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
602 
603 static bool slb_needed(void *opaque)
604 {
605     PowerPCCPU *cpu = opaque;
606 
607     /* We don't support any of the old segment table based 64-bit CPUs */
608     return cpu->env.mmu_model & POWERPC_MMU_64;
609 }
610 
611 static int slb_post_load(void *opaque, int version_id)
612 {
613     PowerPCCPU *cpu = opaque;
614     CPUPPCState *env = &cpu->env;
615     int i;
616 
617     /*
618      * We've pulled in the raw esid and vsid values from the migration
619      * stream, but we need to recompute the page size pointers
620      */
621     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
622         if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
623             /* Migration source had bad values in its SLB */
624             return -1;
625         }
626     }
627 
628     return 0;
629 }
630 
631 static const VMStateDescription vmstate_slb = {
632     .name = "cpu/slb",
633     .version_id = 1,
634     .minimum_version_id = 1,
635     .needed = slb_needed,
636     .post_load = slb_post_load,
637     .fields = (VMStateField[]) {
638         VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
639         VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
640         VMSTATE_END_OF_LIST()
641     }
642 };
643 #endif /* TARGET_PPC64 */
644 
645 static const VMStateDescription vmstate_tlb6xx_entry = {
646     .name = "cpu/tlb6xx_entry",
647     .version_id = 1,
648     .minimum_version_id = 1,
649     .fields = (VMStateField[]) {
650         VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
651         VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
652         VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
653         VMSTATE_END_OF_LIST()
654     },
655 };
656 
657 static bool tlb6xx_needed(void *opaque)
658 {
659     PowerPCCPU *cpu = opaque;
660     CPUPPCState *env = &cpu->env;
661 
662     return env->nb_tlb && (env->tlb_type == TLB_6XX);
663 }
664 
665 static const VMStateDescription vmstate_tlb6xx = {
666     .name = "cpu/tlb6xx",
667     .version_id = 1,
668     .minimum_version_id = 1,
669     .needed = tlb6xx_needed,
670     .fields = (VMStateField[]) {
671         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
672         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
673                                             env.nb_tlb,
674                                             vmstate_tlb6xx_entry,
675                                             ppc6xx_tlb_t),
676         VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
677         VMSTATE_END_OF_LIST()
678     }
679 };
680 
681 static const VMStateDescription vmstate_tlbemb_entry = {
682     .name = "cpu/tlbemb_entry",
683     .version_id = 1,
684     .minimum_version_id = 1,
685     .fields = (VMStateField[]) {
686         VMSTATE_UINT64(RPN, ppcemb_tlb_t),
687         VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
688         VMSTATE_UINTTL(PID, ppcemb_tlb_t),
689         VMSTATE_UINTTL(size, ppcemb_tlb_t),
690         VMSTATE_UINT32(prot, ppcemb_tlb_t),
691         VMSTATE_UINT32(attr, ppcemb_tlb_t),
692         VMSTATE_END_OF_LIST()
693     },
694 };
695 
696 static bool tlbemb_needed(void *opaque)
697 {
698     PowerPCCPU *cpu = opaque;
699     CPUPPCState *env = &cpu->env;
700 
701     return env->nb_tlb && (env->tlb_type == TLB_EMB);
702 }
703 
704 static bool pbr403_needed(void *opaque)
705 {
706     PowerPCCPU *cpu = opaque;
707     uint32_t pvr = cpu->env.spr[SPR_PVR];
708 
709     return (pvr & 0xffff0000) == 0x00200000;
710 }
711 
712 static const VMStateDescription vmstate_pbr403 = {
713     .name = "cpu/pbr403",
714     .version_id = 1,
715     .minimum_version_id = 1,
716     .needed = pbr403_needed,
717     .fields = (VMStateField[]) {
718         VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
719         VMSTATE_END_OF_LIST()
720     },
721 };
722 
723 static const VMStateDescription vmstate_tlbemb = {
724     .name = "cpu/tlb6xx",
725     .version_id = 1,
726     .minimum_version_id = 1,
727     .needed = tlbemb_needed,
728     .fields = (VMStateField[]) {
729         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
730         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
731                                             env.nb_tlb,
732                                             vmstate_tlbemb_entry,
733                                             ppcemb_tlb_t),
734         /* 403 protection registers */
735         VMSTATE_END_OF_LIST()
736     },
737     .subsections = (const VMStateDescription*[]) {
738         &vmstate_pbr403,
739         NULL
740     }
741 };
742 
743 static const VMStateDescription vmstate_tlbmas_entry = {
744     .name = "cpu/tlbmas_entry",
745     .version_id = 1,
746     .minimum_version_id = 1,
747     .fields = (VMStateField[]) {
748         VMSTATE_UINT32(mas8, ppcmas_tlb_t),
749         VMSTATE_UINT32(mas1, ppcmas_tlb_t),
750         VMSTATE_UINT64(mas2, ppcmas_tlb_t),
751         VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
752         VMSTATE_END_OF_LIST()
753     },
754 };
755 
756 static bool tlbmas_needed(void *opaque)
757 {
758     PowerPCCPU *cpu = opaque;
759     CPUPPCState *env = &cpu->env;
760 
761     return env->nb_tlb && (env->tlb_type == TLB_MAS);
762 }
763 
764 static const VMStateDescription vmstate_tlbmas = {
765     .name = "cpu/tlbmas",
766     .version_id = 1,
767     .minimum_version_id = 1,
768     .needed = tlbmas_needed,
769     .fields = (VMStateField[]) {
770         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
771         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
772                                             env.nb_tlb,
773                                             vmstate_tlbmas_entry,
774                                             ppcmas_tlb_t),
775         VMSTATE_END_OF_LIST()
776     }
777 };
778 
779 static bool compat_needed(void *opaque)
780 {
781     PowerPCCPU *cpu = opaque;
782 
783     assert(!(cpu->compat_pvr && !cpu->vhyp));
784     return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
785 }
786 
787 static const VMStateDescription vmstate_compat = {
788     .name = "cpu/compat",
789     .version_id = 1,
790     .minimum_version_id = 1,
791     .needed = compat_needed,
792     .fields = (VMStateField[]) {
793         VMSTATE_UINT32(compat_pvr, PowerPCCPU),
794         VMSTATE_END_OF_LIST()
795     }
796 };
797 
798 const VMStateDescription vmstate_ppc_cpu = {
799     .name = "cpu",
800     .version_id = 5,
801     .minimum_version_id = 5,
802     .minimum_version_id_old = 4,
803     .load_state_old = cpu_load_old,
804     .pre_save = cpu_pre_save,
805     .post_load = cpu_post_load,
806     .fields = (VMStateField[]) {
807         VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
808 
809         /* User mode architected state */
810         VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
811 #if !defined(TARGET_PPC64)
812         VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
813 #endif
814         VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
815         VMSTATE_UINTTL(env.nip, PowerPCCPU),
816 
817         /* SPRs */
818         VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
819         VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
820 
821         /* Reservation */
822         VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
823 
824         /* Supervisor mode architected state */
825         VMSTATE_UINTTL(env.msr, PowerPCCPU),
826 
827         /* Internal state */
828         VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
829         /* FIXME: access_type? */
830 
831         /* Sanity checking */
832         VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
833         VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
834         VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
835                             cpu_pre_2_8_migration),
836         VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
837         VMSTATE_END_OF_LIST()
838     },
839     .subsections = (const VMStateDescription*[]) {
840         &vmstate_fpu,
841         &vmstate_altivec,
842         &vmstate_vsx,
843         &vmstate_sr,
844 #ifdef TARGET_PPC64
845         &vmstate_tm,
846         &vmstate_slb,
847 #endif /* TARGET_PPC64 */
848         &vmstate_tlb6xx,
849         &vmstate_tlbemb,
850         &vmstate_tlbmas,
851         &vmstate_compat,
852         NULL
853     }
854 };
855